Abstract

Although it has been accepted that osteoporosis is common in women, only recently have we become aware that it is also widespread in men; one in twelve men in the UK have osteoporosis. In many cases, there are recognisable causes for their osteoporosis, but a significant proportion (approximately one third) of these men have idiopathic disease. A major problem is that these cases are difficult to treat. An important therapeutic strategy would be to identify men at risk from osteoporosis sufficiently early, so that they can begin preventative measures. Moreover, development of novel means of treating these men would be an important clinical advance. With the emphasis on osteoporosis in women, however, the cellular and molecular basis for male idiopathic osteoporosis (MIO) is still poorly understood. Nevertheless, there are some aspects of skeletal regulation which may be specific for men and which could form the basis for addressing these problems. Thus, the importance of oestrogen in maintaining the adult skeleton in men as well as women implies that bone cells in men can respond to low levels of the hormone. Both oestrogen receptor (ER) α and β are expressed in bone in vivo, which may be important for oestrogen action on bone in men. Furthermore, in osteoporosis generally, there is increasing evidence for defective osteoblast differentiation such that there is a surfeit of adipocytes over osteoblasts. A low peak bone mass is a powerful risk factor for osteoporosis in later life; bone formation and, by implication, osteoblast differentiation, is key to the mechanism by which it is accrued. GH and IGFs are important for regulating osteoblast differentiation. Evidence now suggests that they are associated with bone mineral density, particularly in men. The genes for ERs, GH and IGF-I might be useful candidates with which we can begin to detect men at risk from osteoporosis. Furthermore, the mechanisms by which oestrogen, GH and IGF-I regulate the male skeleton could provide the basis for developing novel means of treating MIO.

Features of male osteoporosis

Osteoporosis affects approximately one third of women in the United Kingdom, and this has overshadowed the disease in men. It is now recognised that one in twelve men in Western countries have osteoporosis; 30% of all hip fractures are in men (Eastell et al. 1998) and it accounts for at least one quarter of the total £1 billion burden of osteoporosis on the National Health Service in the United Kingdom. Moreover, recent observations of Ismail et al. (2000) indicate that the effects of the disease in men are at least as severe as in women. There are well-recognised risk factors for men; for example, treatment with anti-inflammatory steroids, tobacco and alcohol consumption, and hypogonadism. At least a third of men with osteoporosis, however, have idiopathic disease. Why certain men have male idiopathic osteoporosis (MIO) and whether suitable treatment can be developed for them are major questions. Due to the emphasis on osteoporosis in women, however, the cellular and molecular basis for MIO is still poorly understood. In this article, we wish to review some of the fundamental mechanisms of skeletal regulation in order to ascertain if there are aspects of them which are specific to men, and which might form the basis for detecting men at risk from the disease and to review suitable treatments for MIO patients.

The standard World Health Organisation definition of osteoporosis in women is of a bone mineral density which is 2.5 standard deviations below that of a healthy normal control. Evidence suggests that the same definition can be applied to men, if based on gender-specific T scores (Selby et al. 2000). A typical clinical presentation is often that of long bone fracture following a non-traumatic event, or crush fractures of the vertebrae. In both men and women,
bone mass adaptation to mechanical loading or deformation is thought crucial to preservation of skeletal structure and there is evidence that this may be hormone sensitive (Notelovitz et al. 1991). Intrinsically to maintenance of bone mineral density and structural integrity of the skeleton is the mechanism of bone remodelling. A major purpose of this process is replacement of old bone and it depends upon a balance between bone resorption, by osteoclasts, and bone formation through osteoblast activity. Osteoporotic bone loss is due to an imbalance in bone remodelling; either increased bone resorption, decreased bone formation or a combination of the two. Following the menopause, this bone loss is emphasised further through the increased initiation rate of bone remodelling cycles. Although raised osteoclasts have been regarded as a classic feature of postmenopausal bone loss in women (Cohen-Solal et al. 1995, Eriksen et al. 1999), histomorphometric classification of bone biopsies from over 140 women with postmenopausal osteoporosis demonstrates a minimum of five different combinations of osteoblast and osteoclast dysfunction (Rehman et al. 1995), involving changes in cell number with or without altered cell activity. Similar investigations of osteoporosis in men have been less extensive, but indications are that, although bone turnover may be increased, reduced trabecular number or size is a common feature of men with osteoporosis (Francis et al. 1989, Mosekilde 1989).

