REVIEW

GH as a co-gonadotropin: the relevance of correlative changes in GH secretion and reproductive state

K L Hull and S Harvey

Bishop's University, Lennoxville, Quebec J1M 1Z7, Canada
1Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada

(Requests for offprints should be addressed to S Harvey; Email: steve.harvey@ualberta.ca)

Abstract

It is now well established that exogenous GH promotes sexual maturation and reproductive function. The possibility that this may reflect physiological actions of endogenous GH has, however, rarely been considered. Correlative changes in GH secretion and reproductive state (puberty, pregnancy, lactation, menopause and ovarian cycles) are thus the primary focus of this review. GH secretion is, for instance, elevated during major transitions in reproductive status such as puberty and pregnancy. In some cases, augmented circulating GH levels are paired with hepatic GH resistance. This interaction may permit selective activation of gonadal responses to GH without activating IGF-I-mediated systemic responses. This selective activation may also be mediated by autocrine, paracrine or intracrine GH actions, since GH is also synthesized in reproductive tissues. Correlative changes in GH secretion and reproductive state may be mediated by events at the hypothalamic, pituitary and gonadal level. In addition to direct effects on gonadal function, GH may influence reproductive activity by increasing gonadotropin secretion at the hypothalamic and pituitary level and by enhancing gonadotropin responsiveness at the gonadal level. The close association between reproductive status and the somatotrophic axis supports the physiological importance of GH in reproductive function.

Journal of Endocrinology (2002) 172, 1–19

Introduction

It is now well established that growth hormone (GH) affects gonadal function at hypothalamic, pituitary and gonadal sites, as previously reviewed (Hull & Harvey 2000, 2001a,b). Some investigators have, however, questioned the importance of GH in reproduction, since GH-deficient populations are characterized by delayed puberty and impaired fertility rather than complete reproductive dysfunction (Hull & Harvey 2001a,b). An association between reproductive status and changes in GH secretion would, however, suggest that GH action is physiologically relevant to reproduction. The literature examining GH secretion in the context of reproductive function has not been comprehensively reviewed. Changes in GH secretion during the reproductive stages of puberty, pregnancy, parturition, lactation and during the ovarian cycle are thus the focus of this paper.

GH secretion in reproduction

The reproductive life of an individual can be divided into the prepubertal period (infancy and childhood), puberty, sexual maturity and, in the case of women, menopause. In addition, during the sexually mature years of women, dramatic perturbations in endocrine status occur over the course of each ovarian cycle and during pregnancy and lactation. Cyclical changes also occur in males and females of species that undergo seasonal breeding. The strong correlation between reproductive status and GH secretion during each of these stages suggests that GH may play a modulatory role in sexual maturation, the ovarian cycle, pregnancy and lactation.

The prepubertal period: infancy and childhood

The relationship between GH and gonadal steroid levels in children has been difficult to establish because steroid levels are very low prior to puberty. However, therapeutic administration of estrogen in doses similar to endogenous levels in prepubertal girls effectively stimulates GH secretion in hypogonadal women (Veldhuis et al. 1991b, Kerrigan & Rogol 1992); thus, the low levels of gonadal steroids in prepubertal boys and girls may maintain the relatively high GH levels. This possibility is also suggested.
by the ability of an estrogen receptor antagonist (tamoxifen) to inhibit GH production in prepubertal boys (Metzger & Kerrigan 1994), since androgens induce GH secretion in males via aromatization to estrogens (Eakman et al. 1996). The higher circulating GH levels in prepubertal girls suggests that testosterone aromatization in prepubertal boys does not result in estrogen levels equivalent to those in females.

Clinicians have used females with Turner’s syndrome (females who lack functioning ovaries) to investigate the effects of gonadal steroid deficiency in childhood on GH secretory dynamics. Ross et al. (1985) observed normal GH secretory dynamics in girls with Turner’s syndrome prior to 9 years of age, but significantly decreased mean 24-h GH levels, peak amplitudes and peak frequencies in girls between 9 and 20 years of age, compared with those in age-matched normal girls. Indeed, although an age-related increase in GH pulse amplitude is observed in normal prepubertal girls, GH pulse amplitude in girls with Turner’s syndrome remains the same or even declines (Massarano et al. 1989, Zadik et al. 1992). These results may, however, reflect age-related increases in obesity in girls with Turner’s syndrome (Cianfarani et al. 1994) rather than direct effects of estrogen, since GH-releasing hormone (GHRH)-induced GH secretion and obesity are inversely related in girls with Turner’s syndrome (Lu et al. 1991, Reiter et al. 1991). Conversely, the increased obesity in Turner’s syndrome may represent the absence of GH-induced lipolysis. Other studies observed normal 12-h and 24-h secretion rates in prepubertal girls with Turner’s syndrome (Veldhuis et al. 1991b, Wit et al. 1992).

The hypogonadal status of prepubertal girls with Turner’s syndrome does, however, render them more sensitive to the stimulatory effects of gonadal steroids on the somatotropic axis. Estradiol administration to prepubertal girls with Turner’s syndrome increases GH pulse amplitude (Wit et al. 1992), but does not alter pulse frequency (Mauras et al. 1989b) or overall secretion rates (Mauras et al. 1990). Conversely, neither androgen nor estrogen treatment of normal prepubertal girls increases GH secretion, despite stimulating growth (Massarano et al. 1989).

Puberty: humans

Puberty encompasses a series of events which include the completion of growth and the maturation of the reproductive system. GH is a common link between these two processes (for reviews see Ogilvy-Stuart & Shalet 1992, Clark & Rogol 1996). GH has roles in the induction and progression of sexual maturation (Hull & Harvey 2001a,b) and is, in turn, regulated by gonadal factors at hypothalamic and pituitary sites (Fig. 1).

The transition of human juveniles into adolescence is associated with elevations of blood GH concentrations during both wakefulness and sleep periods and with a consistent increase in the 24-h GH secretion rate (Rose et al. 1991). The striking increase in GH secretion in pubertal children reflects a two- to threefold increase in GH pulse amplitude without a concomitant change in pulse duration, pulse frequency or GH half-life (Rose et al. 1991). Data from hyposomatotrophic children have revealed that this increased pulse amplitude is necessary for the pubertal growth spurt in males and females (Stanhope et al. 1992, MacGillivray et al. 1998). Indeed, pulse amplitude, rather than pulse frequency, may be the most important determinant of the growth response to GH (Hindmarsh et al. 1987).

Gonadal steroids are also required for the pubertal growth spurt, since normal pubertal growth in hypopituitary children requires normalization of both gonadal steroid and GH levels (Aynsley-Green et al. 1976, Metzger et al. 1994). The close relationship between GH and gonadal steroid levels during the pubertal period suggests that gonadal steroids may stimulate linear growth, in part, by stimulating pituitary GH secretion (Wennink et al. 1991). Indeed, both gonadal steroid synthesis and the GH secretory pulse amplitude begin to increase earlier in girls with precocious puberty, and suppression of gonadal steroid secretion by gonadotropin-releasing hormone (GnRH) agonists in these girls also suppresses GH and insulin-like growth factor-I (IGF-I) secretion (Mansfield et al. 1988). The somatotrophic axis must be activated by very small increases in circulating estrogens, since GH and IGF-I concentrations rise before the initiation of sexual development (Rose et al. 1991) and very low doses of estrogens effectively increase GH secretion in hypogonadal states (Mauras et al. 1990).

