Effects of the gp130 cytokines ciliary neurotropic factor (CNTF) and interleukin-11 on pituitary cells: CNTF receptors on human pituitary adenomas and stimulation of prolactin and GH secretion in normal rat anterior pituitary aggregate cultures

C Perez Castro, A Carbia Nagashima, M Páez Pereda1, V Goldberg2, A Chervin3, G Carrizo3, H Molina4, U Renner1, G K Stalla1 and E Arzt

Laboratorio de Fisiología y Biología Molecular, Departamento de Biología, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
1Max-Planck Institute of Psychiatry, Department of Endocrinology, Kraepelinstrasse 10, 80804 Munich, Germany
2Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Buenos Aires, Donato Alvarez 3150, 1427 Buenos Aires, Argentina
3Hospital Santa Lucía, Av. San Juan 2021, 1232 Buenos Aires, Argentina
4Hospital Ramos Mejía, 1221 Buenos Aires, Argentina

Requests for offprints should be addressed to E Arzt, Laboratorio de Fisiología y Biología Molecular, Departamento de Biología, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, 1428 Buenos Aires, Argentina; Email: earzt@bg.fcen.uba.ar

Abstract

Two of the most potent cytokines regulating anterior pituitary cell function are leukemia inhibitory factor (LIF) and interleukin (IL)-6, which belong to the cytokine family using the common gp130 signal transducer. Recently, the expression and action of two other members of this family, IL-11 and ciliary neurotrophic factor (CNTF), on different cell lines has also been demonstrated. We studied the expression of the specific receptor subunits for CNTF in mammotropic, non-functioning and somatotropic tumors and the action of CNTF and IL-11 in the regulation of hormone secretion in these and normal pituitary cells. The mRNA for the α chain specific for the CNTF receptor was detected by Northern blot in tumors secreting prolactin (PRL) and GH and in non-functioning tumors. We found that both IL-11 and CNTF exerted a similar stimulatory effect on GH mRNA expression in somatotrophic monolayer cell cultures from acromegalic tumors, but these cytokines had no significant influence on GH secretion. CNTF stimulates prolactin secretion in lactotrophic monolayer cell cultures from patients with prolactinoma. In monolayer cell cultures from normal rat anterior pituitary, IL-11 and CNTF had no significant effect on the release of either GH or PRL, or on GH mRNA. However, when the cells were cultured in aggregate cultures, in which the three-dimensional structure of the cells is reconstituted, both cytokines, in doses at which they had no effect on monolayer cultures, significantly stimulated both PRL and GH secretion. These data show that IL-11 and CNTF may act as regulatory factors in anterior pituitary cells, in which the three-dimensional structure of the gland is of critical importance.

Journal of Endocrinology (2001) 169, 539–547

Introduction

The interleukin (IL)-6 or gp130 cytokine family is composed of IL-6, leukemia inhibitory factor (LIF), IL-11, oncostatin M, ciliary neurotrophic factor (CNTF) and cardiotropin-1 (Kishimoto et al. 1995). All these cytokines bind specific receptors that use the gp130 protein as initial cellular signal transducer (Kishimoto et al. 1994). Originally IL-6 and LIF, and more recently IL-11 and CNTF, have been shown to be important for the autocrine/paracrine loops that cytokines conform to in the pituitary gland (Ray & Melmed 1997, Arzt et al. 1999).

stimulation of mRNA expression of POMC by IL-6 has been described (Páez Pereda et al. 2000b).

The action and expression of two other members of this family, IL-11 and CNTF, on different cell lines have also been demonstrated. IL-11 mRNA was detected by RT-PCR and IL-11 receptor (IL-11-R) mRNA by Northern blot in AtT-20 cells (Auernhammer & Melmed 1999). In these cells, IL-11 stimulates the secretion of ACTH and the expression of POMC (Auernhammer & Melmed 1999). In folliculostellate (FS) cells (TtT/GF cell line) and lactosomatotropic cells (GH3 cell line), the expression and action of IL-11 and CNTF have been demonstrated (Perez Castro et al. 2000). The mRNA for the α chain specific for the IL-11-R and CNTF receptor (CNTF-R) are expressed on both cell types. IL-11 and CNTF dose-dependently stimulate the proliferation of FS and lactosomatotropic GH3 cells. In addition, CNTF stimulates production of growth hormone (GH) and prolactin (PRL) by GH3 cells and IL-11 stimulates the secretion of the angiogenic factor, vascular endothelial growth factor (VEGF), by FS cells. Furthermore, both GH3 and FS cells express CNTF mRNA.

