Thyroid function and effect of aging in combined hetero/homozygous mice deficient in thyroid hormone receptors α and β genes

R E Weiss¹, O Chassande², E K Koo¹, P E Macchia³, K Cua¹, J Samarut² and S Refetoff¹,³

¹Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
²Laboratoire de Biologie Moléculaire et Cellulaire de l’École Normale Superieure de Lyon, Lyon, France
³Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, USA

(Requests for offprints should be addressed to R E Weiss, Thyroid Study Unit – MC 3090, Department of Medicine, Room M-376, University of Chicago, 5841 S. Maryland Ave, Chicago, Illinois 60637, USA; Email: rweiss@medicine.bsd.uchicago.edu)

Abstract

The maintenance of thyroid hormone (TH) homeostasis is dependent on the synthesis and secretion of TH regulated by TSH. This is achieved, in turn, by the negative feedback of TH on TSH secretion and synthesis, which requires the interaction with TH receptors (TRs). Derived by alternative splicing of two gene transcription products, three TRs (TRβ1, TRβ2 and TRα1) interact with TH while another, TRα2, binds to DNA but not to TH. In this study we compare the results of thyroid function tests in mice with deletions of the TRα and TRβ genes alone and present novel data on mice that are double homozygous and combined heterozygous. Homozygous deletions of both the TRα and TRβ in the same mouse (TRαo/o; TRβ−/−) resulted in serum TSH values only slightly lower than those in athyreotic, Pax8 knockout mice. Whereas the absence of TRα alone does not cause resistance to TH, the absence of TRβ in the presence of TRα results in a 205, 169, 544% increase in serum thyroxine (T₄), triiodothyronine (T₃) and TSH concentrations respectively. However, in the absence of TRβ, loss of one TRα allele can worsen the resistance to TH with a 243 and 307% increase in T₄ and T₃ respectively. Similarly, while the heterozygous mouse with a single TRβ allele shows no alteration in thyroid function, the concomitant deletion of TRα brings about mild but significant resistance to TH. Furthermore, the severity of the resistance to TH was noted to decrease with age in parallel with the decrease in serum free T₄ values also seen in wild-type mice. These results demonstrate that (1) unliganded TRα or TRβ are not absolutely necessary for the upregulation of TSH; (2) TRβ but not TRα is sufficient for TH-mediated downregulation of TSH; and (3) TRα may partially substitute for TRβ in mediating a partial TH-dependent TSH suppression.

Introduction

Thyroid hormone (TH) is essential for normal growth and development as well as for the maintenance of metabolic activity in the adult. TH secretion by the thyroid gland is under the control of pituitary thyrotropin (TSH). An important regulator of TSH synthesis and secretion is the negative feedback of TH on TSH gene transcription. This is mediated by intranuclear TH receptors (TRs). Two TR genes have been identified, TRα and TRβ, each generating two major proteins by alternative splicing. Three of these, α1, β1 and β2, bind TH (Sap et al. 1986, Weinberger et al. 1986, Hodin et al. 1989, Lazar 1993). A fourth product, TRα2, binds to thyroid hormone response elements but, due to a sequence difference at the ligand binding domain, it does not bind TH or function as a TR proper (Mitsuhashi et al. 1988). Additional, minor transcripts of the TRα gene that do not bind TR and may act as competitive inhibitors of TH action are Δα1, Δα2 (Chassande et al. 1997) and rev-erbAα (Spanjaard et al. 1994). Two additional TRβ isoforms which are a result of alternative splicing have been described in most rat tissues (except testes) – TRβ3 which acts as a functional TR, and TRβΔ3 that lacks the DNA binding domain but retains a ligand binding activity and has a potent dominant-negative effect (Williams 2000). The four principal TR proteins are expressed in the pituitary but their relative role in the regulation of the pituitary–thyroid axis has not been clearly defined. The study of this axis in mice deficient in one or more of the TR genes provides a means to determine the functional role of the individual receptors. Several knock-out mice with deletions of the TRα and TRβ in various...
combinations have been generated (Forrest et al. 1996b, Fraichard et al. 1997, Wikström et al. 1998, Gauthier et al. 1999, Göther et al. 1999). However, comparison of the serum TH and TSH levels in these mice as a means to assess the sensitivity of feedback regulation requires measurements using the same assays. This is particularly important for the determination of TSH concentration in mouse serum. In this report we describe the effect of deletion of one or more TRs and the relative importance of TRα and TRβ in the regulation of the pituitary-thyroid axis in the mouse. We demonstrate that mice deficient in TRβ become even more resistant to TH when one of the TRα alleles is also deleted. Furthermore, mice completely deficient in TRα, which by itself does not produce a TH-resistant phenotype, become TH resistant when one of the TRβ genes is deleted. Our results suggest functional overlap of TR isoforms and dose dependency in the feedback inhibition of pituitary TSH.

