Effects of oestrogen deprivation on interleukin-6 production by peripheral blood mononuclear cells of postmenopausal women

D Rachon, J Myśliwska, K Suchecka-Rachon1, J Więckiewicz and A Myśliwski

Department of Histology and Immunology of the Medical University of Gdańsk, 80 210 Gdańsk, ul. Dębinki 1, Poland
1Department of Hypertension and Diabetology of the Medical University of Gdańsk, 80 211 Gdańsk, ul. Dębinki 7, Poland

(Requests for offprints should be addressed to D Rachon; Email: drachon@amedec.amg.gda.pl)

Abstract

Various hormones can influence the expression of interleukin-6 (IL-6) and oestrogens are the most extensively studied. There is, however, controversy about the nature of the IL-6 secreted by human cells and its regulation by 17β-oestradiol. The aim of this work was to clarify whether oestrogen deprivation after menopause may contribute to an enhanced IL-6 production by peripheral blood mononuclear cells (PBMC) in postmenopausal women. Twenty-two healthy postmenopausal women, age range 45–63 years, with clinical symptoms of oestrogen deficiency were enrolled in the study. The control group consisted of 16 healthy young women, age range 22–31 years, with regular menses and who were not taking oral contraceptives. Levels of IL-6 in the sera and PBMC culture supernatants were measured by the biological B9 cell-proliferation assay and expression of the IL-6 gene in non-stimulated PBMC was detected by RT-PCR. The effect of 17β-oestradiol on spontaneous IL-6 production by the PBMC of postmenopausal women was also studied in vitro and in vivo. Seventeen out of the twenty-two postmenopausal women were given hormonal replacement therapy of 50 µg 17β-oestradiol/day transdermally and the spontaneous production of IL-6 by the PBMC was analysed after 6 and 12 months of treatment.

The postmenopausal women had significantly higher serum levels of IL-6 than the young controls. The spontaneous production of IL-6 by non-stimulated PBMC into the culture supernatants was also significantly higher in the postmenopausal women compared with the young. We also found that IL-6 gene expression was present in the non-stimulated PBMC isolated directly from the venous blood of the majority of the postmenopausal women. Women with IL-6 gene expression in the non-stimulated PBMC had significantly lower serum levels of 17β-oestradiol compared with those where the IL-6 gene was not expressed in the PBMC. Our in vitro experiments showed that 17β-oestradiol at concentrations of 10⁻⁹ M and 10⁻¹⁰ M decreased spontaneous IL-6 production by the PBMC of postmenopausal women. In vivo treatment with 17β-oestradiol transdermally also significantly decreased spontaneous IL-6 production by the PBMC of postmenopausal women after 12 months of the therapy.

Our results indicate that oestrogen deprivation after menopause may enhance IL-6 production by the PBMC of postmenopausal women. We suspect that the late complications of oestrogen deficiency, such as osteoporosis, coronary heart disease and Alzheimer’s disease, may be mediated by an exaggerated production of IL-6—a cytokine which seems to play a pivotal role in the pathogenesis of these age-related diseases.

Introduction

Interleukin-6 (IL-6) is a pleiotropic cytokine produced by immune and non-immune cells and organs. Unlike other cytokines, IL-6 is unusual in that its major effects take place at sites distinct from its origin and are consequent upon its circulating concentrations. For this reason, it is called the endocrine cytokine (Papanicolaou & Vgontzas 2000). Inappropriate expression and production of IL-6 is thought to be involved in the pathogenesis of numerous diseases, including osteoporosis (Manolagas & Jilka 1995), coronary heart disease (CHD) (Huber et al. 1999) and Alzheimer’s disease (AD) (Mrak et al. 1995). Conversely, these disorders belong to the late complications of menopause and oestrogen replacement therapy may improve them (Lindsay et al. 1984, Stampfer & Colditz 1991, Tang et al. 1996).

There is, however, controversy about the nature of the IL-6 secreted by human cells and its regulation by oestrogens. Girasole et al. (1992) demonstrated that 17β-oestradiol inhibits IL-6 production in several types of osteoblastic cells in vitro including murine stromal...
In addition, oestrogens have been shown to inhibit cell lines, murine osteoblasts and human osteoblasts. In contrast, subsequent studies by three groups (Chaudhary et al. 1992, Rickard et al. 1992, Rifas et al. 1995) could not demonstrate a regulatory effect of ovarian steroids on IL-6 secretion in animal and human bone cell systems. In addition, McKane et al. (1994) did not find any differences in serum IL-6 levels when comparing pre- and postmenopausal women, and there was no difference in IL-6 levels in bone marrow aspirates from postmenopausal women with or without HRT (Kassem et al. 1996b).