Expression of CNTF-R and IL-11-R has been demonstrated by Northern blot in normal cells (Auernhammer & Melmed 1999, Perez Castro et al. 2000), and expression of IL-11-R has been reported by RT-PCR in corticotropic and non-functioning human tumors (Auernhammer & Melmed 1999). Functional studies in normal and tumoral cells have not been undertaken to date. In the present paper we describe the expression of the specific α subunit of the CNTF-R in mammotropic, non-functioning and somatotropic tumors, and the action of CNTF and IL-11 in the regulation of hormone secretion in these and normal pituitary cells.

Table 1 Clinical features of human pituitary adenomas

<table>
<thead>
<tr>
<th>Clinical symptoms</th>
<th>Invasion</th>
<th>Tumor size</th>
<th>Immunohistochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acromegaly (n=18)</td>
<td>11 Non-invasive</td>
<td>2 Microadenomas</td>
<td>9 GH-reactive</td>
</tr>
<tr>
<td></td>
<td>7 Invasive</td>
<td>16 Macroadenomas</td>
<td>9 GH- and PRL-reactive</td>
</tr>
<tr>
<td>Prolactinoma (n=6)</td>
<td>3 Non-invasive</td>
<td>6 Macroadenomas</td>
<td>6 PRL-reactive</td>
</tr>
<tr>
<td>Non-functioning (n=3)</td>
<td>2 Invasive</td>
<td>3 Macroadenomas</td>
<td>3 Unreactive</td>
</tr>
<tr>
<td></td>
<td>1 ND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ND, Not determined.

Materials and Methods

Materials

Cell culture reagents and materials were purchased from Flow Laboratories (Meckenheim, Germany), Gibco Brl Life Technologies (Eggenstein, Germany), Seromed (Berlin, Germany), Sigma Chemical Co. (St Louis, MO, USA), Falcon (Heidelberg, Germany) or Nunc (Wiesbaden, Germany).

Patients

Patients with pituitary adenomas and clinical symptoms of acromegaly, prolactinoma, or non-functioning tumors were diagnosed by plasma pituitary hormone testing and magnetic resonance imaging as previously described (Arzt et al. 1992, Páez Pereda et al. 1996, 2000a). Clinical data of the patients and histological characterization of the tumors are provided in Table 1. Tumor tissue was obtained by trans-sphenoidal surgery. The purity of the samples was assessed by immunohistochemistry for the different pituitary hormones.

Animals

Male Sprague–Dawley rats (200–250 g) were kept in an environment of constant temperature, humidity and day–night cycle; food and water were available ad libitum. Glands were obtained within minutes of the animals’ death by decapitation and were treated as indicated below. All experimental procedures were approved by the Ethics Committee on Animal Care and Use, University of Buenos Aires, Argentina, following the Guidelines on the Handling and Training of Laboratory Animals published by the Universities’ Federation.

Cell culture

Human pituitary adenoma or rat normal pituitary cell cultures were performed as previously described (Páez Pereda et al. 1996). Briefly, normal pituitary or adenoma tissue was rinsed three times in PBS and then dissected into small pieces. Tissue fragments were incubated in preparation buffer with the addition of 1000 U/ml collagenase (Worthington Biochemical Corporation, Freehold, NJ, USA), 2 g/l hyaluronidase, 4 g/l BSA, 10 mg/l DNAse II and 1 g/l soybean trypsin inhibitor,
with gentle rocking at 37 °C. Cell dispersion was aided by pipetting after 30 min of incubation. The cell suspension was centrifuged and cells resuspended in culture medium (Dulbecco’s modified Eagle’s medium (DMEM) pH 7.3 containing 10% fetal calf serum (FCS), 2-2 g/l NaHCO₃, 10 mM HEPES, 2 mM glutamine, 10 ml/l non-essential amino acids, 10 ml/l minimal essential medium 10 mM HEPES, 2 mM glutamine, and 1 g/l BSA) and cells were cultured for 24 h. After 24 h in serum-free medium, the indicated reagents were added to the cultures and the culture continued for the indicated times. At the end of the incubation, medium was removed for determination of hormones and cells were homogenized for extraction of total RNA.