The pubertal growth spurt and increase in GH pulse amplitude in boys is similarly correlated with a rise in serum testosterone and IGF-I (Martha et al. 1989). GH, IGF-I and testosterone levels are higher in boys with precocious puberty than in age-matched controls, and treatment with GnRH analogs to inhibit excess testosterone secretion corrects the high GH and IGF-I levels (Harris et al. 1985). Moreover, the induction of puberty by exogenous androgen or GnRH induces high-amplitude GH secretion (Blizzard et al. 1989, Foster et al. 1989). Very small doses of testosterone, similar to those observed in early puberty, are sufficient to increase GH pulse amplitude (Guistina et al. 1997), GHRH-induced GH release (Mauras et al. 1989a) and circulating IGF-I levels (Parker et al. 1984). The increase in IGF-I is due to GH rather than direct effects of testosterone, since IGF-I is increased by co-administration of GH and testosterone but not by testosterone alone in GH-deficient boys (Parker et al. 1984). The influence of testosterone on GH secretion is also illustrated by the ability of exogenous testosterone to correct deficient basal and GHRH-stimulated GH secretion in boys with gonadal dysfunction (Link et al. 1986, Mauras et al. 1989a). Androgens induce GH secretion via aromatization to estrogens, since non-aromatizable forms
of testosterone, such as dihydrotestosterone (DHT), inhibit (Keenan et al. 1993) or have no effect (Metzger & Kerrigan 1994, Eakman et al. 1996) on GH secretion in pubertal boys. Moreover, XY individuals with androgen insensitivity syndrome undergo a normal growth spurt despite androgen resistance, because of elevated circulating estrogen concentrations (Cicognani et al. 1989). The importance of androgen aromatization is also suggested by the ability of androgen receptor blockers to concomitantly increase GH pulse amplitude and estrogen secretion (Metzger & Kerrigan 1993). Indeed, estrogens induce GH secretion in pubertal boys to a greater extent than

Figure 1 Pubertal changes in GH secretion. Gonadal maturation (1), stimulated by gonadotropins and putatively GH, results in augmented levels of gonadal steroids (2). Estrogen, from the ovary or aromatized from testicular testosterone, acts at the hypothalamic level (3) and perhaps the pituitary level (not shown) to increase GH pulse amplitude (4). The resulting increase in GH secretion stimulates growth and further gonadal function (5).
testosterone (Brook 1999). Estrogens may, however, act bi-phasically, since the infusion of estradiol for 20 h reduces GH and IGF-I levels in pubertal boys (Cemeroğlu et al. 1997).

Estrogen, synthesized by the ovaries or aromatized from testosterone in peripheral tissues, therefore appears to enhance overall GH secretory rates by increasing pulse amplitude without affecting pulse frequency. This pattern suggests that GHRH synthesis and/or GHRH responsiveness may be particularly sensitive to estriogenic status, since GHRH pulses regulate pulse amplitude whereas somatostatin (SRIF) withdrawal regulates pulse frequency (Harvey & Daughaday 1995). Indeed, the stimulatory effect of testosterone on GH pulse amplitude in pubertally delayed boys is not associated with decreased SRIF release or increased pituitary responsiveness to GHRH, but is associated with increased GHRH secretion (Eakman et al. 1996). It is also possible that estrogen may directly stimulate pituitary GH synthesis, although this hypothesis has not been proven experimentally.

Puberty: rats

Pubertal changes in GH secretion also occur in non-primates, and have been extensively studied in rats. GH secretion in rats increases dramatically during puberty and acquires gender-specific secretory patterns (Gabriel et al. 1992). Prior to 33 days of age, pulsatile GH secretion is similar in males and females and low nadir GH concentrations are interspersed with infrequent, low-amplitude pulses (Gabriel et al. 1992, Fishman et al. 1993). GH pulse amplitude subsequently increases tenfold during early puberty (33–40 days) and twofold further during late puberty (41–50 days) in both sexes (Gabriel et al. 1992). The duration of GH pulses during the pubertal period is significantly greater in males than in females, a pattern that continues into adulthood (Gabriel et al. 1992). Nadir GH concentrations are also increased at this time in both sexes, with females having a higher baseline compared with males (Clark et al. 1987). However, only in rats over 54 days of age is the typical pattern of low basal GH secretion and high-amplitude, periodic, low-frequency GH pulses observed in males (Gabriel et al. 1992); this is thought to reflect regular secretory pulses of SRIF (Painson et al. 2000). In contrast, GH secretion in females is characterized by higher baseline levels and lower amplitude, irregular secretory pulses which increase in amplitude and frequency at night (Clark et al. 1987).

Pubertal changes in GH secretion reflect alterations at the hypothalamic and pituitary level. For instance, the rise in GH pulse amplitude in both sexes during early puberty is coincident with a rapid decline in the neuronal SRIF mRNA content (Argente et al. 1991) and a transient increase in GH gene transcription (Gonzalez-Parra et al. 1996). The development of sexually dimorphic patterns of GH secretion in pubertal rats, conversely, may reflect the acquisition of differential responsiveness of GHRH neurons of the pituitary gland to adrenergic stimulation (Mazák et al. 1995) and also reflects differences in GH gene transcription, since GH mRNA is usually present in higher amounts in males than in females during the post-pubertal period (Gonzalez-Parra et al. 1996, Childs et al. 2000). GH mRNA levels are, however, higher in proestrous females than in males, reflecting the cyclical nature of GH gene expression in female post-pubertal rats (Childs et al. 2000). Sexual dimorphism is also observed in the effect of chronic administration of GnRH analogs on GH secretion, since GH secretory pulse amplitude is reduced in male rats but baseline GH levels are reduced in female rats (Govers et al. 1998).

Sexually dimorphic GH secretion in pubertal and post-pubertal rats reflects gender-specific differences at the hypothalamic and pituitary level. For instance, GHRH and SRIF mRNA levels are higher in pubertal and post-pubertal males than in females of the same age (Maiter et al. 1991), and GHRH mRNA synthesis is less sensitive to GH-induced negative feedback in females than in males (Maiter et al. 1991). Gender-specific alterations in SRIF and GHRH neurons are also observed during development in the rat (Argente et al. 1991). Puberty-dependent changes in pituitary responsiveness have also been demonstrated in some, but not all, in vitro studies (Copeland et al. 1990). For instance, the higher GH secretion in males could be explained by the higher abundance of GHRH receptor mRNA in adult male than in adult female rats (Ono et al. 1995). The pubertal increase in both sexes could reflect the stimulatory effect of both estrogen and testosterone on GHRH-induced GH secretion from rat pituitary cells (Copeland et al. 1990), although other studies described by Copeland et al. (1990) showed that in vitro GH release was inhibited or unaffected by gonadal steroids. Estrogens are effective GH secretagogues at lower concentrations than testosterone; thus, testosterone may stimulate GH secretion via aromatization into estrogen (Simard et al. 1986, Copeland et al. 1990).

Pubertal changes in GH secretion in rats may result from neonatal imprinting by gonadal steroids, since neonatal castration, but not prepubertal castration, reduces the area under the curve for GHRH-induced GH secretion (Fishman et al. 1993). This effect is specific to the somatotrophic axis and acts at the level of gene transcription, since GH, but not prolactin, immunoreactivity and pituitary transcription factor-1 (pit-1) mRNA (a GH transcription factor) are reduced in neonatally castrated rats and restored by testosterone treatment (Gonzalez-Parra et al. 1998). Sexually dimorphic differences in the GH axis are observed even in the fetus. For instance, female rat pups are more susceptible than male pups to the blocking action of maternal alcohol consumption on the inhibitory effect of SRIF on GH release (Conway & Garbouzova 1996).
Sexually dimorphic patterns of GH secretion are, however, modified by the pubertal and post-pubertal environment, since acute or chronic androgen administration to ovariectomized or sham-ovariectomized adult female rats induces a male-like pattern of regular, intermittent peaks of GHRH-induced GH secretion (Hasegawa et al. 1992, Panson et al. 2000). Moreover, castration of adult males reduces GHRH mRNA expression in neurons of the arcuate nucleus (Zeitler et al. 1990) and SRIF expression in the periventricular nucleus (Argente et al. 1990), although a separate study did not observe any alteration in GHRH mRNA following adult gonadectomy or sex steroid administration (Maiter et al. 1991). The effect of testosterone on GHRH and SRIF transcription is not mediated by aromatization to estrogen, since DHT increases gene transcription whereas estradiol does not (Argente et al. 1990, Zeitler et al. 1990). Non-androgenic testicular factors may also be involved in the male pattern of hypothalamic SRIF and GHRH gene expression (Lago et al. 1996).