In view of these contradictory findings obtained in different cell models, the present study was carried out to clarify whether oestrogen deprivation and HRT have an effect on the production of IL-6 by the peripheral blood mononuclear cells (PBMC) of postmenopausal women. We have compared serum levels of bioactive IL-6 as well as spontaneous IL-6 production into the supernatants by non-stimulated PBMC in young and postmenopausal women. We have also studied expression of the IL-6 gene in non-stimulated, freshly isolated PBMC of both groups. The in vitro and in vivo effects of 17β-oestradiol on spontaneous IL-6 production by the PBMC of postmenopausal women were also studied.

Materials and Methods

Subjects and study design

Twenty-two healthy postmenopausal women, age range 45–63 years, from the Endocrinological Outpatient Clinic of the Medical University of Gdańsk were enrolled in the study. Postmenopausal status was defined as an absence of menstrual periods for at least the previous 6 months and the presence of the oestrogen deficiency symptoms (‘hot flushes’, increased sweating, nervousness, irritability, depression, palpitations, insomnia, headaches, dyspareunia and joint pains). Four women had experienced surgical menopause. The time since menopause ranged from 6 months to 13 years. The cessation of ovarian function was confirmed by the measurement of serum follicle-stimulating hormone (FSH) levels which were all above 40 IU/l. The control group consisted of 16 healthy young women, age range 22–31 years, with regular menses and who were not taking oral contraceptives.

All participants underwent a routine physical examination and routine biochemical screening, including complete blood cell count and chemical group typing. Women from both groups were clinically healthy and were not taking any medication known to affect immunological status, and in the last 2 weeks had had no apparent acute or chronic inflammatory diseases that could result in the elevation of IL-6 levels. Moreover, we selected only those postmenopausal women who were free from osteoporosis (on the basis of bone mass density measurements by X-ray absorptiometry), CHD (on the basis of electrocardiography, biochemical screening and clinical status) and signs of dementia.

All subjects were informed about the purpose of the study and gave written consent. After a detailed talk with the endocrinologist (K Suchecka-Rachoni) about the benefits and risks of HRT, 17 out of 22 postmenopausal women were treated with 50 µg 17β-oestradiol/day transdermally (Estraderm 50MX; Novartis PharmaAG, Basel, Switzerland). Women with an intact uterus (13 subjects) were also receiving 10 mg medroxyprogesterone acetate (Provera; Pharmacia and Upjohn, Ascoli Piceno, Italy) for 10 days during each cycle. Venous blood was taken at baseline and after 6 and 12 months of HRT when patients were not taking the medroxyprogesterone acetate treatment. Blood from the young subjects was drawn between the 5th and 10th day of their menstrual cycle. These studies were approved by the Ethic Committee of the Medical University of Gdańsk.

Sera

Venous blood was drawn between 0900 and 1000 h and serum was immediately stored at −80 °C, in suitably sized aliquots, until thawed for analysis.

Isolation of PBMC

For cell culture and RNA isolation, blood was drawn on EDTA. Then the PBMC were isolated by centrifugation (2500 r.p.m. for 15 min at 20 °C) using Ficoll–Paque PLUS (Amersham Pharmacia Biotech AB, Uppsala, Sweden). The interphase containing the PBMC was collected and washed twice (1500 r.p.m. for 7 min at 20 °C) in phosphate-buffered saline (Gibco BRL, Life Technologies, Berlin, Germany).

PBMC cell cultures

Non-stimulated PBMC were incubated in RPMI 1640 (Gibco BRL, Life Technologies) supplemented with 5% heat-inactivated fetal calf serum (FCS) (Gibco BRL, Life Technologies) at about 1 × 10^6 cells/ml on a 24-well plate (Nunc A/S, Roskilde, Denmark). After 24 h of incubation...
in a humidified atmosphere containing 5% CO₂ at 37 °C, the supernatants were collected and stored at −80 °C in aliquots until thawed for analysis.