Materials and Methods

Mice

Mice were weaned four weeks after birth and fed a rodent diet (No 5053; Lab Diet, Brentwood, MO, USA) containing 0.53 ppm iodine and were given tap water available ad libitum. They were housed, 3 to 5 mice per cage, in a controlled environment at 19 °C and under 12 h alternating darkness and artificial light cycles. All animal experiments were performed according to approved protocols at the University of Chicago by the Institutional Animal Care and Use Committee and the Ecole Normale Superieure de Lyon.

Male mice were used exclusively because of previously reported sex differences in thyroid function tests within the same strain (Pohlenz et al. 1999). Mice were 39–140 days old at the time of blood sampling, with the following exceptions: (1) Pax8−/− mice were 3 weeks old because, if untreated, survival declines rapidly after this age; (2) the effect of age was studied in male mice 2, 3, 6, 9, 12 and 20 weeks old. In mice aged 6 weeks and older, 300 µl blood were obtained by retroorbital vein puncture under light methoxyflurane (Pitman Moore, Mundelein, IL, USA) anesthesia. Bleeding was generally carried out between 0900 h and 1200 h. Serum was separated by centrifugation and stored at −20 °C until analyzed.

The TRβ knockout mice were produced by insertion of the LacZ-NeoR cassette downstream to the splice site of exon 4, eliminating the expression of the DNA and ligand binding domains of TRβ1 and TRβ2 (TRβ−/−) (Gauthier et al. 1999). The TRα knockout mice were produced by insertion of the LacZ-NeoR cassette downstream to exon 3 and replacing exons 5 through 7, thus effectively abolishing not only the generation of TRα1 and TRα2 transcripts but also that of TRα1 or TRα2 (TRαo/o) by removal of their transcription start point at intron 7 (Gauthier et al. 2001). The gene sequence for rev-erbAα protein encoded by the opposite strands for the TRα (Spanjaard et al. 1994) remains intact. In both sets of mice the recombinant embryonic stem (ES) cells were derived from 129sv mice and were implanted into C57BL/6 recipient blastocysts. C57BL/6 mice were mated to each chimeric mouse and then back-crossed 3–4 times into the same strain, thereby diluting the 129sv background. Separate wild-type mice were maintained for the TRαo/o (n=18) and β−/− (n=54) mice. Wild-type mice were also produced from backgrounds of the Pax8 knockout mice (Pax8−/−) (n=7) and separate wild-type with the background of the SRC-1 knockout (SRC-1−/−) mice (n=17). The SRC-1−/− and the Pax8−/− mice were also produced with recombinant ES cells from 129sv mice and were implanted into C57BL/6-derived blastocysts. Offspring were outbred into C57BL/6 mice at least 5 times to dilute the 129sv background. Thyroid function tests for each of these wild-type mice are reported separately, but there was no significant difference in the values among them. The serum samples from Pax8−/− mice were provided by Drs Ahmed Mansouri and Peter Grüss (Mansouri et al. 1998) and those from SRC-1−/− mice were from Drs Jianming Xu and Bert O’Malley (Weiss et al. 1999).

Induction of hypothryoidism and treatment with TH

TH deficiency was induced in 5 male mice of each type (wild-type, TRαo/o, and TRβ−/−) with a low iodine (LoI) diet containing 0.15% 5-propyl-2-thiouracil (PTU) as described (Weiss et al. 1997). On the 14th day of PTU treatment, TSH releasing hormone (TRH) stimulation tests were performed in these mice as well as in a similar number of mice from each genotype maintained on a normal diet. Blood samples were obtained from the tail vein before and 15 min after the i.p. administration of 0.275 µg TRH. We had previously determined that the peak response of TSH to TRH is at 15 min (data not shown).