Sexual maturity: humans

The link between gonadal steroids in GH secretion is less distinct after puberty, particularly in men. For instance, GH secretion over a 24-h period is similar in post-pubertal and prepubertal males, despite elevated androgens in post-pubertal males (Martha et al. 1989). Indeed, chronic sex steroid exposure may desensitize the GH axis to testosterone (or estrogen) stimulation (Metzger et al. 1994). The somatotrophic axis in females, however, appears to maintain its estrogen sensitivity, perhaps because of the cyclical changes in gonadal activity in females but not in males. This possibility is suggested by the sexual dimorphism in GH levels in young, post-pubertal males and females. Circulating GH levels are 80-fold lower in males than in females in the morning (Engstrom et al. 1998, 1999). The high GH levels in women may, however, invoke a certain degree of GH resistance, since IGF-I synthesis and/or lipolysis are increased to a greater extent by acute GH injection in young men than young women (Lieberman et al. 1994, Vahl et al. 1997b). It has also been suggested, however, that body composition, rather than gonadal steroids, may be the determining factor in the higher GH concentration and relative GH resistance in post-pubertal women (Vahl et al. 1997a).

Ovulatory cycles

GH has been shown to stimulate folliculogenesis, steroi-dogenesis and ovulation in many, but not all, studies (for review see Hull & Harvey 2001a). GH is thus often considered to be a ‘co-gonadotropin.’ The stimulatory effects of GH administration on gonadal function may reflect a physiological role of GH, since circulating GH concentrations rise prior to normal (Ovesen et al. 1998) or gonadotropin-induced (Blumenfeld et al. 1992) ovulation. Indeed, deconvolution analysis of serial blood samples has shown that the frequency of episodic GH release is increased during the periovulatory phase of the menstrual cycle (Ovesen et al. 1998). The pulsatile GH production rate and mean serum GH concentration are therefore significantly increased prior to ovulation and positively correlated with changes in serum estradiol and luteinizing hormone (LH) levels. Faria et al. (1992) also found that the amplitude of GH release in the periovulatory phase was greater than that during the early follicular phase. Conversely, the mean GH concentration is comparable during the early follicular and luteal phases (Stone & Marrs 1991). Plasma GH concentrations and pituitary GH mRNA abundance are similarly increased in rats during oestrus and proestrus (Childs et al. 2000), and GH mRNA and serum GH peak near the time of ovulation in ewes (Landerfeld & Suttie 1989). This increase may reflect a preovulatory surge of estradiol, since estradiol induces a surge in plasma GH similar to that of LH and follicle-stimulating hormone (FSH), although pituitary GH mRNA abundance is unchanged (Landerfeld & Suttie 1989). GH secretion is similarly increased in cyclic mares during their breeding season (Aurich et al. 1999) and during the periovulatory period in chickens (Harvey et al. 1979), although serum GH concentrations are unaffected by ovarian cyclicity in pigs (Estienne et al. 1998).

Although circulating GH levels are correlated with LH, FSH and estrogen during the ovarian cycle in humans, the administration of GH to cycling women does not markedly influence plasma concentrations of LH, FSH, testosterone, or α-sex steroid-binding globulin during the menstrual cycle (Tapanainen et al. 1992). Exogenous GH also has no effect on follicular fluid levels of estrogen, progesterone, or IGF-I, although it increases circulating concentrations of estrogen and progesterone and follicular concentrations of testosterone and 3β-hydroxysteroid dehydrogenase and aromatase mRNA (Tapanainen et al. 1992).

Estrogen may stimulate GH secretion in adult women by stimulating GHRH release and/or inhibiting SRIF release (Fig. 2), as has been shown in other mammals (Shirasu et al. 1990, Hassanab et al. 2001). Estrogens may also stimulate GH secretion in adults by inhibiting hepatic IGF-I production and thereby reducing negative feedback (Weissberger et al. 1991) (Fig. 2). This possibility is suggested by the inhibitory effect of oral contraceptives/hormone replacement therapy on GH-induced and/or basal IGF-I secretion in normally cycling women (Eden Engstrom et al. 2000, Cook et al. 2000), and the greater IGF-I response in men than in women (Eden Engstrom et al. 2000). This dissociation of pituitary GH and hepatic IGF-I by estrogen may provide a mechanism by which direct actions of GH mediated by GH receptors (GHR) are preserved but the metabolic and anabolic effects mediated by IGF-I are avoided. Estrogen may also
stimulate GH secretion by sensitizing the pituitary gland to TRH, since GH secretion is paradoxically increased by TRH in women taking low-dose estrogen oral contraceptives (De Leo et al. 1991) (Fig. 2). In addition, the higher GH secretory response to galanin in young females than in young males and in young females than old females suggests that estradiol may also sensitize the pituitary to galanin (Giustina et al. 1993).

Ovarian dysfunction in women is often associated with altered GH secretion. For instance, many anovulatory women are hyposomatotrophic (Ovesen et al. 1992). In particular, women who are amenorrheic due to weight loss are characterized by normal overall GH secretion levels during the follicular phase but lower pulse amplitude and higher pulse frequency than in control women during the luteal phase (Genazzani et al. 1993a). The important determinant of somatotrophic activity may be the balance of estradiol and progesterone concentrations rather than the concentration of estradiol alone, since estradiol increases GH pulse frequency and amplitude when administered alone but not when co-administered with progesterone (Genazzani et al. 1993a).

Women with polycystic ovary syndrome (PCOS) also manifest a blunted GH secretory response to GHRH and dopamine (Slowinska-Szreductka et al. 1992, Lanzone et al. 1995, Piaditis et al. 1995). However, hyposomatotrophism in PCOS may reflect the influence of body composition on the GH secretory axis, since many patients are obese (Slowinska-Szreductka et al. 1992) and obesity inhibits GH secretion (Veldhuis et al. 1991a). Indeed, Morales et al. (1996) showed that GH pulse amplitude is actually elevated in lean PCOS but reduced in obese PCOS, although a different study observed a few cases of PCOS and hyposomatotrophism in lean women (Lanzone et al. 1995).

Pregnancy in primates

It is well established that circulating concentrations of GH-like immunoreactivity dramatically increase during pregnancy in primates (Handwerger & Freemark 2000). This increase is not, however, associated with increased transcription of the pituitary (hGH-N) gene. Instead, it largely reflects the production of placental GH-like proteins, which are the products of the placental GH variant gene (hGH-V) and three human chorionic somatomammotropin genes (hCS-A, hCS-B and hCS-L) (Eberhardt et al. 1996). Indeed, radioreceptor assays of circulating GH at term reveal that only 3% of the proteins interacting with the GHR are products of the hGH-N gene, whereas 85% result from hGH-V gene transcription and 12% from hCS gene transcription (Daughaday et al. 1990). The placental GH variants are thought to bind and activate the GHR, although the existence of a separate hCS receptor has been postulated (Hill et al. 1988). The hGH-N gene and the four placental genes are located adjacent to one another on chromosome 17 and are thought to have arisen from a single ancestral GH gene (Eberhardt et al. 1996). The characteristics and secretory patterns during pregnancy of the five members of the GH gene family are, nevertheless, distinct and will be discussed independently.