PMBC of postmenopausal women were also incubated with different concentrations of 17β-oestradiol (Sigma, Steinheim, Germany). 17β-Oestradiol was dissolved in absolute ethanol and prepared as a stock solution of 10⁻³ M. The cells were plated in RPMI 1640 supplemented with 5% heat-inactivated FCS at about 1 × 10⁶ cells/ml on a 24-well plate. The hormone stock solution was diluted serially in RPMI 1640 before addition to the cells, and added to culture medium to yield 10⁻⁸ to 10⁻¹¹ M. Ethanol at a 1:1000 dilution was used as the vehicle control. After 24 h of incubation in a humidified atmosphere containing 5% CO₂ at 37 °C, the supernatants were collected and stored at −80 °C in aliquots until thawed for analysis.

Biochemical assays

Serum FSH and 17β-oestradiol measurements were carried out in a diagnostic laboratory using the commercially available Abbott AxSYM assay (Abbott Park, IL, USA) based on microparticle enzyme immunoassay technology.

Isolation of RNA

After isolating the PBMC from the whole blood, total RNA was extracted with Trizol Reagent (Gibco BRL, Life Technologies Inc., Frederick, MD, USA) according to the manufacturer’s instructions. The quantity and quality of RNA were tested spectrophotometrically using A₂₆₀/A₂₈₀ on the UV/VIS Spectrometer MBA 2000 (Perkin Elmer, Norwalk, CT, USA). Additionally, RNA samples were stained with ethidium bromide and ribosomal RNAs (28s and 18s) were visualized on a 1% agarose gel (Promega, Madison, WI, USA) by the UV transillumination technique (UVP, Upland, CA, USA). Non-degraded RNA was selected for further processing.

RT-PCR

cDNA was synthesized from 1 µg total RNA in a 20 µl reaction mixture containing 5 µl 5 × reverse transcription buffer which contained 15 mM MgCl₂, 1-25 µl 10 mM dNTP mixture, 0-5 µl ribonuclease inhibitor RNasin, 200 U M-MLV reverse transcriptase and 1 µl random primers. All reagents were purchased from Promega. This solution was incubated in a TGradient Thermocycler Modul 96 (Biometra GmbH, Göttingen, Germany) at 42 °C for 60 min and then heated at 99 °C for 5 min.

Aliquots of 3 µl of the total cDNA were amplified in a 33 cycle PCR in a 50 µl reaction mixture containing 5 µl 10 × PCR buffer which contained 15 mM MgCl₂, 38-2 µl sterile H₂O, 1 µl dNPT mixture (all from Promega), 1 µl IL-6 5’-primer, 1 µl IL-6 3’-primer, 10 µl M-MLV reverse transcriptase and 1 µl random primers. All reagents were purchased from Promega. This mixture was incubated in a TGradient Thermocycler Modul 96 (Biometra GmbH, Göttingen, Germany) at 42 °C for 60 min and then heated at 99 °C for 5 min.

Aliquots of 3 µl of the total cDNA were amplified in a 33 cycle PCR in a 50 µl reaction mixture containing 5 µl 10 × PCR buffer which contained 15 mM MgCl₂, 38-2 µl sterile H₂O, 1 µl dNPT mixture (all from Promega), 1 µl IL-6 5’-primer, 1 µl IL-6 3’-primer (Clontech Laboratories, Palo Alto, CA, USA) and 1-5 U (0-75 µl) DyNAzyme II DNA polymerase (Finzymes, Espoo, Finland). The primers used for PCR were as follows: 5’-primer ATG AAC TTC TTC TCA ACA AGC GC; 3’-primer G AAG AGC CCT CAG GCT GGA CTG. IL-6 cDNA which was provided with the primers by the manufacturer was used as a positive control, and sterile H₂O as a negative control in the test. In all the RT-PCR experiments, controls for RNA integrity and the proper course of the RT reaction consisted of parallel cDNA samples run with β-actin primers. PCR amplification was carried out in a TGradient Thermocycler Modul 96 beginning at 95 °C for 5 min, then 30 s at 95 °C, 45 s at 55 °C, 1 min at 72 °C for 33 cycles and 7 min at 72 °C. The products of the reaction were cooled to 4 °C, stained with ethidium bromide, sized in a 2% agarose gel (Promega) and visualized on a transilluminator (UVP, Germany). Gels were photographed using a polaroid system and processed by the program Grab-It (UVP, Upland, USA).