Cell stimulation

In the light of our previous experience in studies of the effects of interleukin (Arzt et al. 1999, Perez Castro et al. 2000), recombinant rat (rr) and human (rh) CNTF (R&D-Systems Inc., Minneapolis, MN, USA), and rhIL-11 (Roche Molecular Biochemicals, Mannheim, Germany) were dissolved in 0-05% BSA (crystallized and lyophilized, 99% purity) and used at the indicated doses, the same diluent was used as control in all experiments referred to as ‘basal’. The preparations were free of endotoxin.

For tumor experiments, the small amount of tissue available limited the number of parallel experiments that could be run on each tumor.

Hormone determination

Hormones were measured by RIA as previously described (Arzt et al. 1992). For rat PRL and rat GH, reagents were kindly provided by Dr Parlow (National Hormone and Pituitary Program, Torrance, CA, USA). The RIA for human GH is commercially available (DPG Diagnostics, Los Angeles, CA, USA); the inter- and intra-assay coefficients of variation were 3-4% and 1-5% respectively. Human PRL was measured with a commercial IRMA (DRG instruments, Hamburg, Germany) that detects PRL in the range 1–200 µg/l with an intra-assay error of 2% and an inter-assay coefficient of variation less than 4%.

Aggregate cell cultures

Anterior pituitary lobes were carefully separated from the neurointermediate lobe and dispersed into single cells as described above. Aggregate cultures were performed as previously described (Allaerts & Denef 1989, Vankelecom et al. 1989). Briefer, the pituitary cells were allowed to re-associate into aggregates in Petri dishes (35 mm diameter) on a gyroratory shaker at 65 r.p.m. in a humidiﬁed atmosphere of 5% CO₂ at 37 °C. After cell adhesion to the plates had been veriﬁed, the culture medium was replaced by stimulation medium (DMEM pH 7.3 containing 2-2 g/l NaHCO₃, 10 mM HEPES, 2 mM glutamine, and 1 g/l BSA) and cells were cultured for 24 h. After 24 h in serum-free medium, the indicated reagents were added to the cultures and the culture continued for the indicated times. At the end of the incubation, medium was removed for determination of hormones and cells were homogenized for extraction of total RNA.

Northern blot

At the end of the stimulation time, Northern blot was performed as previously described (Arzt et al. 1992, Perez Castro et al. 1999). Unless stated, reagents were from Sigma, Boehringer (Mannheim, Germany) or Pharmacia (Uppsala, Sweden). Briefly, total RNA, isolated by the guanidine isothiocyanate–phenol–chloroform extraction method, was denatured with glyoxal, electrophoresed on a 1-2% agarose gel and transferred overnight to a nylon membrane. Filters were baked for 2 h at 80 °C and stained with methylene blue. They were prehybridized for 1 h at 60 °C (50% formamide, 5 × SSPE, 5 × Denhardt’s solution, 0-1% SDS, 100 µg/ml denatured salmon sperm DNA) and then the probe was added for 12 h. Blots were washed at increasing salt and temperature stringency with a ﬁnal wash of 30 min at 60 °C in 0-1 × SSC containing 0-1% SDS. Dried filters were exposed to Kodak XAR5 ﬁlm at −70 °C with intensifying screens for 6 days. A 1-56 kb huCNTF-R α chain cDNA fragment (Davis et al. 1991), a 0-55 kb hGH (obtained from the American Type Culture Collection) and a 1 kb PstI fragment of β actin cDNA (Arzt et al. 1994) were labeled with a random-priming kit using [α-32P]dCTP (speciﬁc activity 2–4 × 10⁸ c.p.m. /µg). The autoradiograms were scanned with an LKB ultroscan II laser densitometer. The blots

www.endocrinology.org
were reprobed after eluting the first probe with 5 mM Tris–HCl pH 8.0, 2 mM EDTA, 0.1 × Denhardt’s solution, at 65 °C for 2 h. After the previous signal had been removed and confirmed by re-exposure of the filter, the blots were prehybridized and hybridized following the methods described above. A control with the fragment of β actin cDNA as probe was performed in each blot.

Statistics
Statistics were performed by ANOVA in combination with Scheffé’s test. Data are shown as means ± s.e.m.

Results

Expression of α CNTF-R in pituitary adenomas
As stated in the introduction, it has recently been demonstrated that normal pituitary cells express both IL-11-R and CNTF-R and that human pituitary tumors express IL-11-R. We first examined whether the CNTF-R is also expressed in human tumors. The mRNA for the α chain specific for the CNTF-R was detected by Northern blot in tumors secreting PRL (Fig. 1A) or GH (Fig. 1B) or in non-functioning tumors (Fig. 1C) and in the GH3 tumor cell line as a positive control (Fig. 1D). All the adenomas (n=14) that were investigated expressed CNTF-R mRNA to different extents.