Importance of oestrogens for maintaining bone in men and women

It is well recognised that oestrogens are important for maintaining bone mineral density and skeletal structure in women; falling oestrogen levels at the menopause causes bone loss leading to osteoporosis. Likewise, androgens were thought to exert a similar effect on the male skeleton (Orwoll 1996). Indeed, hypogonadism and lowered testosterone levels are an important cause of osteoporosis in men. Our understanding of gonadal steroid action on bone has now altered radically, largely due to reports describing men either with a null mutation of oestrogen receptor (ER) (Smith et al. 1994) or aromatase genes (Morishima et al. 1995, 1997, Bilezikian et al. 1998). In both situations, although testosterone was synthesised and the androgen receptor (AR) unaffected, there was abnormal skeletal development and marked osteopenia. Furthermore, although there are reports that testosterone treatment improved bone mineral density in hypogonadal men (Behre et al. 1997), osteoporotic patients with Klinefelter’s disease did not respond to this treatment (Wong et al. 1993), nor was it effective in treating males with aromatase deficiency (Carani et al. 1997). They, however, responded to oestrogen. A key question is the identity of androgen target cells in the adult male skeleton. Although AR expression has been reported in bone cells in vitro (Colvard et al. 1989) and in the growth plate of adolescents (Abu et al. 1997), it is low in vivo in mature bone cells of adult men and women (Braidman et al. 2000), in agreement with previous reports that AR expression is age and site dependent (Kasperk et al. 1997). Androstenedione treatment, however, reduces loss of cancellous bone in ovariectomised rats, even when aromatase activity was inhibited (Lea et al. 1998), but it is not known if this is relevant to the skeleton in adult men. Whether testosterone per se has a direct action on the adult male skeleton is still unclear, and it may be that it influences bone indirectly, either through muscle or changes in calcium regulation. The possibility remains that a major function of testosterone in the maintenance of adult bone, even in men, is to be the source of oestrogen. Indeed, it has now been proposed that bone loss in ageing men and women is associated with falling oestrogen levels (Khosla et al. 1998, Riggs et al. 1998). Further, in men, bone mineral density (Slemenda et al. 1997) and indices of bone formation (Anderson et al. 1998) are correlated positively with oestrogen levels. This was observed even when eugonadal men with osteoporosis were treated with testosterone. Moreover, in these patients there was no correlation between bone formation and testosterone levels (Anderson et al. 1997). A weaker association was reported between oestrogen and bone resorption (Slemenda et al. 1997). Although it has been suggested that, in postmenopausal women, high doses of oestrogen stimulate osteoblast function (Tobias & Compston 1999), overall, the evidence reviewed above for the importance of oestrogen to bone formation in men, implies that osteoblasts may also be sensitive to lower circulating levels of male oestrogen.