IL-6 bioassay

IL-6 levels in the sera and in the PBMC culture supernatants were determined using the B9 hybrydoma proliferation assay (Aarden et al. 1987). In this assay, 10 × 10⁵ B9 cells (a gift from L Aarden, Netherland Red Cross, Amsterdam, The Netherlands) were cultured on a 96-well plate with 50 times diluted samples of sera or supernatants in a final volume of 100 µl RPMI 1640, supplemented with 5 × 10⁻⁵ M 2-mercaptoethanol (Sigma), 10% FCS, 100 U/ml penicillin and 100 µg/ml streptomycin (Sigma). All samples were put onto a 96-well plate in triplicate. After 48 h of incubation in a humidified atmosphere containing 5% CO₂ at 37 °C, 20 µl (3-[4,5-Dimethylthiazol-2-yl]-2,5)-diphenyltetrazolium bromide (MTT) (Sigma) was added to each well of the plate. The plate was incubated for the next 4 h in the above conditions and after this time 100 µl isopropanol (Sigma) was added. Optical density was read at 570 nm on an automated plate reader (Bio-Tek FL600; Bio-Tek Instruments Inc., Winooski, VT, USA). A standard curve relating cell proliferation to doses of recombinant human IL-6 (Sigma) was used to quantify IL-6 activity in the samples.

To confirm the specificity of the test, the monoclonal anti-IL-6 antibody (Genzyme, Rüsselsheim, Germany) was added (1:10, 1:20, 1:50) to the samples. The anti-IL-6 monoclonal antibody completely inhibited the ability of the B9 cells to proliferate. This assay has a detection limit of 1 pg/ml. The intra-assay coefficient of variation ranged between 9-5 and 10-9% and the interassay coefficient of variation between 17-7 and 25%.

Statistical analysis

All data are presented as arithmetic means ± s.d. The differences between age groups were evaluated using
Student’s unpaired t-test. Student’s paired t-test was used to compare the in vitro as well as the in vivo 17β-oestradiol-induced effects on the spontaneous IL-6 production by the PBMC of postmenopausal women. P values < 0·05 were considered statistically significant. All analyses were performed using a computer program STATISTICA Edition ’99 for Windows.

Results

Clinical characteristics of the subjects studied

All participants underwent a routine physical examination and biochemical screening which did not reveal any abnormalities. The characteristics of the two groups studied are shown in Table 1.

As shown in Table 1, the postmenopausal women had significantly lower levels of serum 17β-oestradiol (85·66 ± 76·33 pmol/l vs 259·77 ± 132·89 pmol/l, P<0·05) and significantly higher serum levels of FSH (68·23 ± 21·17 IU/l vs 17·63 ± 8·25 IU/l, P<0·05) compared with the young control group. These differences confirmed the state of oestrogen deficiency in the postmenopausal women.

Serum levels of IL-6 in postmenopausal and young women

In order to find the differences between the levels of IL-6 in the sera of the postmenopausal and young women, the bioactive IL-6 was detected using the B9 cell-proliferation assay. It appeared that the mean serum levels of IL-6 in the postmenopausal women was significantly higher compared with the young women (4·44 ± 2·10 pg/ml vs 1·76 ± 1·38 pg/ml, P<0·05) (Fig. 1).

Spontaneous IL-6 production by the PBMC of postmenopausal and young women into the culture media

In the next experiment, the levels of bioactive IL-6 were compared in the supernatants from the cultures of the non-stimulated PBMC of the postmenopausal and young women. Non-stimulated PBMC from both groups were incubated in a medium supplemented with FCS in a humidified atmosphere with 5% CO₂ for 24 h. After the incubation period, the levels of IL-6 were measured in the supernatants. The results of this experiment revealed that the cultured, non-stimulated PBMC from the postmenopausal women released significantly higher amounts of bioactive IL-6 into the culture media than those of the young (13·25 ± 9·01 pg/ml vs 6·3 ± 4·23 pg/ml, P<0·05) (Fig. 2).

