Regulation of proliferation of prostate epithelial cells by 1,25-dihydroxyvitamin D3 is accompanied by an increase in insulin-like growth factor binding protein-3

C C Sprenger1, A Peterson2, R Lance2, J L Ware3, R H Drivdahl1 and S R Plymate1,4

1Geriatric Research Education and Clinical Center, VAPSHCS, Tacoma, Washington, USA
2Department of Urology, Madigan Army Medical Center, Tacoma, Washington, USA
3Department of Pathology, MCV/VCU, Richmond, Virginia, USA
4Department of Medicine, University of Washington, Seattle, Washington, USA

(Requests for offprints should be addressed to SR Plymate, GRECC (182 B), Bldg 85, Room 128, American Lake VAMC, Tacoma, Washington 98493, USA; Email: splymate@u.washington.edu)

Abstract

The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) has been shown to regulate the proliferation of human prostate epithelial cell lines. Since the insulin-like growth factor (IGF) system is involved in the transformation process of epithelial cells, the following study was undertaken to determine if the IGF system, in particular IGF binding protein-3 (IGFBP-3), is altered by 1,25-(OH)2D3 in normal prostate epithelial cells as part of a mechanism for inhibition of transformation. Two cell systems were used in this study: (1) primary cultures of benign human prostate epithelial cells (PECs) and (2) an SV40-T immortalized prostate epithelial cell line (P153) that is non-tumorigenic. 1,25-(OH)2D3 was added to parallel sets of PECs and P153 cells in addition to the presence or absence of IGF-I or des(1–3)IGF-I. Treatment with 1,25-(OH)2D3 resulted in significant growth inhibition of both PECs and P153 cells. Furthermore, 1,25-(OH)2D3 inhibited IGF-induced proliferation, but this was partially reversed by high concentrations of IGF-I. Western ligand blots of condition media demonstrated a significant increase in IGFBP-3; likewise Northern blots demonstrated an increase in mRNA for IGFBP-3. Proliferation assays using an antibody designed to block the IGF-independent effects of IGFBP-3 failed to reverse the inhibitory effect of 1,25-(OH)2D3. Thus, IGFBP-3 acts in an IGF-dependent manner to inhibit cell growth of benign prostate epithelial cells.

Journal of Endocrinology (2001) 170, 609–618

Introduction

Epidemiological studies suggest that vitamin D deficiency may be an underlying risk factor in the development of prostate cancer, since men with elevated serum levels of vitamin D are at a decreased risk for developing prostate cancer (Schwartz & Hulka 1990, Corder et al. 1995, Konety et al. 1996). The classic role for vitamin D is to regulate calcium and phosphorous homeostasis, by conversion to the active metabolite, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). This conversion is stringently controlled by a person’s calcium needs (Reichel et al. 1989). However, the ubiquitous nature of the vitamin D receptor beyond its classical target organs (intestines, kidney and bone) has led investigators to explore other possible roles of 1,25-(OH)2D3 (Walters 1992).

Journal of Endocrinology (2001) 170, 609–618

0022–0795/01/0170–609 © 2001 Society for Endocrinology Printed in Great Britain

Online version via http://www.endocrinology.org

Downloaded from Bioscientifica.com at 04/01/2022 01:41:47PM via free access
The insulin-like growth factor (IGF) system has been shown to contribute to the transformation of prostate epithelial cells and to the development of prostate cancer in men (Pietrzkowski et al. 1993, Plymate et al. 1996, Damon et al. 1998). The role of the insulin-like growth factor binding proteins (IGF-BP), especially IGFBP-3, can be growth inhibitory or stimulatory (Schmid et al. 1991, Oh et al. 1995, Angelloz-Nicoud et al. 1996, Rajah et al. 1997). Several studies have demonstrated that IGFBP-3 expression increases in response to 1,25-(OH)2D3, or its analogs, in established prostate cancer cell lines (Huynh et al. 1996, Nickerson et al. 1998, Goossens et al. 1999, Nickerson & Huynh 1999). Most studies have correlated the increased IGFBP-3 expression ascribed to 1,25-(OH)2D3 ligands. The purpose of this study was to determine if the increase in IGFBP-3 alters the response of the cells to IGF ligands. The purpose of this study was to determine if the increased IGFBP-3 expression ascribed to 1,25-(OH)2D3 in transformed prostate cancer cell lines also occurs in primary prostate epithelial cells and is therefore a potential explanation for the putative association of increased vitamin D levels and decreased incidence of prostate cancer.