In a separate experiment, 15 mice from each group received the PTU/LoI diet and 15 mice from each group were placed on a normal diet. On the 11th day, mice of each genotype on the different diets were divided into 3 groups (5 mice per group). The mice fed the normal diet were given daily i.p. injections of vehicle, 0.2 or 0.8 µg l-triiodothyronine (l-T3)/100 g body weight for 4 days while the PTU-fed mice received daily i.p. injections of vehicle, 1.0 or 2.5 µg l-T3/100 g body weight for 4 days with the PTU diet given throughout the l-T3 and vehicle treatment period. On the morning of the 5th day, TRH stimulation tests were performed as described above. Serum T3 concentrations achieved at different times after administration of l-T3 were not different among the different genotypes of mice (Macchia et al. 2001).
Hormone measurements

Serum total thyroxine (TT₄) and T₃ (TT₃) concentrations were measured by coated tubes RIAs (DPC, Diagnostic Products, Los Angeles, CA, USA) using 25 and 50 µl serum respectively. The sensitivities of these assays are 0.2 µg T₄/dl (2.6 nmol/l) and 20 ng T₃/dl (0.3 nmol/l). The inter-assay coefficients of variation are 5-4, 4-2 and 3-6% at 3-8, 9-4 and 13-7 µg/dl for T₄ and 7-7, 7-1 and 6-2% at 32, 53 and 110 ng/dl for T₃. Free T₄ (FT₄) and free T₃ (FT₃) were estimated by calculating the free indexes (FT₄ and FT₃) using the respective total hormone values and the resin T₄ uptake ratio (Robin et al. 1971).

Serum TSH was measured in 50 µl serum using a sensitive, heterologous, disequilibrium, double antibody precipitation RIA as described (Pohlenz et al. 1999). The sensitivity of this assay was 5-10 mU/l. The intra-assay and interassay coefficients of variation were respectively: 16 and 27% at 20 mU/l, 6-3 and 8-2% at 200 mU/l, 5-4 and 9-8% at 850 mU/l, 10 and 24% at 2000 mU/l. Samples containing more than 1000 and more than 10 000 mU TSH/l were diluted 10- to 100-fold, respectively, with '0' TSH mouse serum obtained from wild-type mice treated with a suppressive dose of T₄ (Pohlenz et al. 1999).

Data analysis

Values are reported as means ± standard deviation or standard error where indicated. P values were calculated by two-way ANOVA when comparing mice of different genotypes and treatment, and by the unpaired Student's t-test when comparisons were made within the same genotype, using the Statview 5.0 program (SAS Institute, Inc., Cary, NC, USA).

Results

Thyroid function tests were determined in mice lacking various combinations of the TRα and TRβ genes (Table 1). Four wild-type strains of C57BL/6 mice were also evaluated that corresponded to the TRα, TRβ, Pax8−/− and SRC-1−/− mice; however there was no significant difference in any of the determinations among these 4 strains of mice (Fig. 1). Data from the wild-type mice matched to the TRα and TRβ knockout mice were combined into a single group since they were generated by backcrossing with the same strain (Table 1, wild-type). Elevation of TH levels without suppression of serum TSH is usually indicative of resistance to TH at the level of the thyrotropes. Mice completely deficient in TRα gene products (TRαo/o) showed no important differences in basal thyroid function tests compared with the wild-type mice except for slightly but significantly lower serum T₄ concentrations. The lower mean FT₄ and FT₃ did not reach statistical significance. In contrast, there was a clear elevation in FT₁ (2.5-fold), FT₃ (1.6-fold) and TSH (5.4-fold) (P<0.0005) in the homozygous TRβ−/− mice, compatible with resistance to TH. The mice homozygous for the combined TRα and TRβ deletions displayed higher TH levels even though the absence of TRα alone did not produce TH resistance. FT₄, FT₃, and TSH values were, respectively, 14, 124 and 822 times higher than those of wild-type mice. The elevation of TSH in the combined TRα/Trβ knockout mice was only half that found in the athyreotic Pax8 gene knockout mice (Pohlenz et al. 1999) (Fig. 1).

Mice homozygous for a deletion of only one allele of the TRβ (TRβ−/+ or TRα (TRαo/o) genes have thyroid function tests that are not different from the wild-type mice (Forrest et al. 1996b, Gauthier et al. 1999). However, when one allele of the TRβ is absent in combination with complete deletion of TRα (which alone causes no TH resistance), increases of 1-5-fold in FT₄, 1.3-fold in FT₃, and 1.7-fold in TSH were observed compared with wild-type mice, suggestive of TH resistance (Table 2 and Fig. 1). Similarly, when one allele of the TRα was absent together with complete deletion of the TRβ (TRαo/o; TRβ−/−), the mice displayed a further 1.7-, 1.8- and 3-6-fold increase in the FT₄, FT₃ and TSH respectively compared with TRβ−/− mice with preservation of both TRα alleles (Table 2 and Fig. 1). This suggests that TRα may act to attenuate the resistance to TH at the level of the pituitary.