ER expression in the skeleton

It has been known for some time that osteoblasts express ER and respond to oestrogen in vitro, with respect to synthesis of bone matrix proteins (Eriksen et al. 1988, Komm et al. 1988, Benz et al. 1991), growth factors and markers of osteoblast differentiation (Ernst & Rodan 1991, Bodine et al. 1997, Kassem et al. 1998, Oursler 1998, Tau et al. 1998). Human cells across the osteoblast lineage express ‘classic’ ERα protein and mRNA in vivo and in vitro (Braidman et al. 1995, Hoyland et al. 1997, 1999, Kusec et al. 1998, Orefio et al. 1999a). In vitro transfection studies (Ernst et al. 1991, Harris et al. 1995) demonstrate that the receptor may be responsible for many effects of oestrogen on osteoblast-like cells. The open epiphyses and marked bone loss in the adult man with a null mutation in ERα (Smith et al. 1994) are further indications of its importance to the male skeleton. Nevertheless, although there is some reduction in bone mineral density of ERα knockout mice, ovariectomy of these animals produced a more profound bone loss (Pan et al. 1997). One possibility is that other receptors may be important for oestrogen
action on the mouse skeleton. A second ER (ERβ) is now recognised (Kuiper et al. 1996) and there is evidence for its expression in rat bone (Onoe et al. 1997, Windahl et al. 2000). Skeletal abnormalities in ERβ knockout mice, however, are surprisingly subtle, in that the bone mineral content of the cortices is increased only in adult females; males and immature animals remain unaffected (Windahl et al. 1999). ERβ, however, is expressed in transformed fetal human cells of osteoblast lineage in vitro (Arts et al. 1997) and in the growth plate of adolescent boys and girls (Vidal et al. 1999). The role of ERβ in osteoclast action on the adult human skeleton is unclear and is a matter for current debate. Investigations conducted in our laboratory (Braidman et al. 2001) demonstrate that it is clearly expressed in osteoblasts and some osteocytes equally well in both adult men and women, although it is uncertain, at present, whether the same cells express both ERα and ERβ.

Whether or not oestrogens act directly on osteoclasts is less clear; there is evidence which suggests that the hormone may influence bone-resorbing cells indirectly in the mouse, via cells of osteoblast lineage (Jilka et al. 1992). Studies with avian osteoclasts, however, demonstrate that oestrogens can act on these cells directly (Ourksler et al. 1991, 1993, Robinson et al. 1996) and there are some indications for a similar action with osteoclasts of human origin (Mano et al. 1996, Kameda et al. 1997). Expression of ERα in mammalian osteoclasts, however, is controversial; some groups report receptor expression, either of mRNA or protein, in mature cells (Mano et al. 1996, Hoyland et al. 1997, Pederson et al. 1997) but others demonstrate its expression only in immature osteoclasts (Huang et al. 1998, Kusec et al. 1998, Oreffo et al. 1999b). In contrast, our own observations (Braidman et al. 2001) demonstrate clear ERβ expression in human osteoclasts in vivo, in both adult men and women, and show that the receptor is relatively abundant in these cells. This might provide a mechanism by which oestrogens may act on osteoclasts directly.

Overall, although receptor expression early in the osteoblast lineage is still unclear, the evidence suggests that ERα and ERβ are both expressed in the later stages of differentiation. This could be of considerable importance to men, as their bone must respond to relatively low constant oestrogen levels, compared with large variations in circulating concentrations of the hormone experienced by pre-menopausal women. The presence of the two receptor isoforms provides a means of amplifying the effects of the small oestrogen concentrations in men. If the same cells express both receptors, this could be achieved through heterodimerisation (Cowley et al. 1997, Ogawa et al. 1998). Alternatively, if ERα and ERβ are similarly expressed in different cells of the osteoblast lineage, even low oestrogen concentrations could influence a wide spectrum of gene expression and thereby a variety of biological effects. A similar situation has been discussed for neural tissue (Kuiper et al. 1998). Such mechanisms as these may be the basis for the strong correlation between oestrogen levels in men with both bone mineral density and bone formation (Slemenda et al. 1997, Anderson et al. 1998, Khosla et al. 1998, Riggs et al. 1998).