Materials and Methods

Materials

Tissue culture media, RPMI-1640, F12 nutrient mixture (Ham’s) powder, HEPEPS, gentamicin, fungizone, genetcin (G418), and deoxyribonuclease were obtained from Life Technologies (Gibco-BRL) (Grand Island, NY, USA). Epidermal growth factor (EGF), dexamethasone, and the additive ITS (insulin, transferrin, selenium) were purchased from Sigma Chemical Co. (St Louis, MO, USA). Bovine pituitary extract (BPE) was purchased from Upstate Biotechnology, Inc. (Lake Placid, NY, USA). Fetal bovine serum (FBS) was obtained from Hyclone (Logan, UT, USA). Nonradioactive 1,25-(OH)2D3 was purchased from Calbiochem (La Jolla, CA, USA). Insulin-like growth factors-I and -II were gifts from Eli Lilly and Co. (Indianapolis, IN, USA). IGFBP-3 was purchased from Upstate Biotechnology, Inc. Anti-IGFBP-3 was obtained from Diagnostic Systems Laboratories (Houston, TX, USA). The Cell Titer 96 Aqueous cell proliferation kit was obtained from Promega (Madison, WI, USA). Nitrocellulose and electrophoresis reagents were purchased from BioRad Laboratories (Richmond, CA, USA); nylon membranes (GeneScreen) were obtained from New England Nuclear (Boston, MA, USA). [125I]IGF-II (2000 Ci/mmol) was purchased from Amersham (Arlington Heights, IL, USA). 32P-dCTP was obtained from NEN-DuPont (Wilmington, DE, USA). The IGFBP-3 cDNA was obtained from Dr S Shimazaki (Whittier Institute for Diabetes and Endocrinology, Scripps Memorial Hospital, San Diego, CA, USA). Each experiment was performed at least three separate times.

Cell culture

P153 cells were derived from benign prostate epithelial cells obtained from a radical prostatectomy specimen and cells were immortalized with the early region SV40-T genes as previously described (Bae et al. 1994). P153 cells were cultured in RPMI-1640 medium supplemented with 10 ng/ml EGF, 0·02 mM dexamethasone, 5 µg/ml insulin, 5 µg/ml transferrin, 5 ng/ml selenium, fungizone and gentamicin at 37 °C under 5% CO2. All cells used in these experiments were mycoplasma free, as determined by the Mycoplasma PCR Primer Set (Stratagene, La Jolla, CA, USA).

Tissue biopsies obtained during radical prostatectomies were digested overnight at 37 °C with 0·1% collagenase (Type 1) containing fungizone and gentamicin. The epithelial and stromal cells were then separated by growing the cells in F12/HEPES medium supplemented with 10 ng/ml EGF, 0·02 mM dexamethasone, 5 µg/ml insulin, 5 µg/ml transferrin, 5 ng/ml selenium, fungizone and gentamicin at 37 °C under 5% CO2. The resulting primary epithelial cells (PECs) are composed predominantly of basal epithelial cells.

Cell proliferation assays

Cell proliferation was assessed by a colorimetric MTT assay for quantification of viable cells (Cell Titer 96 Aqueous kit, Promega). PECs and P153 cells were plated in 96-well plates at a density of 5000 cells/well in RPMI medium containing 5% serum. The following day, experimental media conditions were added (all serum free). The treatments included des(1–3) IGF-I in addition to IGF-I because it has a fivefold decreased affinity for IGFBP-3 compared with IGF-I, and thus should give an indication of the effect of IGFBP-3 on sequestration of intact IGF-I from the type I IGF receptor (IGF-IR) (Salahifar et al. 2000). The plates were incubated for 96 h, after which the tetrazolium salt and dye solution was added and color development was allowed to proceed for 4 h at 37 °C, 5% CO2. Each plate was then read at an absorbance of 490 nm; each cell line was tested three times. The correlation between cell number and the MTT assay in our laboratory is r=0·97. Statistical analyses were performed using the unpaired t-test with a 95% confidence interval.