Pituitary GH During early pregnancy, pituitary GH is the only measurable GH in maternal serum and it is secreted in a highly pulsatile pattern (Eriksson 1989). The characteristics of GH secretion and circulating levels are similar in pregnant women during the first trimester and in non-pregnant women (Eriksson 1989). However, pituitary GH release is paradoxically stimulated by TRH during the first trimester, possibly reflecting gestational hypothyroidism (De Leo et al. 1998). A significant shift in the somatotrophic axis occurs between 15 and 20 weeks post-amennorrhea, since pituitary GH transcription (Stefaneanu et al. 1992) and secretion (Alsat et al. 1998) gradually decrease until hGH-N is virtually undetectable.
at 24–25 weeks of gestation (Mirlesse et al. 1993). Somatotrophs become resistant to normal physiological stimuli such as hypothalamic GHRH (de Zegher et al. 1990), arginine and insulin (Yen et al. 1970, Artenisio et al. 1980) and to other provocative tests of GH release (Spellacy et al. 1970). These diminished responses are correlated with rising levels of placental GH, which increases serum IGF-I independently of pituitary GH (Beckers et al. 1990, Alsat et al. 1997). High levels of IGF-I subsequently inhibit pituitary GH gene transcription (Mirlesse et al. 1993). This diminution of pituitary GH secretion does not occur, however, in acromegalic women, because adenomatous somatotrophs are resistant to IGF-I feedback (Beckers et al. 1990).

The GH-N gene may also be expressed in the placenta, since immunoreactive hGH-N is detectable in human placental syncytiotrophoblasts (Al Timimi & Fox 1986) and in media conditioned with term placental cells (Evans-Brion et al. 1990). This immunoreactivity reflects very low and possibly inconsistent levels of hGH-N gene expression, since other investigators did not detect hGH-N transcripts in samples of human placenta (Baumann 1991). GH-N mRNA is, however, present at readily detectable levels in placentae from women with a deletion of the hGH-V and hCS genes (Alsat et al. 1997). Placental expression of the hGH-N gene may thus be particularly important in individuals with defective placental GH/hCS genes.

Placental GH Placental GH is the product of the hGH-V gene rather than the hGH-N gene. The proteins resulting from these two genes are of identical size (22 kDa) and length (191 amino acids) but differ in 13 residues scattered throughout the protein (Alsat et al. 1998). The non-homologous residues are thought to be responsible for the distinct biological activities of hGH-N and hGH-V, since hGH-V is less lactogenic (Alsat et al. 1998). The expression of the hGH-V gene is largely restricted to the placenta by placenta-specific enhancers and pituitary-specific repressors (Eberhardt et al. 1996), although limited expression in other tissues, including lymphoid tissues (Melen et al. 1997), normal and tumorous pituitary glands (Scippo et al. 1991, Nickel & Cattini 1992) and the testis (Untergasser et al. 1998), has been detected. The transcriptional regulation of the hGH-V gene has been the subject of several recent reviews (Eberhardt et al. 1996, Su et al. 2000) and will not be discussed here in detail.

Four different splicing patterns of the hGH-V gene result in four putative hGH-V variants with distinct characteristics. First, usage of an alternate splice acceptor site within exon 3 results in the deletion of exon 3 and the production of a 20 kDa GH isoform (Boguszewski et al. 1998), although some investigators have failed to find this isoform (Estes et al. 1994). The deletion of exon 3 is also commonly observed in the hGH-N gene and does not alter the binding characteristics of hGH-N (Baumann 1991). The other splicing patterns of the hGH-V gene are not, however, observed in the hGH-N gene, and would substantially alter the binding activity of the resulting protein. The hGH-V2 mRNA retains intron 4, resulting in a putative membrane-bound protein, whereas the use of an alternate splice donor site in exon 4 deletes 4 bp and produces the hGH-V3 variant, resulting in a soluble protein (Boguszewski et al. 1998). The proteins resulting from the hGH-V2 and V3 transcripts would have a divergent binding site-1 from hGH-N- and other hGH-V-encoded proteins; thus, the ability of hGH-V2 and -V3 proteins to bind GHRs is unknown (Boguszewski et al. 1998). These transcriptional variants are nevertheless differentially regulated and localized (Eberhardt et al. 1996, Boguszewski et al. 1998). For instance, the proportion of hGH-V2 mRNA increases during fetal development, rising from 5–7% of the total hGH-V mRNA in the first trimester to 15–20% at term (MacLeod et al. 1992). This change is likely to reflect developmental control over splice site selection or increased stability of hGH-V2 mRNA (MacLeod et al. 1992). In either case, the finding that levels of hGH-V2 mRNA are controlled independently from hGH-V mRNA suggests different functional roles for hGH-V and hGH-V2 during gestation.

The secretion of placental GH is not episodic (unlike pituitary GH) and maternal serum GH concentrations during late pregnancy remain relatively constant during a 24-h period (Alsat et al. 1998). Moreover, unlike pituitary GH, placental GH is unresponsive to GHRH (de Zegher 1996) and cAMP (Eberhardt et al. 1996). GHRH is nevertheless produced in the human placenta (Berry et al. 1992), suggesting that GH-V secretion is constitutively at its maximal level (de Zegher et al. 1990) and/or that placental GHRH exerts roles unrelated to GH secretion, such as the regulation of fetal pituitary GH secretion (Nogues et al. 1997). SRIF is similarly ineffective at modulating placental GH secretion (Caron et al. 1997), although SRIF receptors (Caron et al. 1997) are present in the human placenta.

Glucose, rather than releasing hormones, appears to be the primary modulator of placental GH secretion, since glucose inhibits hGH-V secretion from placental explants and trophoblast cultures (Patel et al. 1995) and hyperglycemia in diabetic pregnant women is associated with reduced circulating hGH-V concentrations (McIntyre et al. 2000). The syncytiotrophoblast may respond directly to changes in plasma glucose, since the glucose transporter, GLUT1, is present in these cells (Hauguel-de Mouzon et al. 1994). Placental GH may thus protect the fetus from nutrient deficiency, since hypoglycemia induces hGH-V synthesis and hGH-V increases maternal blood glucose levels (Alsat et al. 1998, Bjorklund et al. 1998). Hypoglycemia, rather than hyperglycemia, may be the important secretory control, since glycemia and hGH-V are positively correlated in normal pregnancies.
Thus, placental GH drives increased glycemia in the normal physiological situation, whereas hGH-V secretion is inhibited by pathophysiological levels of hyperglycemia observed in diabetes or in increased glycemia in the normal physiological situation, reduced in cases of intrauterine growth retardation in which placental development is impaired (Chowen et al. 1999). The importance of placental size in determining hGH-V levels is illustrated in the developmental changes in hGH-V gene expression. Transcript levels increase five- to tenfold between weeks 8 and 39, during the important period of placental growth, after which they remain relatively constant until term (Urbanek et al. 1992). In serum, hGH-V immunoreactivity is first detectable at 10–12 weeks of gestation, and circulating levels peak at 20 weeks (Handwerger & Freemark 2000). Placental GH levels subsequently fall with the onset of labor, probably as a result of decreased uteroplacental blood flow or increased metabolism stimulating placental protease activity. These developmental changes in maternal GH concentrations are not, however, paralleled in the fetus, because placental GH does not cross the fetal–placental barrier (Fholenhag et al. 1994).