Oestrogen and MIO

The notion that falling oestrogen levels in ageing men are responsible for bone loss, analogous to the situation in postmenopausal women (Slemenda et al. 1997, Khosla et al. 1998) has been developed further to provide an explanation for MIO (Riggs et al. 1998). Whether this is true for all MIO cases is, however, open to debate. In a small group of younger MIO patients, oestrogen levels (both total and free) were significantly lower than in the matched control group (Gillberg et al. 1999), although it is important to note that levels of the hormone in all the subjects were within the normal range. A similar study of older men with idiopathic osteoporosis (Resch et al. 1992) demonstrated that although oestrogen levels in patients were lower than in controls, there was no significant difference between them. Examination of the data from both these studies indicates that there may be a group of MIO patients with significantly lower oestrogen levels than their normal counterparts. That these hormone levels are within the normal range, however, attests to the sensitivity with which the skeleton in men may respond to oestrogen, as discussed previously in this article. Thus, a small decrease in circulating oestrogen levels may be sufficient to cause a fall in bone mineral density and, thereby, risk of osteoporosis. Other patients, in both these studies, had oestrogen levels identical to age-matched controls. Observations from our own laboratory (Anderson et al. 1998) demonstrate this in a larger group of men with idiopathic osteoporosis who were relatively young (<55 years of age). We hypothesised that in some of these MIO patients with normal oestrogen levels, responses of bone cells to oestrogen might be impaired, possibly through defective ER expression. Therefore we investigated the expression of ERα protein in sections of bone biopsies from a group of younger men (<56 years of age) with MIO. There was a marked loss of receptor protein expression in their osteoblasts and osteocytes, although receptor mRNA was still expressed (Braidman et al. 2000a,b). Whether or not all MIO patients with normal oestrogen levels have defective expression of ERα is not known. Loss of ERβ expression in bone cells may also be associated with MIO, and this requires further investigation.

In all three studies (Resch et al. 1992, Anderson et al. 1998, Gillberg et al. 1999), there were men with normal bone mineral density but relatively low oestrogen levels; likewise, in many older men, oestrogen levels fall but they do not proceed to develop osteoporosis. Clearly, there are
other factors important in the aetiology of MIO; for example, there are reports of decreased circulating insulin-like growth factors (IGF) in some men with idiopathic disease (Kurland et al. 1997, 1998). This is of particular interest, as IGF-I levels correlate positively with bone mineral density in men but not in women (Janssen et al. 1998) and introduces the possibility that some aspects of the underlying mechanisms for osteoporosis are gender specific. Whether these features protect bone in men from the effect of, for example, falling oestrogen levels, is a question of considerable importance and may depend upon their role in bone formation and osteoblast differentiation.

Osteoblast differentiation and osteoporosis

Osteoblast differentiation from the stromal stem cell pool is essential to development and maintenance of the normal skeleton. The high proportion of osteoporotic cases in which there is reduced osteoblast number and activity, irrespective of whether osteoclasts is raised (Rehman et al. 1995), indicates that, in many cases, defective osteoblastogenesis is important to the aetiology of the disease. Marrow stromal pluripotent stem cells are the common progenitors of the osteoblast, chondroblast, fibroblast and adipocyte differentiation pathways, (Bab et al. 1985, 1986, Owen & Friedenstein 1988), which are controlled by complex interactions between growth factors and cytokines (Locklin et al. 1995, Kuznetsov et al. 1997). The transforming growth factor-β (TGFβ) superfamily, which includes the bone morphogenetic proteins (BMPs), is important in this regard; BMP-2 and BMP-7 stimulate osteoblast differentiation in vitro from stromal stem cell progenitors by acting on osteoblast-specific transcription factors (Yeh et al. 1998, Gori et al. 1999). Furthermore, growth hormone (GH) stimulates osteoblast differentiation in vivo (Kroger et al. 1997) and in cultured stromal stromal progenitors, in the absence or presence of IGF-I and -II (Langdahl et al. 1998a), although there is some suggestion that the IGFs and the IGF-binding proteins (IGFBP) may be more important in later stages of osteoblast differentiation (Thomas et al. 1999a). The exact involvement of oestrogen in osteoblast differentiation is still uncertain; there are indications that GH may be important for early commitment to the osteoblast lineage, whereas oestrogen may act only on the later stages (Loveridge et al. 1996).