Cell counts

Cell counts were performed on the above treatments using the hemocytometer method (Sprenger et al. 1999). Each count was performed in triplicate.
IGFBP-3 studies

Proliferation assays were conducted using the treatments in
Cell proliferation assays with the addition of anti-IGFBP-3.
Because the antibody against IGFBP-3 contained sodium
azide as a preservative, the toxicity of this reagent was
first evaluated by cell proliferation assays in the presence
or absence of 0-0009% sodium azide. Proliferation
studies with exogenous IGFBP-3 (500 ng/ml) added
to medium containing IGF-I (10 ng/ml) were also
performed.

IGFBP expression studies

PEC and P153 cells were grown to 80% confluence in
60-mm tissue culture dishes and treated with the follow-
ing: control (0-1% ethanol) or 1,25-(OH)2D3 (10 nM) in
RPMI supplemented with 5 mg/ml transferrin and 5 mg/
ml selenium. After 24 h, medium and total cytoplasmic
RNA were collected for Western ligand or immunoblots
(see Western ligand and immunoblots) or Northern blots (see
mRNA analysis) respectively.

Western ligand and immunoblots

Media from cells were collected and concentrated by
filtration through nitrocellulose; the amount of media used
to prepare each sample was based on cell number of each
culture (Birnbaum et al. 1994). Western immunoblots
and ligand blots were performed as previously described
(Birnbaum et al. 1994, Sprenger et al. 1999).

mRNA analysis

Cells were grown and treated with growth factors as
described above and total cytoplasmic RNA was extract-
ed using an acid guanidinium thiocyanate/phenol/
chloroform extraction method (Chomczynski & Sacchi
1987). Northern blot analysis was performed as previously
described (Sprenger et al. 1999).

Results

Dose–responses to IGF-I, des(1–3)IGF-I, and
1,25-(OH)2D3

The effects of increasing concentrations of IGF-I (0, 1, 10,
100 ng/ml), des(1–3)IGF-I (0, 1, 10, 100 ng/ml), and
1,25-(OH)2D3 (1, 5, 10 nM) on cell proliferation were
tested on both PECs and P153 cells. All concentrations of
IGF-I and des(1–3)IGF-I significantly increased prolifera-
tion of the PECs (Fig. 1A, B). The growth of these cells
was significantly inhibited by 10 nM 1,25-(OH)2D3 (Fig.
1C, D). In the P153 cells, the 10 and 100 ng/ml concen-
trations of IGF-I and all concentrations of des(1–3)IGF-I
 significandy increased proliferation (Fig. 2A, B). The P153
cells were significantly inhibited at the 5 and 10 nM
concentrations of 1,25-(OH)2D3, with 10 nM having the
greatest inhibition (Fig. 2C, D). Therefore, the 1 and
50 ng/ml concentrations of IGF-I and des(1–3)IGF-I as
well as the 10 nM concentration of 1,25–(OH)2D3, were
used for the remaining experiments for both cell types.

Proliferation studies with IGFs and 1,25–(OH)2D3

In PECs, the proliferative effect of IGF-I at a
concentration of 1 ng/ml was completely inhibited by
1,25–(OH)2D3. The inhibition of 1,25–(OH)2D3 was
partially overcome by an IGF-I concentration of 50 ng/ml,
although there was still a significant (P<0-001) decrease in
proliferation when compared with IGF-I alone (Fig. 3A).
Similar results were obtained for the low and high concen-
trations of des(1–3)IGF-I in the presence of 1,25–
(OH)2D3 (Fig. 3B). In P153 cells, the addition of IGF-I or
des(1–3)IGF-I completely overcame the inhibition by
1,25–(OH)2D3 (Fig. 3C, D). In fact, the combination of
1,25–(OH)2D3 and des(1–3)IGF-I resulted in a greater
proliferative response than to either des(1–3)IGF-I concen-
tration alone.