FT₄ levels decrease with age in the TRαo/o, TRβ−/− and in TRαo/o;TRβ−/− mice as seen in wild-type mice (Fig. 2, Table 3). However results in the double knockout mouse are based on only two animals. The FT₄ levels at 2 weeks of age were consistently and significantly higher than at older ages. Wild-type and TRβ−/− mice had higher FT₄ levels at 6 weeks compared with older mice at 20 weeks, whereas the TRαo/o mice were not different at these time points.

The responses of serum TSH to TRH in intact and TH-deprived mice are shown in Fig. 3. Mice fed a normal diet had robust TSH responses to TRH administration. Although all three genotypes (wild-type, TRαo/o, TRβ−/−) reached a similar peak TSH value, the percentage increment was significantly less for the TRβ−/− compared with wild-type (only 4-1% ± 1-4 versus 69-5% ± 26-7, P=0.006) or TRαo/o (80-8% ± 61-9, P=0.026). However TH-deprived mice had no TSH response to TRH stimulation. The lack of a significant increase in TSH after TRH stimulation is contrary to the hyper-responsiveness seen in hypothroid humans (Saberi & Utiger 1975).

The responses of serum TSH to TRH before and after the administration of two incremental doses of 1-T₃ are shown in Fig. 4. In mice fed a normal diet, the higher dose
Table 1: Thyroid function tests in male TRα and TRβ knockout mice. Results are means ± standard deviation, numbers in parentheses = number of mice; numbers in square brackets = range of ages.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>β1</th>
<th>β2</th>
<th>α1</th>
<th>α2</th>
<th>TT₄ (µg/dl)</th>
<th>FT₄I (units)</th>
<th>TT₃ (ng/dl)</th>
<th>FT₃I (units)</th>
<th>TSH (µU/ml)</th>
<th>Age (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aα/+</td>
<td>+</td>
<td>+</td>
<td>1/2</td>
<td>1/2</td>
<td>3.7 ± 1.3 (6)</td>
<td>5.4 ± 2.0 (6)</td>
<td>117 ± 18 (4)</td>
<td>172 ± 26 (6)</td>
<td>27 ± 46 (4)</td>
<td>75 [42–140]</td>
</tr>
<tr>
<td>aα/a</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>3.3 ± 0.5 (30)a</td>
<td>4.7 ± 0.7 (15)</td>
<td>96 ± 24 (11)</td>
<td>134 ± 28 (9)</td>
<td>27 ± 22 (31)</td>
<td>59 [39–78]</td>
</tr>
<tr>
<td>aα/aβ−/+</td>
<td>1/2</td>
<td>1/2</td>
<td>–</td>
<td>–</td>
<td>5.8 ± 0.9 (7)b</td>
<td>8.2 ± 2.0 (7)b</td>
<td>107 ± 28 (7)c</td>
<td>148 ± 25 (7)</td>
<td>42.5 ± 20 (7)c</td>
<td>75 [42–140]</td>
</tr>
<tr>
<td>aα/+/β−/+</td>
<td>1/2</td>
<td>1/2</td>
<td>+</td>
<td>+</td>
<td>4.3 ± 0.7 (9)</td>
<td>5.9 ± 0.9 (9)</td>
<td>120 ± 12 (9)</td>
<td>162 ± 12 (9)</td>
<td>95 ± 80 (9)</td>
<td>75 [42–140]</td>
</tr>
<tr>
<td>aα/aβ−/−</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>7.8 ± 2.0 (37)b</td>
<td>11.7 ± 4.9 (11)b</td>
<td>142 ± 43 (12)b</td>
<td>202 ± 74 (10)a</td>
<td>136 ± 116 (41)b</td>
<td>79 [46–124]</td>
</tr>
<tr>
<td>aα/+/β−/−</td>
<td>–</td>
<td>–</td>
<td>1/2</td>
<td>1/2</td>
<td>19.0 ± 6.6 (10)b</td>
<td>19.8 ± 7.8 (8)b</td>
<td>329 ± 137 (8)b</td>
<td>354 ± 156 (8)b</td>
<td>486 ± 150 (10)b</td>
<td>75 [42–140]</td>
</tr>
<tr>
<td>aα/aβ−/−/−</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>43.7 ± 8.2 (6)b</td>
<td>64.8 ± 13.9 (3)b</td>
<td>1527 ± 706 (5)b</td>
<td>2389 ± 1446 (3)</td>
<td>20560 ± 7895 (6)b</td>
<td>66 [21–110]</td>
</tr>
<tr>
<td>Pax8−/−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0.5 ± 0.2 (3)c</td>
<td>0.4 ± 0.2 (3)c</td>
<td>65 ± 32 (3)p</td>
<td>61 ± 32 (3)p</td>
<td>46380 ± 13869 (5)c</td>
<td>21 [21–25]</td>
</tr>
<tr>
<td>Wild-typee</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3.8 ± 0.7 (46)</td>
<td>4.5 ± 1.2 (12)</td>
<td>84 ± 11 (13)</td>
<td>124 ± 32 (11)</td>
<td>25 ± 20 (54)</td>
<td>74 [43–123]</td>
</tr>
</tbody>
</table>