There is a close inverse association between differentiation from the stromal stem pool of osteoblasts with that of adipocytes (Bennett et al. 1991, Beresford et al. 1992). The current view is that there may be a plasticity between the two lineages or that they are derived from common precursors. Certainly factors like the BMPs, which stimulate osteoblastogenesis, concomitantly repress adipocyte differentiation from stromal stem cell populations in vitro (Gori et al. 1999). The observation that in osteoporosis there is an increase of bone marrow adipocytes, at the expense of osteoblasts (Burkhardt et al. 1987), therefore suggests a defect on osteoblast differentiation from the stromal stem cells, which favours adipogenesis. To investigate this further, we compared the ratio of adipose tissue to haematopoietic/stromal tissue in trabecular bone of osteoporotic patients with that in normal controls, and found that it was increased significantly in the patients. Evaluation of the histomorphometric indices of osteoblast activity indicates that the increased volume of adipose tissue is associated with reduced bone formation. Moreover, if adipocytic/haematopoietic ratio is used as a proxy in assessing the amount of stromal tissue present, then there is a strong association between variability in this parameter and trabecular bone apposition. Overall, this supports the hypothesis that osteoporosis results from a clonal switch in differentiation of early stromal cells to the adipocytic pathway. Such a switch would also result in a decrease in the number of osteoblasts in osteoporotic bone, a finding we have previously demonstrated (Rehman et al. 1995).

Such impairment in osteoblast differentiation could prevent bone formation from matching raised bone turnover, resulting, for example, from lowered oestrogen levels in either men or women, or through defective responses of bone cells to oestrogen, as may be the case in some MIO patients. This further suggests that whatever the cause of the increased bone turnover, either lowered oestrogen levels or other factors, only those individuals with sufficiently impaired osteoblast differentiation would present with osteoporosis. From this perspective, it could be argued that lowered oestrogen levels may not always result in the disease, and implies that understanding the defects in osteoblast differentiation may lead to a means of predicting those at risk from osteoporosis.

Reports of increased osteogenesis in animal models, in which there is over-expression of c-fos and the related Fra-1 transactivation factors, demonstrate the importance of these local factors in the regulation of osteoblast differentiation (Jochum et al. 2000). Over-expression of a naturally occurring truncated transcription factor, delta FosB, however, stimulated osteoblastogenesis but reduced adipogenesis (Sabatakos et al. 2000). Adipogenesis may further influence osteoblastogenesis through the action of the body mass regulator, leptin. In addition to its central role in controlling metabolism, body weight and gonadal function, it has been shown to inhibit bone formation, in experimental animals, through the central nervous system (Ducy et al. 2000). Studies on human marrow stromal cells in vitro, however, indicate that it can act directly on them to enhance osteoblast differentiation, and decrease adipogenesis (Thomas et al. 1999b). Whether expression of c-fos, FosB or leptin is altered in osteoporosis in general, or specifically in male osteoporosis, is yet to be determined. Another possibility is that decreased synthesis or function of BMPs may also be important in osteoporosis but for
men, specifically, lowered IGF-I levels or activity may be of especial relevance (Janssen et al. 1998, Kurland et al. 1997, 1998), since this might lead to reduced osteoblast differentiation. This further suggests that there are aspects of adipocyte and osteoblast differentiation which may be specific to understanding osteoporosis in men.

Peak bone mass as a determinant of osteoporosis

Many of the basic mechanisms by which bone mass is accrued, and the factors which determine bone loss in osteoporosis, are similar in both men and women. Bone mass in an adult, at a specific time-point, is the net result of subsequent bone loss from his or her peak bone mass. There is complex interplay between environmental and genetic factors, which affect either bone formation or bone loss. This has been studied extensively in this context, but mostly in women. Of the few studies with men, investigations of elderly male twins demonstrated that environmental and lifestyle factors were more important than inheritance in determining bone loss (Christian et al. 1989, Slemenda et al. 1992). Even in elderly women it has been suggested that the contribution of genetic factors to bone turnover and bone loss is likely to be small (Garnero et al. 1996). In any event, a high rate of bone loss may not necessarily lead to osteoporosis, if it is offset against a relatively high peak bone mass. Indeed, it is peak bone mass which is recognised as an important determinant for osteoporosis in later life (Johnston & Slemenda 1993, 1994, Teegarden et al. 1995).