IL-6 gene expression in the non-stimulated PBMC of postmenopausal and young women

Increased release of bioactive IL-6 by the non-stimulated PBMC of the postmenopausal women into the culture supernatants suggested the possibility of an endogenous activation of these cells in vivo. In order to clarify this suggestion, expression of the IL-6 gene in the PBMC, isolated directly from venous blood, was studied using the RT-PCR method. The results revealed that a spontaneous expression of the IL-6 gene was present in the PBMC of 15 out of the 22 postmenopausal women (Fig. 3), and was absent in the PBMC of all the young women (data not shown).

These results confirmed an endogenous activation of the IL-6 gene in the PBMC among the majority of the postmenopausal women studied.

Table 1 Characteristics of the subjects studied

<table>
<thead>
<tr>
<th></th>
<th>Postmenopausal women</th>
<th>Young women</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of subjects</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>Age (years)</td>
<td>52·77 ± 4·59*</td>
<td>26 ± 3·09</td>
</tr>
<tr>
<td>Years since menopause</td>
<td>4·48 ± 4·26</td>
<td></td>
</tr>
<tr>
<td>Serum FSH levels (IU/l)</td>
<td>68·23 ± 21·17*</td>
<td>17·63 ± 8·25</td>
</tr>
<tr>
<td>Serum 17β-oestradiol levels (pmol/l)</td>
<td>85·66 ± 76·33*</td>
<td>259·77 ± 132·89</td>
</tr>
</tbody>
</table>

*P<0·05.
Serum 17β-oestradiol levels and constitutive IL-6 gene expression in the PBMC of postmenopausal women

When the relationship between the levels of 17β-oestradiol and IL-6 gene expression in the non-stimulated PBMC was analysed, it appeared that a constitutive IL-6 gene expression was found in those postmenopausal women who had significantly lower mean serum levels of 17β-oestradiol compared with those who did not show a constitutive expression of the IL-6 gene in their PBMC (59.05 ± 49.62 pmol/l vs 156 ± 86.65 pmol/l, *P<0.05).

17β-oestradiol compared with those who did not show a constitutive expression of the IL-6 gene in their PBMC (59.05 ± 49.62 pmol/l vs 156 ± 86.65 pmol/l, *P<0.05) (Fig. 4).

In vitro effects of 17β-oestradiol on spontaneous IL-6 production by the PBMC of postmenopausal women

Figure 2 Levels of IL-6 in supernatants from PBMC cultures of postmenopausal and young women. Non-stimulated PBMC from the postmenopausal and young women were incubated in RPMI 1640, supplemented with 5% FCS, in a humidified atmosphere with 5% CO₂. After 24 h of incubation, levels of bioactive IL-6 were measured in the supernatants. Non-stimulated PBMC from the postmenopausal women (n=22) released into the supernatants significantly higher amounts of IL-6 compared with the PBMC of the young women (n=16) (13.25 ± 9.01 pg/ml vs 6.3 ± 4.23 pg/ml) (*P<0.05).

Figure 3 RT-PCR analysis of IL-6 gene expression in the non-stimulated PBMC of postmenopausal women. RNA was isolated from the non-stimulated PBMC of the 22 postmenopausal women. cDNA was then synthesized and used as a template in a 33 cycle PCR reaction employing oligonucleotide primers specific for IL-6 and β-actin. PCR products were analysed by agarose gel electrophoresis stained with ethidium bromide and visualized under UV light. Lanes 1 to 22 correspond to the patients’ numbers. M is the molecular marker pUC Mix Marker 8 (MBI; Fermentas AB, Vilnius, Lithuania). (−) is the negative control and (+) is the positive control.

Figure 4 Serum 17β-oestradiol levels and expression of the IL-6 gene in the non-stimulated PBMC of postmenopausal women. Postmenopausal women with IL-6 gene expression (n=15) in the non-stimulated PBMC, isolated directly from venous blood, had significantly lower serum 17β-oestradiol levels compared with those who did not express the IL-6 gene in the PBMC (n=7) (59.05 ± 49.62 pmol/l vs 156 ± 86.65 pmol/l, *P<0.05).
In vivo effects of 17β-oestradiol on spontaneous IL-6 production by the PBMC of postmenopausal women

Seventeen out of twenty-two postmenopausal women who were enrolled into the study were treated with 50 µg 17β-oestradiol/day transdermally (Estraderm 50MX). After 6 and 12 months of treatment, PBMC were isolated from venous blood and incubated for 24 h in a medium supplemented with FCS in a humidified atmosphere with 5% CO₂. After the incubation period, the bioactive levels of IL-6 were measured in the supernatants using the B9 hybridoma proliferation assay. PBMC of postmenopausal women treated with 17β-oestradiol released significantly smaller amounts of bioactive IL-6 into the culture media after 12 months of treatment than at baseline (11±1 ± 4·44 pg/ml vs 14±83 ± 6·37 pg/ml (*P<0·05).