*P<0.05, aP<0.005, bP<0.0005, compared with wild-type. a(a+/+,β+/+) wild-type mice.
of l-T₃ suppressed the TSH response to TRH by 50% in the wild-type compared with a 4.3% increase in the TRβ−/− mice (2-way ANOVA, P<0.001) and a 78% decline in the TRα/o/o mice (2-way ANOVA, P<0.001). In TH-deprived mice, the higher dose of l-T₃ suppressed the TSH response by >90% in the wild-type, TRβ−/− and TRα/o/o mice. Collectively, these data indicate that the feedback regulation of the pituitary–thyroid axis of TRβ−/− mice is resistant to TH and that the TRα/o/o mice are more sensitive to TH.

Of interest is the paradoxical response of TSH to TRH (a 153% increase; 2-way ANOVA, P=0.0010) seen in TRβ−/− mice on the lower dose of l-T₃ and fed a normal diet, as we reported previously in these mice (Macchia et al. 2001) and in humans homozygous for the TRβ gene deletion (Refetoff et al. 1980). This paradoxical response to l-T₃ is not seen in TRβ−/− mice fed a PTU/LoI diet.

Discussion

The relative serum levels of TH and TSH reflect the sensitivity of the pituitary to the feedback regulation of TSH by TH which is, in turn, dependent on the interaction of TH with TRs in the thyrotropes. Selective removal of one or more TR alleles would allow one to determine the role of each TR isoform and its relative importance in the mediation of TH action at the level of the pituitary gland. We present novel data on thyroid function of mice that are double heterozygous or homozygous in all combinations suggesting different and overlapping roles for TRα and TRβ. Lack of TRβ in the mouse has been shown to cause resistance to TH, i.e. elevated levels of T₄, T₃ and TSH (Forrest 1994, Forrest et al. 1996a, Weiss et al. 1997).

The upregulation of TSH is relatively independent of the presence of unliganded TRβ and TRα genes as

Table 2	Statistical differences (P values) in the thyroid function tests of compound hetero/homozygous TRα and TRβ knockout mice				
Genotype	TT₄	FT₄I	TT₃	FT₃I	TSH
TRα/o;TRβ+/+ vs TRα/o;TRβ+/−	<0·001	<0·001	0·016	0·003	0·020
TRα+/+;TRβ−/− vs TRα+/o;TRβ−/−	0·05	0·001	0·001	Not significant	Not significant

*Actual values are given in Table 1.
Figure 2 Effect of age on serum FT₄I levels in combined TRα₀/o;TRβ⁻/⁻ mice as compared with TRβ⁻/⁻, TRα₀/o, and wild-type mice. Individual values are shown for serum FT₄I concentrations in mice of different ages.

Table 3 Effect of age on serum FT₄I values (means ± S.E.) in wild-type, TRα₀/o, TRβ⁻/⁻, and combined TRα₀/o;TRβ⁻/⁻ mice. Numbers in parentheses = number of mice.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Age (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Wild-type</td>
<td>11.9 ± 0.9</td>
</tr>
<tr>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>TRα₀/o</td>
<td>11.6 ± 0.9</td>
</tr>
<tr>
<td>(5)</td>
<td>(3)</td>
</tr>
<tr>
<td>TRβ⁻/⁻</td>
<td>60.5 ± 3.2</td>
</tr>
<tr>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>TRα₀/o;TRβ⁻/⁻</td>
<td>Not done</td>
</tr>
<tr>
<td>(6)</td>
<td></td>
</tr>
</tbody>
</table>

ᵃP<0.05,ᵇP<0.001, compared with 2-week value of the same genotype.