Peak bone mass is accrued between 20 and 35 years of age. Although some environmental and lifestyle factors, particularly physical fitness and exercise, may be important influences on bone mass in young adult males (Casez et al. 1995), in contrast with bone loss in later life, a major component of peak bone mass in men is determined by genetic factors (Ettinger et al. 1997). Thus, the high bone mass in black Americans, compared with their counterparts, is reflected more by ethnic differences in peak bone mass than in bone turnover (Ettinger et al. 1997, Bikle et al. 1999). Genetic determinants of peak bone mass therefore, be predictors for later osteoporosis (Johnston & Slemenda 1994, Kelly & Harris 1995, Deng et al. 1999a).

Specific genes and their polymorphisms have been investigated for association with bone mass, e.g. Sp1 binding site of the collagen gene (Grant et al. 1996, Langdahl et al. 1998b, Uitterlinden et al. 1998), the receptor for 1,25 dihydroxy vitamin D$_3$ (Morrison et al. 1994, Riggs et al. 1995, Eccleshall et al. 1998), interleukin 6 (Murray et al. 1997), interleukin 1 receptor (Keen et al. 1998), TGFβ (Bertoldo et al. 2000) and parathyroid hormone receptor type 1 (Duncan et al. 1999). The studies were all carried out in either women or populations of older subjects of an age when accretion of bone mass has ceased and bone loss has begun. It is therefore uncertain whether these gene polymorphisms are associated with peak bone mass, or if they are relevant specifically to men. Polymorphisms of the gene for ERα, however, may be of interest in view of the potential sensitivity of the male skeleton to oestrogen, and the importance of ERα expression to some men with idiopathic osteoporosis, discussed earlier in this article. Moreover, ERα polymorphisms have been associated with bone mineral density in normal men (Ongphiphadhanakul et al. 1998a), although this study was with men of all ages. Furthermore, there is evidence that ERα polymorphisms are associated with bone mineral density in women, although this is dependent on the site of measurement, age and ethnicity of the population (Deng et al. 1999b, Mizunuma et al. 1997, Ongphiphadhanakul et al. 1998b, Vandevyver et al. 1999). It is still unclear whether this is also true for polymorphisms of this gene and peak bone mass in men.

Osteoblast differentiation and potential predictors of peak bone mass in men

Bone formation is undoubtedly central to the mechanism by which peak bone mass is attained in both men and women. On this basis, factors important in regulating osteoblast differentiation would also be key to attaining peak bone mass. In osteoporosis, there is impaired osteoblast differentiation, which, as discussed earlier, favours adipogenesis at the expense of osteoblastogenesis. If, in some patients, such a defect were to be present throughout life, then it may also be associated with lower peak bone mass. Polymorphisms of genes for factors which are important to the plasticity between adipogenesis and osteoblastogenesis may therefore be suitable candidates for predicting osteoporosis. The question now arises as to whether any of them might be specific for osteoporosis in men. The influence of GH and IGF-I on osteoblast differentiation has already been discussed, so it is especially noteworthy that in men aged between 20 and 40 years bone mass is associated with GH secretion. Moreover, the higher bone mineral density in Afro-Americans is associated with levels of this hormone in men but not in women (Wright et al. 1995, 1996). Furthermore, GH–dependent IGFBP is an important determinant of bone mass in healthy men (Johansson et al. 1994) and the positive correlation between IGF-I and bone mineral density, which is specific to men (Janssen et al. 1998), has been discussed earlier in this article. As oestrogens influence GH and IGF levels, the importance of interactions between these hormones cannot be discounted in this context (Holmes & Shalet 1996). Factors which regulate lean body mass may also be important; it is correlated with bone mineral density in men aged 19–29 years, i.e. at accretion of peak bone mass (Nuti et al. 1995). In women, however, reports of its relationship to bone mineral density have depended on the bone mass parameter used, and fat
body mass may also exert an equally important influence (Khosla et al. 1996). Regulation of lean body mass may, therefore, be important to peak bone mass in men specifically.