IL-11 and CNTF stimulation of GH mRNA in cell cultures from acromegalic patients
In order to study the possible role of CNTF and IL-11 in the regulation of GH expression in human pituitary adenomas, we cultured cells obtained from acromegalic patients, ex vivo in monolayer cultures, and stimulated with the cytokines for 24 h. We found that both IL-11 (5 nM) and CNTF (2 nM) exerted a similar stimulatory effect on the expression of GH mRNA (Fig. 2).

Effect of IL-11 and CNTF on GH and PRL secretion in pituitary tumors
In adenoma cultures we evaluated the effects of IL-11 and CNTF at the hormone secretion level. In prolactinoma cells, CNTF stimulated the secretion of PRL (Fig. 3A). In contrast, IL-11 and CNTF had no effect, even in high
doses, on GH secretion by acromegalic cell cultures (Fig. 3B). This lack of action was evident even in four cases included in Fig. 2, in which we observed a simultaneous stimulation of GH mRNA expression and lack of action on GH secretion.

Figure 2 Effect of rhIL-11 and rhCNTF on GH mRNA expression in somatotropic human pituitary adenoma cells. Two different representative examples from a total of six adenomas analyzed with comparable results are shown. Northern blot analyses used 30 μg RNA per lane as stated in Materials and Methods. A single band corresponding to GH mRNA (1 kb) or β actin is shown. The cells were seeded at 6 × 10⁵ cells/well and treated with rhIL-11 (5 nM) (A) or rhCNTF (2 nM) (B) for 24 h. Densitometric units relative to constitutive β actin expression are shown. (C) Mean densitometric analysis of GH mRNA content in the six adenomas; data are expressed as a ratio of autoradiographic signals of GH mRNA, relative to β actin mRNA used as loading control, with S.E.M.

Figure 3 Effect of rhIL-11 or rhCNTF on GH secretion in somatotropic and prolactinoma human pituitary adenoma cells in monolayer cultures. Cells were seeded at 2 × 10⁵ cells/well in 24-well plates. After serum depletion for 24 h, treatments with rhIL-11 or rhCNTF for 24 h were performed in fresh serum-depleted medium. (A) After 24 h of CNTF treatment (1·2 nM) the supernatants were collected and PRL was measured by IRMA. Values represent the means ± S.E.M. of one of two separate adenomas, with four wells per treatment group. *P<0·05 compared with basal (ANOVA with Scheffé’s test). (B) After 24 h treatment with rhIL-11 (5 nM) or rhCNTF (2 nM), the supernatants were collected and GH was measured by RIA. Values represent the means ± S.E.M. of one of eight separate adenomas, with four wells per treatment group. The other experiments gave comparable results. There were no significant difference between treatments (ANOVA with Scheffé’s test). Other doses of IL-11 (1·25 and 2·5 nM) and CNTF (0·4 and 1·2 nM) that were also tested did not show any effect. Data from another two tumors with higher basal values and similar results are not shown.
Effect of CNTF and IL-11 on the release of GH and PRL from normal rat pituitary cells

Both IL-11 and CNTF treatments for 24 h, even with high doses, had no significant effect on the release of either GH or PRL in monolayer cell cultures from normal rat anterior pituitary glands (Fig. 4). In these cultures the mRNA for GH also was not stimulated by CNTF or IL-11 (Fig. 5). However, when the cells were cultured in aggregate cultures (in which the three-dimensional structure of the cells is reconstituted), both cytokines, in doses at which they had no effect on monolayer cultures, significantly stimulated the secretion of both PRL and GH (Fig. 6).

Discussion

The expression of CNTF-R has previously been described in anterior pituitary cell lines and normal rat anterior pituitary cultures. The present observation that these receptors are expressed on lactotrophic, somatotropic and non-functioning pituitary adenomas shows that these receptors are also expressed on human pituitary cells and underlines their putative involvement in pituitary pathophysiology.