*Only 2 animals were available from this genotype at this age.
evidenced by the high TSH values attained in mice devoid of these two receptors. This suggests that TRs are involved mainly in the transcriptional repression of TSH and not in TSH gene activation. In fact, the serum TSH values in the completely TR-deficient mice (TRα/o/0: TRβ−/−) are not substantially lower than those measured in athyreotic, Pax8−/− mice. Relative to values in the wild-type mice, mean TSH levels in TR-deficient mice were 822-fold higher as compared with 1855-fold higher in Pax8−/− mice. Since TSH is downregulated by TH, it is the absence of TH that results in increased transcription of TSH mRNA. This has been demonstrated in wild-type hypothyroid mice in which there was an increase in both α subunit and TSHβ mRNAs (Chin et al. 1985, Gurr et al. 1986). This effect appears to require the stimulation by TSH releasing hormone (Abel et al. 1999, Shibusawa et al. 2000).

Eliminating only one TRβ allele is not sufficient to produce a phenotype distinct from the wild-type mouse. Furthermore, the absence of TRα in the presence of TRβ does not produce the TH resistant phenotype. However, the absence of only one TRβ allele in TRα-deficient mice results in significant TH resistance. Therefore, the presence of TRα compensates for haploinsufficiency resulting from the lack of one TRβ allele. In other words, TRα can partially substitute for TRβ.

In addition to TRβ1 and TRβ2, a third isoform, TRβ3, has been described in rat which could potentially mediate

Figure 3 Serum TSH response to TRH. Groups of different mice maintained on a normal diet (right panel) or a diet containing low iodine and PTU (PTU/LoI, left panel) were monitored before (open bars) and 15 min after (shaded bars) TRH stimulation. Individual values are also shown. Mice were studied under PTU/LoI treatment in order to bring baseline values of TSH to the same range in all the genotypes studied. Brackets above bars indicate the P values between 0 min and 15 min post TRH injection. NS, not significant, *P<0.001. Note the lack of stimulation with TRH in the TH-deprived mice and the difference in the TSH scales in the two panels.

Figure 4 Effect of TH on the TSH response to TRH. Groups of mice from the 3 phenotypes were treated for 4 days with 2 different doses of l-T3 or with the vehicle only (0). The upper panels show the results for mice fed a normal diet and the bottom panels show results for mice fed a PTU/LoI diet. Data shown are serum TSH values 15 min after TRH administration. The number of mice in each group is indicated within the bars. *P<0.001 compared with vehicle for each treatment. Note the paradoxical increase in TSH in the TRβ−/− mice on a normal diet and receiving 0.2 μg l-T3/100 g body weight (BW) and the greater suppressive effect of 0.8 μg l-T3/100 g BW in the TRα/o/o mice on a normal diet and of 1.0 μg l-T3/100 g BW in the TRα/o/o mice on a PTU/LoI diet.
the effects of TH (Williams 2000). This isoform, however, is unlikely to be involved in the TRβ knockout mouse, as these mice are generated by removal of exons 4 and 5 (Gauthier et al. 1999). These exons are shared by TRβ1, TRβ2, TRβ3 as well as the truncated TR isoforms (TRβA1, TRβA2 and TRβA3). Direct measurement of TRβ3 has not been performed because TRβ3 has not been demonstrated in mouse and sequences are not available for gene amplification. Similarly, in the TRαα/o mouse one needs to be assured that there are no other TRα isoforms expressed in the pituitary that could mediate TH action. The construction of the TRαα/o mouse would not allow for any other known TRα isoforms to be formed (Gauthier et al. 2001). Furthermore, whereas TRα1 and TRα2 could be detected by RT-PCR in pituitaries of wild-type mice, these isoforms could not be detected in the pituitaries of TRαα/o mice (authors’ personal observations).