The circulating form of hCS is encoded by two members of the GH gene family, hCS-A and hCS-B (Eberhardt et al. 1996). These two genes encode identical 22 kDa mature proteins which differ from hGH-N in 24 residues, although the hCS-A and hCS-B pre-proteins differ in a single amino acid in the signal domain (Eberhardt et al. 1996). The two transcripts are 98% homologous, and the divergent sequences may have implications for transcriptional stability but do not affect the structure of the mature protein (MacLeod et al. 1992). Transcription of the hCS genes is largely restricted to the placenta, although hCS mRNA and protein has been detected in the testis (Untergasser et al. 2000) and ovaries (Schwarzler et al. 1997). Indeed, hCS mRNA is more abundant than GH-N mRNA in the ovary, suggesting that it may have critical autocrine/paracrine roles in ovarian function (Schwarzler et al. 1997). Alternative splicing of the hCS-A/B pre-mRNAs, resulting in the retention of intron 4, results in an hGH-V2-like protein (hCS-A2) of 26 kDa which is membrane bound, at least in the testis (Untergasser et al. 2000). This membrane-bound protein may interact with GH/prolactin receptors on the cell surface, resulting in receptor dimerization/activation and/or in receptor inhibition (Untergasser et al. 2000). The transcriptional regulation of the hCS genes has been well reviewed recently (Eberhardt et al. 1996, Su et al. 2000) and will not be discussed here in detail.

Chorionic somatomammotropin The circulating form of hCS is encoded by two members of the GH gene family, hCS-A and hCS-B (Eberhardt et al. 1996). These two genes encode identical 22 kDa mature proteins which differ from hGH-N in 24 residues, although the hCS-A and hCS-B pre-proteins differ in a single amino acid in the signal domain (Eberhardt et al. 1996). The two transcripts are 98% homologous, and the divergent sequences may have implications for transcriptional stability but do not affect the structure of the mature protein (MacLeod et al. 1992). Transcription of the hCS genes is largely restricted to the placenta, although hCS mRNA and protein has been detected in the testis (Untergasser et al. 2000) and ovaries (Schwarzler et al. 1997). Indeed, hCS mRNA is more abundant than GH-N mRNA in the ovary, suggesting that it may have critical autocrine/paracrine roles in ovarian function (Schwarzler et al. 1997). Alternative splicing of the hCS-A/B pre-mRNAs, resulting in the retention of intron 4, results in an hGH-V2-like protein (hCS-A2) of 26 kDa which is membrane bound, at least in the testis (Untergasser et al. 2000). This membrane-bound protein may interact with GH/prolactin receptors on the cell surface, resulting in receptor dimerization/activation and/or in receptor inhibition (Untergasser et al. 2000). The transcriptional regulation of the hCS genes has been well reviewed recently (Eberhardt et al. 1996, Su et al. 2000) and will not be discussed here in detail.

The third hCS gene, hCS-L, was originally considered to be a pseudogene resulting from a transition in the 5' consensus splice site of the second intron (Hirt et al. 1987). Other dysfunctions in the gene were also postulated, since reversion of the transition does not restore transcriptional activity (Resendez-Perez et al. 1990). However, five major and several minor splice variants of the hCS-L gene have been detected in the placenta, a small number of which may encode low-abundance functional GH-like proteins participating in placental function (Misra-Press et al. 1994). The hCS-L proteins may fulfill similar functions to those of hCS in cases of hCS deficiency, since normal pregnancy and delivery occurred in an individual with an hCS-A/hCS-B gene deletion and a normal hCS-L gene (Misra-Press et al. 1994). Transcription of the hCS-L gene may be upregulated in this situation, since hCS-L immunoreactivity has been detected in the placenta of an individual with an hCS-A/B gene deletion (Alsats et al. 1997). The physiological relevance of hCS-L is also suggested by its upregulation during gestation (Hu et al. 1999). Unlike hCS-A/B, hCS-L may act solely as a placental autocrine/paracrine factor, since hCS-L immunoreactivity is undetectable in the plasma of pregnant women (Hu et al. 1999).

Circulating concentrations of hCS in humans are primarily dependent upon syncytiotrophoblast mass, since hCS mRNA concentrations in individual syncytiotrophoblasts do not change throughout pregnancy (Walker et al. 1991). Conversely, hCS synthesis per syncytiotrophoblast increases in late pregnancy in the baboon, concomitant with additional syncytiotrophoblast differentiation (Musicki et al. 1997). Factors that stimulate the differentiation of cytotrophoblasts in syncytiotrophoblasts would thus be expected to stimulate hCS production. Indeed, differentiation factors such as epidermal growth factor increase hCS release in vitro (Morrish et al. 1987) whereas transforming growth factor B1, which inhibits differentiation, reduces hCS secretion (Morrish et al. 1991). As reviewed by Handwerger & Freemark (2000), other autocrine and paracrine factors such as interleukins and thyroid hormones may also stimulate hCS secretion. Pit-1 may play a role in placental GH/GS gene transcription as in the pituitary, since pit-1 mRNA and protein are expressed in the human placenta and rat pit-1 protein binds and activates the human hCS and GH-V promoters in vitro (Nickel et al. 1991, Bamberger et al. 1995). However, since most hCS is secreted by the constitutive (rather than regulated) secretory pathway, the importance of these factors in determining circulating hCS levels is likely to be negligible (Hochberg et al. 1988). Curiously, despite its marked effect on hGH-V secretion, glycosylation does not alter hCS secretion (Patel et al. 1995).

Transcription of the hCS-A/B genes is initiated early in gestation and results in equal amounts of hCS-A mRNA and hCS-B mRNA until 8 weeks (MacLeod et al. 1992). However, between 8 and 39 weeks, hCS-A mRNA...
increases 30-fold whereas hCS-B and hCS-L mRNAs increase five- to tenfold (MacLeod et al. 1992). The greater abundance of hCS-A transcripts is thought to reflect increased transcript stability rather than increased transcriptional activity (MacLeod et al. 1992). Relative levels of hCS-A and hCS-B transcripts are, however, highly variable between individual placentae, with some placentae showing a 1:1 ratio of hCS-A and hCS-B mRNA (Walker et al. 1991). Immunoreactive hCS proteins are detectable at 12–17 days and 3 weeks post-conception in the placenta and serum respectively (Walker et al. 1991). These proteins are localized in the syncytiotrophoblast before 6 weeks and in the cytotrophoblasts for the remainder of gestation (Maruo et al. 1992). hCS abundance in serum undergoes a rapid increase during the first trimester and continues to increase, albeit at a lower rate, until term (Braunstein et al. 1980).

Pregnancy in non-primates

Circulating GH levels are unaffected by pregnancy in ewes (Al Gubory et al. 1999), sows (Diamini et al. 1995) and goats (Kornalijnslijper et al. 1997) but significantly increase in pregnant horses (Aurich et al. 1999) and rodents (Soares & Talamantes 1984, Kishi et al. 1991). This pregnancy-induced increase in GH levels has been best studied in rats, in which maternal serum GH concentrations progressively increase in the second half of pregnancy (Kishi et al. 1991) and decline on the day prior to parturition (Harvey & Daughaday 1995). Basal GH levels are increased, whereas the amplitude and frequency of episodic GH release is comparable with that in non-pregnant rats, except after day 20 when pulse amplitude is increased (Carlsson et al. 1990a). The pregnancy-induced elevation in circulating GH concentrations reflects increased activity of the pituitary GH gene within the pituitary gland, since immunoreactive GH is undetectable in the plasma of pregnant hypophysectomized rats (Carlsson et al. 1990b). Moreover, the pituitary GH gene is the only member of the GH gene cluster in non-primates (Su et al. 2000). Although placental lactogen genes have been detected in rodents and cattle, these genes are more closely related to prolactin than to GH and evolved after the phylogenetic separation of primates (Eberhardt et al. 1996, Ishibashi & Imai 1999). Placental lactogens in primates and non-primates thus evolved independently and may represent an example of convergent evolution (Eberhardt et al. 1996).