Discussion

The aim of this study was to clarify whether oestrogen deprivation after menopause results in an enhanced IL-6 production by the PBMC of postmenopausal women. We found that serum levels of IL-6 in the postmenopausal women were higher compared with the young eugonadal female controls. The spontaneous IL-6 production by non-stimulated PBMC into the culture supernatants was also significantly higher in the postmenopausal women in relation to the young. We also found that, among the majority of postmenopausal women, IL-6 gene expression was present in the non-stimulated PBMC isolated directly from venous blood, which suggests the possibility of an endogenous activation of these cells in vivo. In addition, women with constitutive IL-6 gene expression in the non-stimulated PBMC had significantly lower serum 17β-oestradiol levels compared with those who did not express the IL-6 gene in the PBMC.

It has been pointed out that the enhanced IL-6 production by PBMC from postmenopausal women may not only be the consequence of the fall in oestrogen levels but may equally be determined by any of the many other factors which contribute to the aging process (Horan & Fox 1984, Winchurc et al. 1982, Ershler et al. 1993, Fagiolo et al. 1993, Wei et al. 1993, Belmin et al. 1995, Meyer et al. 1996, Myśliwska et al. 1998). To address these issues we also studied the in vitro as well as the in vivo effects of 17β-oestradiol on the spontaneous IL-6 production by the PBMC of postmenopausal women. Our in vitro experiments showed that 17β-oestradiol at the concentrations of 10⁻⁹ and 10⁻¹⁰ M significantly decreased the spontaneous IL-6 production by the PBMC of postmenopausal women. The in vivo treatment with 17β-oestradiol also resulted in a significant decrease in the spontaneous IL-6 production by the PBMC of the postmenopausal women after 12 months of therapy. From these results we can...
conclude that oestrogen deprivation after menopause may contribute to the enhanced IL-6 production by the non-stimulated PBMC of the postmenopausal women.

Inappropriate expression and production of IL-6 is thought to be involved in the pathogenesis of numerous diseases, including osteoporosis (Manolagas & Jilka 1995), CHD (Huber et al. 1999) and AD (Mrak et al. 1995). Conversely, these disorders belong to the late complications of menopause and oestrogen replacement therapy may improve them (Lindsay et al. 1984, Stampfer & Colditz 1991, Tang et al. 1996).

Osteoporosis is among the most common causes of morbidity in older people (Chrischilles et al. 1991). IL-6 is a potent regulator of bone resorption (Ishimi et al. 1990). It is produced locally in the bone microenvironment, where it stimulates the differentiation and proliferation of haematopoietic osteoclast progenitor cells (Kurihara et al. 1991, Tamura et al. 1993). IL-6 seems to play a significant role in the pathogenesis of postmenopausal osteoporosis (Manolagas & Jilka 1995). In rodent models, IL-6-mediated stimulation of osteoclast differentiation and proliferation and its upregulation in oestrogen-depleted states is well documented (Girasole et al. 1992, Passeri et al. 1993). Bone marrow cells from women who had discontinued oestrogen replacement therapy within 1 month before marrow aspiration secreted significantly more IL-6 than bone marrow cells from either premenopausal or late postmenopausal subjects (Bismar et al. 1995). However, elevated plasma levels of IL-6 in postmenopausal women do not correlate with bone density or osteocalcin, a marker of bone turnover (Kania et al. 1995). However, epidemiological data show that serum IL-6 is a predictor of postmenopausal bone loss, and that the effect appears to be most relevant through the first postmenopausal decade (Scheidt-Nave et al. 2001).