Both CNTF and IL-11 significantly stimulate the expression of GH mRNA in monolayer cultures of cells obtained from acromegalic patients, and CNTF stimulates the release of PRL in cells from patients with prolactinoma. Interestingly, GH secretion was not stimulated in the same conditions. We had previously reported that CNTF induced a slight but consistent stimulation of GH and PRL secretion by the GH3 tumor cell line (Perez Castro et al. 2000). Interestingly, neither CNTF nor IL-11 stimulated GH mRNA and the release of GH and PRL from normal rat anterior pituitary cells dispersed in monolayer cultures, but they significantly stimulated the release of the hormones in the same cells cultured as aggregates. The necessity for a three-dimensional structure of the cultures for the effective action of these cytokines on normal anterior pituitary cells appears to be critical. This may involve the FS supporting cells, which have been shown to be present in aggregate cell cultures by immunohistochemistry (Allaerts & Denef 1989) and have been postulated to be an important component of the integration of information in the anterior pituitary autocrine/paracrine loops (Allaerts & Denef 1989). The fact that an FS cell line expresses receptors for CNTF and IL-11 and also proliferates and secretes VEGF in response to these cytokines strongly supports this notion (Perez Castro et al. 2000). In addition, we have shown that the matrix metalloproteinases (MMPs) are highly expressed in both normal and adenomatous pituitary cells, and that the level of digestion of the extracellular matrix by these MMPs enzymes is important for the availability of factors necessary for proliferation and hormone secretion (Páez Pereda et al. 2000a). In cultures from normal rat anterior pituitary cells, this action through MMPs will only occur in
aggregate cultures, and not when the cells are cultured as monolayers. The more physiological configuration of cells in aggregate cultures can also result in a better expression or accessibility of receptors. Thus the three-dimensional structure of the tissue, the interaction of hormone-secreting cells with the extracellular matrix, and the supporting FS cells, are critical for the action of IL-11 and CNTF in the regulation of GH and PRL secretion by anterior pituitary cells.

A similar process could be involved in the secretory mechanisms that follow CNTF or IL-11 stimulation of human somatotropic adenomas. Similarly, we have previously shown that the action of IL-6 in inducing c-fos in human adenoma cell cultures only occurs in explant cultures (where the structure of the tissue is maintained) and not in monolayer cultures (Pérez Pereda et al. 1996). In pituitary adenomas, the interaction with FS cells in the transition zone surrounding the tumoral cells, which is extremely rich in FS cells (Marin et al. 1992, Farnoud et al. 1994), could be critical for regulation by these factors.
cytokines. In cultures of cells from GH-secreting adeno-
mas, this seems to be important for the secretion, but not
the transcriptional step of regulation. Post-translational
mechanisms modifying the levels of translation of mRNA
have been shown to occur in different models of secreta-
gog stimulation, for example for the action of IL-1 in
skeletal muscle (Cooney et al. 1999) and the expression of
genes during development (Kuge & Richter 1995). The
inhibition of lipoprotein lipase by GH in human adipose
tissue occurs during translation or post-translational
processing (or both) of the enzyme (Ottosson et al. 1995).
Similar to the effect of CNTF and IL-11 on GH mRNA/
protein secretion in human adenomas, GH induces hepatic
lipase mRNA but the translation is impaired in hypo-
thyroid rats (Neve et al. 1997), in which the mechanism is
also unknown but speculated to occur at the (post)
translational level. The GHRH-induced release of GH by
human GH-secreting cells is transmitted through protein
kinase A, which activates nonselective cation currents and
induces membrane depolarization, an increase in intra-
cellular Ca\(^{2+}\) and GH secretion. In human adenomas with
a constitutively active gsp mutation, GHRH does not
increase the non-selective cation current, which may
account for the oversecretion of GH in these adenomas
(Yasufuku-Takano et al. 1999). Further studies on the
coupling of the receptors for CNTF with the signals
leading to hormone secretion are needed in order to
understand the mechanisms leading to the different regu-
lation among transcription and secretion. The understand-
ing of the cellular and molecular mechanisms leading to
the lack of secretion of GH after CNTF or IL-11
stimulation in somatotropic human adenomas will be
of great utility for further understanding the hormone
oversecretion in these adenomas.

As has been extensively shown for LIF and IL-6,
IL-11-R and CNTF-R are not only expressed, but are
also functional, in anterior pituitary cell lines, normal
anterior pituitary cells and human adenomas. Through
these receptors these cytokines are able to regulate the
secretion of hormone and VEGF and the proliferation of
these cells. These cytokines, acting through the gp130
transducer, may be involved in the progression of pituitary
pathogenesis.