GH concentrations increase in pregnant rats despite augmented pituitary and hypothalamic IGF-I content (Escalada et al. 1997). Moreover, circulating IGF-I levels paradoxically drop despite increased circulating GH (Escalada et al. 1997). Pregnancy therefore appears to be associated with hepatic GH resistance and reduced responsiveness of the hypothalamo-pituitary axis to negative feedback by IGF-I. Pituitary GH production in pregnant rats is also less sensitive to stress-induced inhibition (Jahn et al. 1993). The pregnancy-associated rise in GH may be triggered by rising levels of estrogens (Jahn et al. 1993) and placental lactogens (Kishi et al. 1991), since both stimulate GH secretion. GH levels do not, conversely, increase in food-restricted pregnant dams (Monaco & Donovan 1996).

Although placental GH-like moieties have not been detected in non-primates, the pituitary GH gene may be active in the placenta. This possibility has been demonstrated in sheep, since GH mRNA and GH immunoreactivity are detectable in sheep syncytiotrophoblasts from days 35 to 50 of gestation (Lacroix et al. 1996a,.b). Placental GH would appear to act as a paracrine/autocrine factor, since serum GH levels do not rise during pregnancy in sheep (Al Gubory et al. 1999).

Parturition

Superimposed upon the changes in GH secretion during late pregnancy are changes due to parturition. In the rat, for instance, circulating GH levels rise two to fourfold during delivery and remain elevated for several days afterwards (Carlsson et al. 1990b). Since GH secretion in rats is suppressed by stress, this rise in GH secretion appears to be unrelated to the trauma involved in parturition. Circulating GH levels are similarly elevated at the time of parturition in dogs (Hoffmann et al. 1994), goats (Kornalijnslijper et al. 1997) and horses (Aurich et al. 1999) but not in swine (Diamini et al. 1995). Parturition-induced changes in GH secretion in humans, however, have not been comprehensively examined. A more rapid increase in the circulating GH level also occurs in heifers, in which the GH concentration increases markedly over a few hours (Reynaert et al. 1976, Oda et al. 1989). In these animals, the rise in GH concentration peaks when the forelegs of the calf are visible in the uterus (Reynaert et al. 1976). After the expulsion of the calf, the GH levels may remain elevated for 1–2 days (Ronge & Blum 1988). Reynaert et al. (1976), in contrast, suggest that GH levels are restored to preparturient levels immediately after parturition in heifers.

Although increased GH secretion clearly occurs at the time of parturition, the physiological significance of this observation is unknown; it may occur secondary to other endocrine changes or reflect a non-specific response to the stress involved.

Lactation

Studies in numerous mammalian species have established that circulating GH levels are increased during lactation and suckling (Etherton & Bauman 1998). For instance, plasma GH concentrations in rats and mice progressively increase during pregnancy and remain high in lactating females (Escalada et al. 1997). The elevated GH levels at
this time reflect an increase in the proportion of large molecular weight moieties (Escalada et al. 1997). This lactational increase in GH secretion in rats reflects increased pituitary GH and GH mRNA content per somatotroph due to decreased inhibitory hypothalamic control and reduced IGF-I feedback (Porter et al. 1990, 1991). Somatotroph number, conversely, declines during lactation (Porter et al. 1990, 1991).

During lactation in rats, circulating GH levels are maintained at elevated pregnancy levels (Escalada et al. 1997). The maternal plasma GH concentration is dramatically increased by the presence of pups and upon the initiation of suckling, as a result of increased GHRH stimulation, for 30–60 min (Wehrenberg & Gaillard 1989). This increase likely reflects increased secretion but not increased synthesis, since GH stores are depleted in suckling rats (Escalada et al. 1997). Circulating GH levels are similarly higher in lactating gilts than hysterectomized gilts (Diamini et al. 1995) and suckling increases the frequency of pulsatile GH release by an opioid mechanism triggered by the tactile stimulation of the udder (Rushen et al. 1993, Schams et al. 1994). Stimulation of the teat is also responsible for the increased GH secretion in goats during suckling and can be blocked by local anesthesia (Flint & Knight 1997). Increased GH secretion in cows during lactation is, in contrast, due to an increased magnitude of pulses of GH release rather than in the frequency of secretory episodes or in baseline GH levels (Vasilatos & Wangsness 1981). The increased secretion of GH during lactation would promote mammary development and milk production (Hull & Harvey 2001a). Indeed, GH levels and milk production are positively correlated in heifers (Hoshino et al. 1991). This postnatal rise in circulating GH may also stimulate the induction of maternal behavior (Sara & Lazarus 1974).

Menopause

GH and IGF-I plasma levels fall after menopause, consistent with a stimulatory effect of estrogens on GH synthesis (Weissberger et al. 1991, Ho et al. 1996). Postmenopausal women therefore provide a model in which to examine the effects of gonadal steroids on GH secretion without confounding influences of endogenous steroids. Indeed, estrogen replacement in postmenopausal women increases the mean 24-h GH concentration (Weissberger et al. 1991, Ho et al. 1996) and GH pulse amplitude (Mercuri et al. 1993). Estradiol may increase GH secretion by inhibiting hepatic IGF-I; thereby relieving the constitutive negative feedback effect of IGF-I on GH production. This possibility is suggested by the correlation between reduced IGF-I and increased GH secretion in postmenopausal women receiving different estrogen treatment regimens (Ho et al. 1996). Only oral estrogens, which reduce mean IGF-I levels, increase 24-h GH levels. Transdermal estrogens decrease IGF-I levels slightly and do not affect GH levels (Ho et al. 1996). However, gonadal steroids must also increase GH secretion independently of inducing GH resistance, since Hartmann et al. (1995) observed an increase in both GH and IGF-I levels in postmenopausal women after 10 months of oral hormone replacement therapy (both estradiol and progesterone). The GH resistance observed in some studies may indicate initial increases in body weight in response to hormone replacement therapy, since GHRH-induced GH release was inhibited and body weight increased after 1 month of hormone replacement therapy (Hartmann et al. 1995).

Seasonal breeding

Seasonal changes in GH secretion occur in many species (for reviews see Buys et al. 1990, Harvey & Daughaday 1995, Gower et al. 1996). Since GH regulates intermediary metabolism, many of these cycles appear to be related to changes in food intake, rather than changes in photoperiod, temperature or other environmental parameters. However, as seasonal patterns of metabolism and food intake are often closely linked to the onset and termination of seasonal breeding, seasonal changes in GH secretion may occur coincident with reproductive cycles, as occurs in adult red deer and Père David’s deer (Loudon et al. 1989, Webster et al. 1996) and white-tailed deer (Bubenik et al. 1975). Male reindeer also have high plasma GH levels during the rutting season, when food intake is low (Suttie et al. 1992). In captive reindeer, which would not experience a nutritional deficiency, GH levels are highest during January and February and reach a nadir in the summer (Bubenik et al. 1998). This seasonal increase may be dependent upon gonadal steroids, since circulating GH levels are increased in sham-ovariectomized (but not ovarietomized) mares during the mating season (Aurich et al. 1999).

Nutritional insufficiency may also be responsible for the increased GH secretion in some species of fish during the breeding season (e.g. goldfish, Marchant & Peter 1986; rainbow trout, Sumpter et al. 1991; tilapia, Weber & Grau 1999). However, pituitary GH content is increased before serum GH in response to fasting whereas the opposite pattern is observed in brooding fish; thus, factors other than nutritional insufficiency must be involved (Weber & Grau 1999). The biphasic pattern of GH secretion in female frogs during their annual reproductive cycle does, however, appear to correlate solely with gonadal activity (Mosconi et al. 1994).