Effect of 1,25–(OH)2D3 on IGF-binding proteins

In PECs treated with 1,25–(OH)2D3, IGFBP-3 protein
levels increased by 3-9-fold on Western ligand blots of
media, and IGFBP-3 mRNA levels increased 3-3-fold (Fig. 4).
When P153 cells were treated with 1,25–
(OH)2D3, both ligands and immunoblots showed increases
in IGFBP-3 protein (3-3-fold) (Fig. 5A, B). The ligand
blots also showed a small increase in IGFBP-2. IGFBP-3
mRNA levels in P153 cells increased fivefold in response
to 1,25–(OH)2D3 (Fig. 5C). Thus, the PECs had higher
basal levels of IGFBP-3 mRNA and protein than the P153
cells and greater expression of IGFBP-3 in response to
1,25–(OH)2D3.

IGFBP-3 antibody studies

In order to determine if IGFBP-3 mediated growth
hindering by 1,25–(OH)2D3, an IGFBP-3 antibody was
added to the treatment medium and rates of cell prolifera-
tion determined as before. However, no effect on the
inhibitory action of 1,25–(OH)2D3 was seen when an
IGFBP-3 antibody was added; results were corrected for
the presence of sodium azide (data not shown). This
antibody has been reported to inhibit the IGF-
independent effect of IGFBP-3 by preventing it from
interacting with the putative cell surface receptor (Rajah
et al. 1997). However, IGFBP-3 is still able to bind IGF-I
in the presence of antibody (Rajah et al. 1997). Therefore,
the antibody’s inability to change the inhibitory effect of
1,25–(OH)2D3 suggests that the effects of IGFBP-3 are
IGF-dependent in the case of the P153 cells.
Effects of adding exogenous IGFBP-3

The addition of 500 ng/ml IGFBP-3 did not inhibit PEC or P153 cell proliferation. However, when IGFBP-3 protein was added exogenously to either cell type in the presence of IGF-I, the stimulatory response of these mitogens was decreased significantly (Fig. 6). As with 1,25-(OH)₂D₃, the exogenous IGFBP-3 had
a greater inhibitory effect on the PECs than on the P153 cells.

Discussion

1,25-(OH)2D3 and its analogs decrease the proliferation of prostate cancer cell lines in vitro (Peehl et al. 1994, Gross et al. 1996, Chen et al. 1997, Rozen et al. 1997, Moffatt et al. 1999). In animal models, 1,25-(OH)2D3 administration prevents the development of prostate cancer, and in epidemiological studies, higher 1,25-(OH)2D3 levels are associated with a decreased incidence of prostate cancer (Schwartz & Hulka 1990, Corder et al. 1995, Konety et al. 1996). These activities may be mediated by an up-regulation of the IGF system, especially IGF-I, which has been suggested to be a risk factor for prostate
cancer in men (Chan et al. 1998). Increases in the stimulatory components of the system – IGF-I ligand and type 1 IGF receptor – have been shown to be important events in the initiation of cancer in the transgenic mouse model of prostate cancer (TRAMP) (Kaplan et al. 1999).

Figure 3 The effect of 1,25-(OH)₂D₃ (D₃; 10 nM) in combination with either IGF-I (1 and 50 ng/ml) or des(1–3)IGF-I (des; 1 and 50 ng/ml) on cellular proliferation of PECs or P153 cells. *P<0.05, **P<0.01, ***P<0.001 when compared with control treatment and C=P<0.001 when 1,25-(OH)₂D₃ IGFs are compared with IGFs alone.
Although 1,25-(OH)₂D₃ has been shown to decrease tumor proliferation, the interaction of 1,25-(OH)₂D₃ with the IGF system in benign human prostate epithelial cell systems has not been reported previously. Modulation of the IGF system and increased IGFBP-3 expression in human cancer cell lines have been correlated with inhibition of tumor cell growth by 1,25-(OH)₂D₃. If such changes are a mechanism for the prevention of prostate cancer, then the effects of 1,25-(OH)₂D₃ on the IGF system should also be demonstrable in the non-transformed prostate epithelial cell.