CHD is the leading cause of death in women. It is relatively uncommon in premenopausal women but the increased incidence of the disease is seen with the loss of ovarian function (Stampfer et al. 1990). With the recognition that atherosclerosis is an inflammatory process (Ross 1999), several plasma markers of inflammation have been evaluated as potential tools for prediction of the risk of coronary events. Elevated plasma fibrinogen is now well established as an independent vascular risk factor (Cook & Ubben 1987, Ernst & Resch 1993). Fibrinogen is the chief determinant of plasma viscosity and plays a key role in platelet aggregation (Meade et al. 1985). Plasma C-reactive protein (CRP) has also recently been indicted as a strong cardiovascular risk factor (Ridker et al. 2000a). The possibility that CRP might, in fact, be a mediator of this risk is suggested by reports that CRP promotes the expression of tissue factor (thromboplastin) by monocytes (Cermak et al. 1993). Fibrinogen and CRP are acute-phase proteins, and the most potent and broadly effective stimulant of their production by human hepatocytes appears to be IL-6 (Castell et al. 1990). Therefore, in a prospective study in apparently healthy men, elevated levels of IL-6 were associated with increased risk of future myocardial infarction (Ridker et al. 2000b). Also, Volpato et al. (2001) showed that serum IL-6 levels are helpful in identifying a subgroup of older CHD female patients with a high risk of death over a period of 3 years.

An enhanced IL-6 production also seems to play a great role in the pathogenesis of AD – a chronic, low-grade, self-reinforcing acute-phase inflammatory process, confined to the affected regions of the brain (Mrak et al. 1995). A pathogenic role for IL-6 specifically is suggested by reports that IL-6 can be detected in early stage ‘diffuse’ plaques, solely in the brains of patients with AD (Hüll et al. 1996). Brain-specific over-expression of IL-6 in transgenic mice also results in age-related neurodegeneration associated with learning disabilities (Heyser et al. 1997). How this process results in the amyloid deposition, neurofibrillary tangles and loss of synapses and neurones characteristic of advanced plaques is not yet clear. Ganter et al. (1991) suggested that IL-6-mediated induction of acute-phase protease inhibitors (perhaps α2-macroglobulin) may prevent the normal proteolytic processing of the amyloid precursor protein, resulting in the formation and deposition of the insoluble β-amyloid protein that may be largely responsible for neurotoxicity. Our postmenopausal women did not have any signs of dementia or loss of cognitive functions. However, it would be reasonable to follow-up their health status until later decades of life in order to see if there is a link between an exaggerated IL-6 production after menopause and the development of AD.

In summary, our results indicate that oestrogen deprivation after menopause may enhance IL-6 production by the PBMC of postmenopausal women. It is therefore justifiable to end the speculations about the effects of oestrogen withdrawal on IL-6 production by immune cells. Further studies are warranted to clarify if the favourable effects of HRT are mediated by the repression of IL-6 production – the cytokine which seems to be a central mediator in the pathogenesis of the late complications of menopause.

Acknowledgements

We thank Mrs Krystyna Wilczewska for excellent technical assistance. This work was supported by the grants ST12 and ST28 from the Medical University of Gdańsk.

References


Cermak J, Key NS, Bach RR, Ball J, Jacob HS & Vercellotti GM 1993 C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. *Blood* 82 513–520.


Ershler WB, Sun WH, Binkley N, Gravenstein S, Volk MJ, Kamoske DJRachon · Oestrogens and IL-6 production by PBMC


Cermak J, Key NS, Bach RR, Ball J, Jacob HS & Vercellotti GM 1993 C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. *Blood* 82 513–520.


Ershler WB, Sun WH, Binkley N, Gravenstein S, Volk MJ, Kamoske DJRachon · Oestrogens and IL-6 production by PBMC


Cermak J, Key NS, Bach RR, Ball J, Jacob HS & Vercellotti GM 1993 C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. *Blood* 82 513–520.


Ershler WB, Sun WH, Binkley N, Gravenstein S, Volk MJ, Kamoske DJRachon · Oestrogens and IL-6 production by PBMC


Cermak J, Key NS, Bach RR, Ball J, Jacob HS & Vercellotti GM 1993 C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. *Blood* 82 513–520.


Ershler WB, Sun WH, Binkley N, Gravenstein S, Volk MJ, Kamoske DJRachon · Oestrogens and IL-6 production by PBMC


Cermak J, Key NS, Bach RR, Ball J, Jacob HS & Vercellotti GM 1993 C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. *Blood* 82 513–520.


Received in final form 30 August 2001

Accepted 9 October 2001