Seasonal patterns of GH secretion have also been observed in many feral bird species during their breeding cycles (for reviews see Scanes et al. 1983, 1992). In many cases, these changes also appear to be related to the energetic demands associated with gonadal growth, mating and the rearing of young. These relationships are also seen in domesticated species. For instance, the onset of lay
in chickens and turkeys is preceded by a rise in the circulating GH concentration which is sustained during the laying cycle (Scanes et al. 1979, Williams et al. 1986), declines during incubation (Harvey et al. 1979, Sharp et al. 1979) and increases with the brooding of young (Wentworth et al. 1979). These changes reflect differences in the numbers of pituitary somatotrophs (Ramesh et al. 1995, 1996) and the abundance of pituitary GH mRNA (Karatzas et al. 1997).

Somatotropic–gonadotrophic interactions

Some of the actions of GH on reproductive function are likely to be indirect and mediated through its regulation of gonadotropin synthesis and release (Fig. 3). The possibility that GH may regulate gonadotroph function is indicated by the abundant GHRs/binding proteins in their cytoplasmic and nuclear compartments (Harvey et al. 1993). Indeed, gonadotrophs may be dependent on somatotrophs, since gonadotrophs are poorly developed (if at all) in rats following the fetal immunoneutralization of endogenous GH (Gardner & Flint 1990, Flint et al. 1992). The size of the gonadotroph population in teleost pituitary glands has also been shown to be regulated, in a paracrine way, by neighboring somatotrophs (Melamed et al. 1999). The transgenic expression of the human GH gene similarly increases gonadotroph populations in the mouse pituitary gland (Stefaneanu & Kovacs 1995).

Consequently, circulating gonadotropin levels are also GH dependent. For instance, basal and stimulated plasma LH and FSH levels are attenuated in GH-immunoneutralized animals and in congenitally GH-deficient and GH-resistant rodents (Chandrashekar & Bartke 1996, 1998, Chandrashekar et al. 1999, Bartke 1999, Bartke et al. 1999) and cattle (Chandrashekar & Bartke 1998). Indeed, the induction of GH resistance by GHR gene knockout is correlated with a significant reduction in fertility (Chandrashekar & Bartke 1998, Bartke 1999). Exogenous GH, conversely, increases circulating LH levels in dairy cattle (Schemm et al. 1990) and the in vitro release of LH and FSH from rodent pituitary glands (Steiger et al. 1991, Tang et al. 1993). The administration of bovine GH to GH-deficient Ames mice also increases plasma LH concentrations (Chandrashekar & Bartke 1993).

GH exerts negligible or inhibitory effects on LH and/or FSH secretion in some studies, indicating a narrow threshold for GH action. For instance, exogenous GH is without effect on circulating gonadotroph concentrations in girls with Turner’s syndrome (Bourgignon et al. 1993), in monkeys during development (Wilson et al. 1989), in normal women (Ovesen et al. 1993) or in beef heifers (Hall et al. 1994). Conversely, exogenous GH reduces the amplitude of pulsatile LH release in amenorrheic women and the integrated LH concentration, despite increasing the frequency of pulsatile LH release, in women (Genazzani et al. 1993b) and lactating dairy cows (Schemm et al. 1990). GH may, in some cases, differentially regulate LH and FSH secretion, since chronic GH administration via osmotic minipumps is associated with a reduction in LH despite unchanging FSH levels (Chandrashekar & Bartke 1998).

The inhibitory effects of GH on circulating gonadotropin levels are particularly marked in animals transgenically expressing the GH gene (Ghosh & Bartke 1993). The quantity of β-FSH mRNA and protein (Tang et al. 1993, Bartke et al. 1994) and the number of LH–immunoreactive cells (Sasaki et al. 1997) are similarly reduced in GH-transgenic mice, as is the feedback control of LH release by gonadal steroids in pigs (Guthrie et al. 1991) and rodents (Bartke et al. 1996). This inhibition of gonadotropin production by pharmacological levels of GH is also associated with reproductive dysfunction, since male transgenic mice expressing the GH-V gene mount less often, ejaculate more slowly and have more frequent intromissions, impregnate fewer females and sire fewer offspring (Meliska & Bartke 1997). Rodents and pigs transgenically expressing the GH gene also exhibit reduced fertility (Guthrie et al. 1991, Bartke et al. 1996).

GH effects on gonadotropin cell number and activity may reflect interconversions between pituitary cells as well as increased gonadotroph proliferation and activity. As...
Table 1 GH secretion and reproductive status

<table>
<thead>
<tr>
<th>Reproductive stage</th>
<th>Change in GH secretion*</th>
<th>Purpose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puberty in humans</td>
<td>↑ pulse amplitude;</td>
<td>Pubertal growth spurt; sexual maturation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unchanged frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puberty in rats</td>
<td>↑ pulse amplitude; development of sexual dimorphism</td>
<td>Pubertal growth spurt; sexual maturation; sexually dimorphic gene expression</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folliculogenesis;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ovulation</td>
<td></td>
</tr>
<tr>
<td>Peri-ovulatory period</td>
<td>↑ plasma levels</td>
<td>Fetal/maternal metabolism</td>
<td>Reflects ↑ placental size (GH-V, hCS); ↑ steroid concentrations (GH-N)</td>
</tr>
<tr>
<td>Pregnancy in primates</td>
<td>↑ plasma levels of GH-N, GH-V and hCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy in non-primates</td>
<td>↑ plasma levels of GH-N</td>
<td>Fetal/maternal metabolism</td>
<td></td>
</tr>
<tr>
<td>Parturition</td>
<td>↑ plasma levels of GH</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Lactation</td>
<td>↑ production of mammary and pituitary GH</td>
<td>Mammogenesis;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↑ plasma GH levels during breeding</td>
<td>galactopoiesis</td>
<td></td>
</tr>
<tr>
<td>Seasonal breeding</td>
<td></td>
<td>Fetal nutrient requirements</td>
<td>Partially, but not entirely due to fasting</td>
</tr>
</tbody>
</table>
reviewed by Childs (2000), pituitary cell populations have been identified containing both GH and gonadotropin immunoreactivity, both GHRH-binding sites and gonadotropin immunoreactivity, or both GnRH-binding sites and GH immunoreactivity. Indeed, 50–57% of gonadotrophs from male rats and female rats, particularly periovulatory female rats, also express GH (Childs et al. 2000). Differentiation of these multifunctional cells (somatogonadotrophs) in rats occurs throughout the estrous cycle and is regulated by estrogens, activin and GH (Childs 2000). Somatogonadotrophs may be cells undergoing interconversion between somatotrophs and gonadotrophs. Alternatively, they could represent a more stable cell population that would integrate gonadotropin and GH effects on reproductive function.

Summary

Changes in GH secretion and reproductive status appear to be co-ordinately regulated throughout reproductive life. This co-ordination underlies the importance of GH as a co-gonadotropin. Indeed, important landmarks such as puberty and pregnancy are consistently associated with increased GH secretion (Table 1). In some cases, augmented circulating GH levels are paired with hepatic GH resistance. This interaction may permit selective activation of gonadal responses to GH without activating IGF-I-mediated systemic responses. This selective activation may also be mediated by autocrine, paracrine or intracrine GH actions, since GH is also synthesized in reproductive tissues. The link between the reproductive and somatotropic axes is dependent upon interactions at the hypothalamic, pituitary and gonadal level (Fig. 3). In addition to direct effects on gonadal function, GH may influence reproductive activity by increasing gonadotropin secretion at the hypothalamic and pituitary level and by enhancing gonadotropin responsiveness at the gonadal level.

Acknowledgements

The research programs of K L Hull and S Harvey are supported by the Senate Research Committee, Bishop’s University, and NSERC of Canada respectively.

References

Alsat E, Chowen-Breda JA, Steiner RA & Clifton DK 1990 Somatostatin messenger RNA in hypothalamic neurons is increased by testosterone through activation of androgen receptors and not by aromatization to estradiol. Neuroendocrinology 52 342–349.