Differences in the action of TRβ and TRα can be due to different levels of expression of the isoforms in the pituitary. TRβ is more abundant in the pituitary than TRα in human (Falcone et al. 1992) and rat (Hodi et al. 1989), which explains the increased magnitude of TH resistance seen in TRβ−/− compared with the TRαα/o mice. Data suggesting higher affinity of the T3-ligand for the TRβ than for the TRα1 isoform may play a role (Scheufler et al. 1990). Finally, the specificity of interaction of the TRα and TRβ with other elements of the transcriptional machinery may be responsible for a dominant role of TRβ on TSH regulation. We have previously shown that SRC-1 knockout mice have TH and TSH levels consistent with resistance which is of a milder degree compared with TRβ−/− mice (Weiss et al. 1999). Although there is no in vitro evidence to suggest which TR isoforms interact preferentially with SRC-1, it is possible that isoform–specific recruitment of cofactors is important in the TH-mediated regulation of TSH expression. TRβ2 has impaired functional interactions with corepressors (Hollenberg et al. 1996) which may be due to interaction of the amino terminus with coactivators (Oberste-Berghaus et al. 2000) or interaction with other corepressors (Yang et al. 1999).

The observation that hypothyroid mice, unlike humans, do not hyper-respond to TRH stimulation may reflect the physiological difference between the species and could possibly be due to decreased stored TSH in the pituitary glands of hypothyroid mice. However, as in humans (Refetoff et al. 1980), mice deficient in TRβ show a paradoxical increase in the TSH response to TRH with low suppressive doses of l-T3. This was not observed when mice were pretreated with PTU, probably due to depletion of pituitary reserves during hypothyroidism.

A significant inverse relationship between age and serum TH levels has been reported in mice (Eleftheriou 1975, Mobley & Dubuc 1978). This appears to be independent of feedback by TH since it was also observed in the absence of both TRα and TRβ. However, we were able to follow only two mice with the combined TRαα/o;TRβ−/− genotype. The results reported herein support casual observations that the hormonal resistance in subjects with resistance to TH seems to improve with age (Refetoff et al. 1993). This reflects the tendency of T4 levels to decrease with age in normal subjects as well as in patients with resistance to TH (Weiss & Refetoff 2000).

Acknowledgements

The authors wish to thank Ahmed Muqeem for performing the hormone measurements, Drs Mansouri and Gruss for providing serum from Pax-8 knockout mice and Drs Xu and O’Malley for providing SRC-C-1 knockout mice. This work was supported in part by grants from the National Institutes of Health to S R. (DK 15070), R E W (DK 58281) and by the Seymour J Abrams Thyroid Research Center.

References

Refetoff S 1994 The erbA/thyroid hormone receptor genes in development of the central nervous system. Seminars in Cancer Biology 5 167–176.

Forrest D, Erway LC, Ng L, Autschacher R & Curran T 1996a Thyroid hormone receptor β is essential for development of auditory function. Nature Genetics 13 354–357.

functions for the thyroid hormone receptors TRα and TRβ in the
control of thyroid hormone production and post-natal development.

Gauthier K, Plateroti M, Harvey CB, Williams GR, Weiss RE,
Refetoff S, Willott JF, Sundin V, Roux JP, Malaval L, Hara M,
Samarat J & Chassande O 2001 Genetic analysis reveals different
functions for the products of the thyroid hormone receptor alpha

Göther S, Wang Z, Ng L, Kindblom JM, Campos Barros A, Olhsson
C, Vennstrom B & Forrest D 1999 Mice devoid of all known
thyroid hormone receptors are viable but exhibit disorders of the
pituitary–thyroid axis, growth and bone maturation. Genes
Development 13 1329–1341.

Gur A, Vrontakis ME, Athanasian EA, Wagner CR & Kourides IA
1998 Morphological regulation of thyrotropin alpha and beta subunit

Hodin RA, Lazar MA, Wintman BI, Darling DS, Koenig RJ, Larsen
PR, Moore DD & Chin WW 1989 Identification of a thyroid
hormone receptor that is pituitary-specific. Science 244 76–79.

Hollenberg AN, Monden T, Mandura JP, Lee K & Wondisford FE
1996 Function of nuclear corepressor protein on thyroid hormone
response elements is regulated by the receptor A/B domain. Journal
of Biological Chemistry 271 28516–28520.

Lazar MA 1993 Thyroid hormone receptors: multiple forms, multiple

Macchia PE, Takenchi Y, Kawai T, Cua K, Gauthier K, Chassande
O, Seo H, Hayashi Y, Samarat J, Murata Y, Weiss RE & Refetoff
S 2001 Increased sensitivity to thyroid hormone in mice with
complete deficiency of thyroid hormone receptor alpha. PNAS 98
349–354.