We have shown that 1,25-(OH)₂D₃ increases expression of IGFBP-3 in primary cultures of prostate epithelial cells as well as in an immortalized, but non-tumorigenic, prostate epithelial cell line. We propose that the increase in IGFBP-3 functions to suppress IGF-I activity in an IGF-dependent manner; an IGF-independent effect of IGFBP-3 on these cells does not appear to play a significant role since there was no effect when an antibody to IGFBP-3 was added. The antibody used in this study has previously been demonstrated to inhibit IGF-independent actions of IGFBP-3 but does not interfere with ligand binding to IGFBP-3 (Rajah et al. 1997).

Further evidence that IGFBP-3 inhibits proliferation by a ligand-dependent mechanism is suggested by the differences in the results between the PECs and P153 cell lines as well as their responses to intact IGF-I or des(1–3)IGF-I. The difference in response to 1,25-(OH)₂D₃ may, in part, be due to the threefold higher vitamin D receptor (VDR) number in the PECs compared with P153 cells (Peehl et al. 1994, Gross et al. 1996). In PECs, in which neither IGF-I nor des(1–3)IGF-I completely reverses the 1,25-(OH)₂D₃ growth inhibition, the concentration of intact IGFBP-3 is markedly greater than in similarly treated P153 cells. IGF-I did not completely reverse the effect

Figure 4 Western ligand blot of media (left panel) and Northern blot (right panel) from PECs before (C=control) and after a 10 nM 1,25-(OH)₂D₃ treatment (D=1,25-(OH)₂D₃). Note the increase in both IGFBP-3 protein and mRNA following treatment. On autoradiograms exposed for shorter time periods, there was no significant increase noted in IGFBP-2 on the ligand blot. Loading of RNA was controlled for by labeling with an 18S cDNA.

Figure 5 (A) Western ligand blot of media from P153 cells before (C=control) and after a 10 nM 1,25-(OH)₂D₃ treatment (D=1,25-(OH)₂D₃). (B) Western immunoblot of media from P153 cells before and after 10 nM 1,25-(OH)₂D₃ treatment. (C) Northern blot of total RNA collected from the same cells as the media in A and B. Loading of RNA was controlled for by labeling with an 18S cDNA (not shown).

Figure 6 Exogenous IGFBP-3 (BP-3; 500 ng/ml) was added alone or to media containing IGF-I (10 ng/ml) and cell proliferation of PECs (hatched bars) and P153 cells (solid bars) was assessed by MTT. ***P<0·001 when compared with the control treatment and a=P<0·05 or c=P<0·001 when compared with IGF-I alone treatment.

www.endocrinology.org
of 1,25-(OH)_2D_3 in either cell type. However, des(1–3)IGF-I, which binds to intact IGFBP-3 with fivefold less affinity than intact IGF-I, completely reverses the suppressive effect of 1,25-(OH)_2D_3 in P153 cells, in which the upregulation of IGFBP-3 is markedly less than in the PECs. Since the PECs produce more IGFBP-3 protein, they would be expected to successfully sequester the des(1–3)IGF-I from the IGF-IR, whereas the P153 cells would not (Salahifar et al. 2000).

Further evidence that the effects of IGFBP-3 are ligand-dependent is indicated by the ineffectiveness of exogenous IGFBP-3, in the absence of additional IGF-ligand, on PEC or P153 cell proliferation. However, the absence of an inhibitory action on cell proliferation, compared with that observed with 1,25-(OH)_2D_3, suggests that 1,25-(OH)_2D_3 can suppress prostate epithelial cell proliferation by non-IGFBP-3 mechanisms as well (Chen et al. 1997, Rozen et al. 1997, Zhuang & Burnstein 1998, Agarwal et al. 1999, Elstner et al. 1999, Ly et al. 1999, Feldman 2000).