Bartke A 1999 Role of growth hormone and prolactin in the control of reproduction: What are we learning from transgenic and knock-out animals? Steroids 64 598–604.

www.endocrinology.org

Braunstein GD, Rasor JL, Engval lE&W a d eM E 1980

Carlsson B, Billig H, Rymo L & Basko 1990a Expression of the growth hormone-binding protein messenger RNA in the liver and extrahepatic tissues in the rat: co-expression with the growth hormone receptor. Molecular and Cellular Endocrinology 3 1–6.

Estes PA, Urbanek M, Ray J, Liebhaber SA & Cooke NE 1994
Alternative splice site selection in the human growth hormone gene
transcript and synthesis of the 20 kDa isoform: role of higher order
Esteve MJ, Hurlock WF & Barc CR 1998 Serum concentrations of
luteinizing hormone, growth hormone and cortisol in gilts treated
with N-methyl-DL-aspartate during the estrous cycle or after
Etherton TD & Bauman DE 1998 Biology of somatotropin in growth
and lactation of domestic animals. Physiological Reviews 78 745–761.
Evain-Brion D, Alsot E, Mirlesse V, Dodeur M, Scippo ML, Hennen
G & Frankenne F 1999 Regulation of growth hormone secretion in
Faria ACS, Bekenstein LW, Booth RA, Vaccaro VA, Asplin CM,
Veldhuis JD, Thorner MO & Evans WS 1992 Pulsatile growth
hormone release in normal women during the menstrual cycle.
Clinical Endocrinology 36 591–596.
Fholenhag KI, Sandstrom IM, Malmof K, Skottner AI & Nyberg FJ
1998 A, Hertz P & Hochberg Z 1993 Ontogenesis of the sexual
Foster CM, Hopwood NJ, Hassing JM, Hale PM, Mendes T, Kelch
Gardner MJ & Flint DJ 1990 Long-term reductions in GH, insulin-
Gabriel SM, Roncancio JR & Ruiz NS 1992 Growth hormone
Genazzani AD, Petraglia F, Volpogni C, Gastaldi M, Pianazzi F,
Gevers EF, Wit JM & Robinson IC 1998 Estrogen and androgen
effects on plasma LH pulsatile release in women with
Hassanab HA, Enright WJ, Tucker HA & Merkel RA 2001 Estrogen
Hartmann B, Kirchengast S, Albrecht A, Lamli T, Bikas D & Huber J
1995 Effects of hormone replacement therapy on growth hormone
secretion patterns in correlation to somatometric parameters in
In Growth Hormone, pp 193–225. Eds S Harvey, CG Scares & WR
Harvey S, Scares CG & Sharp PJ 1979 Variations in plasma growth
hormone concentrations in laying hens. British Poultry Science
20 163–166.
Harvey S, Baumbach WR, Sadeghi H & Sanders EJ 1993 Ultrastructural
colocalization of growth hormone binding proteins and
pituitary hormones in adrenohypophyseal cells of the rat.
Endocrinology 133 1125–1130.
Hasegawa O, Sugihara H, Minami S & Wakabayashi I 1992
Masculinization of growth hormone (GH) secretory pattern by
dihydrotestosterone is associated with augmentation of hypothalamic
somatostatin and GH-releasing hormone mRNA levels in
ovariectomized adult rats. Peptides 13 475–481.
Hassanb HA, Enright WJ, Tucker HA & Merkel RA 2001 Estrogen
and androgen elicit growth hormone release via dissimilar patterns
Hauguel-de Mouzon S, Leturque A, Alsat E, Loizeau M, Evain-Biron
D & Girard J 1994 Developmental expression of Glut1 glucose
transporter and c-fos genes in human placental cells. Placenta 15
35–46.
Placental lactogen and growth hormone receptors in human fetal
tissues: relationship to fetal plasma human placental lactogen
concentrations and fetal growth. Journal of Clinical Endocrinology and
Metabolism 66 1283–1290.
Hindmarsh P, Smith PJ, Brook CG & Matthews DR 1987 The
relationship between height velocity and growth hormone secretion in
Hurt H, Kineland J, Birnbaun MJ, Chen EY, Seiburg PH,
Eberhardt NL & Bara A 1987 The human growth hormone gene
locus: structure, evolution, and allelic variations. DNA 6 59–70.
Ho KK, O’Sullivan AJ, Weissberger AJ & Kelly JJ 1996 Sex steroid
regulation of growth hormone secretion and action. Hormone
Research 45 67–73.

Gower BA, Nagy G & Stetson MH 1996 Influence of photoperiod,
time and sex on hormone concentrations in collared lemmings.
General and Comparative Endocrinology 101 53–62.
Guistina A, Scalvini T, Tass C, Desenzani P, Poiesi C, Wehrenberg
WB, Rogel AD & Veldhuis JD 1999 Maturation of the regulation of
growth hormone secretion in young males with
hypogonadotropic hypogonadism pharmacologically exposed to
progressive increments in serum testosterone. Journal of Clinical
Endocrinology and Metabolism 82 1210–1219.
Guthrie HD, Pursel VG, Miller KF, Bolt DJ, Palmer RJ & Brinster
RL 1991 Effect of bovine growth hormone gene expression, sex
and age on plasma gonadotropins estrone and testosterone in
Hall JB, Schillo KK, Flannu E & Bradley NW 1994 Effects of
recombinant bovine somatotropin and dietary energy intake on
growth, secretion of luteinizing hormone, follicular development
and onset of puberty in beef heifers. Journal of Animal Science
72 709–718.
Handwerger S & Freemark M 2000 The roles of placental growth
hormone and placental lactogen in the regulation of human fetal
growth and development. Journal of Pediatric Endocrinology and
Metabolism 13 343–356.
Harris DA, Van Vliet E, Gegl CA, Grunbach MM, Kaplan SL, Styne
DM & Vainsel M 1985 Somatomedin-C in normal puberty and in
two precocious puberty before and after treatment with a potent
luteinizing hormone-releasing hormone agonist. Journal of Clinical
Endocrinology and Metabolism 61 152–159.
Hartmann B, Kirchengast S, Albrecht A, Lamli T, Bikas D & Huber J
1995 Effects of hormone replacement therapy on growth hormone
secretion patterns in correlation to somatometric parameters in

www.endocrinology.org

GH secretion and reproduction · K L HULL and S HARVEY

Journal of Endocrinology (2002) 172, 1–19
Downloaded from Bioscientifica.com at 08/27/2019 05:33:21AM via free access

Ishibashi K & Imai M 1999 Identification of four new members of the rat prolactin/growth hormone gene family. Biochemical and Biophysical Research Communications 262 575–578.

Landerfeld TD & Suttie JM 1989 Changes in messenger ribonucleic acid concentrations and plasma levels of growth hormone during the ovine estrous cycle and in response to exogenous estradiol. Endocrinology 125 1474–1478.

Loudon AS, Milne JA, Curlewis JD & McNeilly AS 1989 A comparison of the seasonal hormone changes and patterns of growth, voluntary food intake and reproduction in juvenile and adult red deer (Cervus elaphus) and Per d David’s deer (Elaphus davidi ans) hinds. Journal of Endocrinology 122 733–745.

Marchant TA & Peter RE 1986 Seasonal variations in body growth rates and circulating levels of growth hormone in the goldfish, Carassius auratus. Journal of Experimental Zoology 237 231–239.

Sumpter JP, Lincoln RF, Byv VJ, Carragher JF & Le Bail PY 1991 Plasma growth hormone levels during sexual maturation in diploid and triploid rainbow trout (*Oncorhynchus mykiss*). *General and Comparative Endocrinology* 83 103–110.

Williams J, Harvey S & Leclercq B 1986 Plasma levels of luteinizing hormone, growth hormone, and estradiol from six weeks of age to sexual maturity in two lines of chickens selected for high or low abdominal fat content. Poultry Science 65 1782–1786.