Development of suitable treatments for men with idiopathic osteoporosis

Bisphosphonates and hormone replacement therapy are now the most often used treatments for osteoporosis in general. Although oestrogen-based therapy is obviously inappropriate for male osteoporosis, the recent development of selective ER modulators (SERMs) may provide the basis for acceptable treatments. For example, raloxifene may act on ERs in bone and cardiac tissues specifically, thereby obviating the ‘female’ reproductive effects of oestrogen (Gustafsson 1998). Moreover, although raloxifene binds to ERα in bone (Bryant et al. 1999) and thereby transactivates oestrogen-responsive genes, together with other SERMs, it has a more potent effect via ERβ (Paech et al. 1997). Bone, which expresses both ER isoforms, could be particularly sensitive to relatively low doses of raloxifene, which might help avoid any potential side-effects in the treatment of male osteoporosis. Furthermore, there is the possibility that oestrogen may have an anabolic effect on bone under certain conditions (Tobias & Compston 1999) and this may also apply to SERMs. The bisphosphonates were developed as agents which suppressed osteoclastic bone resorption and there is evidence that the latest generations of these drugs acts through the mevalonate pathway of osteoclasts (Russell & Rogers 1999, Rogers et al. 2000). Although in some obvious respects they are the most appropriate available treatment for male osteoporosis, the possible importance of defective osteoblastogenesis in some men with idiopathic disease implies that bisphosphonates may be less than satisfactory in some cases. Nevertheless, there are recent reports of significantly increased bone mineral density in a double-blind, placebo-controlled study of alendronate treatment of men with osteoporosis (Orwoll et al. 2000). Other approaches have concentrated on development of anabolic therapies for osteoporosis; for example, the analogues of parathyroid hormone (Stewart et al. 2000) which may prove to be more suitable. On the basis of the discussion in this article, investigating the mechanism by which GH and IGF-I regulate osteoblast differentiation may provide the basis for treatment which may be especially beneficial for the treatment of MIO. A clearer understanding of the cellular and molecular biology of osteoblastogenesis will undoubtedly reveal novel approaches to treating male osteoporosis.

In conclusion, although many aspects of osteoporosis are common to both men and women, there may, indeed, be some significant features of skeletal regulation of especial relevance to the disease in men. Thus, bone is particularly sensitive to the low levels of circulating oestrogen in men and evidence suggests that GH and IGF-I are important for accretion of male peak bone mass. Further investigation of osteoblast differentiation and of oestrogen, GH and IGF-I action on bone and bone cells in men will yield some specific determinants of male osteoporosis and could initiate novel therapies for this disease.

Acknowledgements

We wish to thank Professor A J Freemont and Dr P L Selby for their helpful comments and discussion during the preparation of this manuscript.

References

Bodine PNV, Green J, Harris HA, Bhat RA, Stein GS, Lian JB & Komm BS 1997 Functional properties of a conditionally phenotypic,

Deng HW, Stegman MR, Davies KM, Conway T & Recker RR 1999a Genetic determination of variation and covariation of peak bone mass at the hip and spine. *Journal of Clinical Densitometry** 2 251–263.

Gillberg P, Johansson AG & Ljungahl S 1999 Decreased estradiol levels and free androgen index and elevated sex hormone-binding globulin levels in male idiopathic osteoporosis. *Calcified Tissue International** 64 209–213.

Holmes SJ & Shalet SM 1996 Role of growth hormone and sex steroids in achieving and maintaining normal bone mass. *Hormone Research** 45 86–93.

www.endocrinology.org

Thomas T, Gori F, Khosla S, Jensen MD, Burgaera B & Riggs BL 1999b Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140 1630–1638.

Uitterlinden AG, Burger H, Huang WJ, Yue F, McGuigan FEA, Grant SFA, Hofman A, van Leeuwen JPTM, Pols HAP & Ralston SH 1998 Relation of alleles of the collagen type I alpha 1 gene