Acknowledgements

This work was supported by grants from the Volkswagen
Foundation (1/76 803), the Deutsche Forschungsgemein-
schaft (Sta 285/7–3), the Argentine Health Ministry, the
University of Buenos Aires (UBA), CONICET and the
Agencia Nacional de Promoción Científica y Tecnológica-
Argentina. The authors appreciate the collaboration of Ms
Silvina Pezzebon in the organization of clinical data. E Arzt
is a member of the Argentine National Research Council
(CONICET).

References

Akita S, Webster J, Ren SG, Takino H, Said J, Zand O & Melmed S
1995 Human and murine pituitary expression of leukemia
inhibitory factor. Novel intrapituitary regulation of
adrenocorticotropic hormone synthesis and secretion. Journal of
Clinical Investigation 95 1288–1298.

Allaerts W & Denef C 1989 Regulatory activity and topological
distribution of folliculo-stellate cells in rat anterior pituitary cell

Arzt E, Stelzer G, Renner U, Lange M, Müller OA & Stalla GK
1992 Interleukin-2 and interleukin-2 receptor expression in human
corticotrophic adenoma and murine pituitary cell cultures. Journal of
Clinical Investigation 90 1944–1951.

1993 Interleukin involvement in anterior pituitary cell growth
regulation: effects of interleukin-2 (IL-2) and IL-6. Endocrinology
132 459–467.

Arzt E, Sauer J, Pollinacher T, Labeur M, Hobboer F, Reul JMHM &
Stalla GK 1994 Glucocorticoids suppress interleukin-1 receptor
antagonist synthesis following induction by endoroxin. Endocrinology
134 672–677.

Arzt E, Páez Pereda M, Perez Castro C, Pagotto U, Renner U &
Stalla GK 1999 Pathophysiological role of the cytokine network in

Auernhammer CJ & Melmed S 1999 Interleukin-11 stimulates
proopiomelanocortin gene expression and adrenocorticotropic
secretion in corticotroph cells: evidence for a redundant cytokine
network in the hypothalamo–pituitary–adrenal axis. Endocrinology
140 1559–1566.

Cooney RN, Mash GO, Gilpin T, Shumate ML, Lang CH &
Vary TC 1999 Mechanism of IL-1 induced inhibition of protein

Davis S, Aldrich TH, Valenzuela DM, Wong V, Furth ME, Squinto
SP & Yancopoulos GD 1991 The receptor for ciliary neurotrophic

Farnoud MR, Kujas M, Derome P, Racadot J, Peillon F & Li JY
1994 Interactions between normal and tumoral tissues at the
boundary of human anterior pituitary adenomas. Vinhovs Archiv A
42 75–82.

Gloddek J, Pagotto U, Páez Pereda M, Arzt E, Stalla GK & Renner
U 1999 Pituitary adenylate cyclase-activating peptide,
interleukin-6 and glucocorticoids regulate the release of vascular
endothelial growth factor in pituitary folliculostellate cells. Journal of
Endocrinology 160 483–490.

Jones TH, Justice S, Price A & Chapman K 1991 Interleukin-6
Endocrinology and Metabolism 73 207–209.

Jones TH, Kennedy RL, Justice SK & Price A 1993 Interleukin-1
stimulates the release of interleukin-6 from cultured human

Jones TH, Daniels M, James RA, Justice SK, McCorkle R, Price A,
Kendall-Taylor P & Weetman AP 1994 Production of bioactive
and immunoreactive interleukin-6 (IL-6) and expression of IL-6
 messenger ribonucleic acid by human pituitary adenomas. Journal of
Clinical Endocrinology and Metabolism 78 180–187.

Kishimoto T, Taga T & Akira S 1994 Cytokine signal transduction.
Cell 76 253–262.

Kishimoto T, Akira S, Narazaki M & Taga T 1995 Interleukin-6
family of cytokines and gp130. Blood 86 1243–1254.

Kobayashi H, Fukata J, Murakami N, Usui T, Ebisu O, Muro S,
Hanaoka I, Inove K, Imura H & Nakao K 1997 Tumor necrosis

Kuge H & Richter JD 1995 Cytoplasmic 3′poly(A) addition induces
5′cap ribose methylation: implications for translational control of
mature mRNA. EMBO Journal 14 6301–6310.

Lyson K & McCann SM 1991 The effect of interleukin-6 on pituitary
hormone release in vivo and in vitro. Neuroendocrinology 54 262–266.


Received in final form 16 January 2001
Accepted 7 February 2001