These data suggest that the action of 1,25-(OH)_2D_3 on the prostate epithelial cell is mediated, at least partially, through an increase in IGFBP-3. Regulation of prostate growth, especially the growth of malignant prostate epithelium, has been demonstrated to occur through an interaction of steroid and peptide hormones (Marcelli et al. 1995). The present study demonstrates an interaction of the steroid hormone, 1,25-(OH)_2D_3, with the IGF system in non-cancerous prostate epithelium, which may prevent progression to malignant disease. Sequestration of IGF-I from the IGF-IR would prevent receptor activation, an important event in the transformation process since the antiapoptotic activity of the IGF-IR can prevent p53-induced death of cells containing mutations (Baserga 1995, Buckbinder et al. 1995, LeRoth et al. 1995, Sell et al. 1995, Resnicoﬀ & Baserga 1997, Valentinis et al. 1997, Baserga 1999). Additionally, speciﬁc tyrosine phosphorylation sites of the β-subunit of the IGF-IR have transforming properties separate from those of the antiapoptotic domains (O’Connor et al. 1997, Resnicoﬀ & Baserga 1997). Up-regulation of IGFBP-3, by 1,25-(OH)_2D_3, would suppress activation of the IGF-IR, allowing apoptosis to occur (Valentinis et al. 1995). This inhibitory effect of IGFBP-3 could provide one explanation for the epidemiological association of increased serum vitamin D levels and putative decreased prostate cancer incidence (Schwartz & Hulka 1990, Corder et al. 1995, Correa-Cerro et al. 1999, Feldman 2000). In addition to the IGF-dependent activity of IGFBP-3 demonstrated in this study, IGF-independent activities have also been attributed to IGFBP-3, which could be associated with tumor prevention (Buckbinder et al. 1995, Valentinis et al. 1995, Rajah et al. 1997, 1999). Clinically, results of 1,25-(OH)_2D_3 treatment of patients with prostate cancer are consistent with those in vitro studies demonstrating suppression of growth (Feldman 2000). In summary we have demonstrated in primary cultures of human prostate epithelial cells and non-transformed, but immortalized, human primary prostate epithelial cells that there is an increase in IGFBP-3 in response to 1,25-(OH)_2D_3. The 1,25-(OH)_2D_3-induced increase in IGFBP-3 signiﬁcantly inhibits IGF-I-induced mitogenesis in PECs and P153 cells. This activity would potentially decrease the development of prostate cancer by inhibiting the anti-apoptotic activity of the IGF-IR.

Acknowledgements

This work was supported by RO1DK52683 to S R P and J L W and Veterans Affairs Research Service and VA/DOH award to S R P.

References

www.endocrinology.org

Downloaded from Bioscientifica.com at 04/01/2022 01:41:47PM
via free access
1,25-(OH)2D3 alters growth in benign prostate cells

C.C. SPRENGER and others

Hedlund T, Moffatt K & Miller G 1996 Stable expression of the nuclear vitamin D receptor in the human prostate carcinoma cell line JCA-1: evidence that the antiproliferative effects of 1 alpha, 25-dihydroxy vitamin D3 are mediated exclusively through the genomic signaling pathway. Endocrinology 137 1554–1561.

Moffatt KA, Johannes W & Miller G 1999 1-Alphax25-dihydroxyvitamin D3 and platinum drugs act synergistically to inhibit the growth of prostate cancer cell lines. Clinical Cancer Research 5 695–703.

Nickerson T, Pollak M & Huynh H 1998 Castration-induced apoptosis in the rat ventral prostate is associated with increased expression of genes encoding IGFBP-2, -3, -4, and -5. Endocrinology 139 807–810.

Walters M 1992 Newly identified actions of the vitamin D endocrine system. Endocrine Reviews 13 719–764.

Received 16 April 2001
Accepted 14 May 2001