Mansouri A, Chawdhury K & Gruss P 1998 Follicular cells of the
thyroid gland require Pox8 gene function. Nature Genetics 19 87–90.

Mitsutani T, Tennyson GE & Nikodemi VM 1988 Alternative
splicing generates messages encoding rat c-erbA proteins that do not
bind thyroid hormones. PNAS 85 5804–5805.

Mobley P & Dubuc P 1978 Thyroid hormone levels in the developing
obese hyperglycemic syndrome. Hormone and Metabolic Research

Oberste-Berghaus C, Zanger K, Hashimoto K, Cohen RN, Hollenberg
AN & Wondisford FE 2000 Thyroid hormone-independent
interaction between the thyroid hormone receptor beta2 amino
terminus and coactivators. Journal of Biological Chemistry 275 1787–
1792.

Pohlenz J, Muqueem A, Cua K, Weiss RE, Van Sande J & Refetoff S
1999 Improved radioimmunoassay for measurement of mouse TSH
in serum: strain differences in TSH concentration and thyrotropin
sensitivity to thyroid hormone. Thyroid 9 1265–1271.

Refetoff S, DeGroot LJ & Barsano CP 1980 Defective thyroid
hormone feedback regulation in the syndrome of peripheral
resistance to thyroid hormone. Journal of Clinical Endocrinology and
Metabolism 51 41–45.

Refetoff S, Weiss RE & Usala SJ 1993 The syndromes of resistance to
thyroid hormone. Endocrine Reviews 14 348–399.

Robin NI, Hagen SR, Collaco F, Refetoff S & Selenkov HA 1971
Serum tests for measurement of thyroid function. Hormones 2
266–279.

Saberi M & Utiger RD 1975 Augmentation of thyrotropin responses
to thyrotropin-releasing hormone following small decreases in serum
thyroid hormone concentrations. Journal of Clinical Endocrinology and
Metabolism 40 435–441.

Sap J, Muñoz A, Damk K, Goldberg Y, Ghyysdael J, Lentz A, Beng
H & Vennström B 1986 The c-erbA protein is a high-affinity

Schueler PA, Schwartz HL, Strait KA, Mariah CN & Oppenheimer
JH 1999 Binding of 3,3',5'-triiodothyronine (T3) and its analogs to
the in vitro translational products of c-erbA protooncogenes:
differences in the affinity of α- and β-forms for the acetic acid
analog and failure of the human tests and kidney α-2 products to

Shibusawa N, Yamada M, Hirato J, Monden T, Staub T & Mori M
2000 Requirement of thyrotropin-releasing hormone for the
postnatal functions of pituitary thyrotrophs: ontogeny study of
congenital tertiary hypothyroidism in mice. Molecular Endocrinology
14 137–146.

Spanjaard R, Nguyen V & Chin W 1994 Rat rev-erbA alpha, an
orphan receptor related to thyroid hormone receptor, binds to
specific thyroid hormone response elements. Molecular Endocrinology
8 286–295.

Weisberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ & Evans
RM 1986 The c-erbA gene encodes a thyroid hormone receptor.
Nature 324 641–646.

Weiss RE & Refetoff S 2000 Resistance to thyroid hormone. Reviews
in Endocrine and Metabolic Disorders 1 97–108.

Weiss RE, Forrest D, Pohlenz J, Cua K, Curran T & Refetoff S 1997
Thyrotropin regulation by thyroid hormone in thyroid hormone
receptor β-deficient mice. Endocrinology 138 3624–3629.

Weiss RE, Xu J, Ning GJP, O’Malley B & Refetoff S 1999 Mice
deficient in the steroid receptor co-activator 1 (SRC-1) are resistant
to thyroid hormone. EMBO Journal 18 1900–1904.

Wistrom L, Johanson C, Salto C, Barlow C, Campos Barros A, Baas
F, Forrest D, Thoren P & Vennström B 1998 Abnormal heart rate
and body temperature in mice lacking thyroid hormone receptor
α1. EMBO Journal 17 455–461.

Williams GR 2000 Cloning and characterization of two novel thyroid
hormone receptor beta isoforms. Molecular and Cellular Biology 20
8329–8342.

Yang Z, Hong S-H & Privalsky ML 1999 Transcriptional anti-
repression: thyroid hormone receptor β-2 recruits SMRT
corepressor but interferes with subsequent assembly of a functional
corepressor complex. Journal of Biological Chemistry 274
37131–37138.

Received 12 June 2001
Accepted 27 September 2001