Implication of α4 phosphoprotein and the rapamycin-sensitive mammalian target-of-rapamycin pathway in prolactin receptor signalling

R T M Boudreau¹, S M Sangster¹, L M Johnson¹, S Dauphinee¹,
A W Li² and C K L Too¹,³

¹Department of Biochemistry and Molecular Biology, Faculty of Medicine, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
²Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
³Department of Obstetrics and Gynecology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada

(Requests for offprints should be addressed to C K L Too; Email: ctoo@is.dal.ca)

Abstract

A prolactin (PRL)-responsive 3’-end cDNA encoding rat α4 phosphoprotein was previously isolated from a rat lymphoma cDNA library. Rat α4 is a homologue of yeast Tap42 and is a component of the mammalian target-of-rapamycin (mTOR) signalling pathway that stimulates translation initiation and G1 progression in response to nutrients and growth factors. In the present study, the full-length rat α4 cDNA was obtained by 5’-RACE and the 1023 bp open reading frame predicted a 340 amino acid protein of 39·1 kDa. The α4 mRNA was expressed in quiescent PRL-dependent Nb2 lymphoma cells deprived of PRL for up to 72 h but expression was downregulated within 4 h of PRL treatment. In contrast, PRL-independent Nb2-Sp cells showed constitutive expression of α4 that was not affected by PRL. Western analysis of Nb2 cell lysates or of V5-tagged-α4 expressed in COS-1 cells detected a single immunoreactive band of ~45 kDa. Enzymatic deglycosylation of affinity-purified 45 kDa α4 yielded the predicted 39 kDa protein. Phosphorylation of Nb2 α4 was induced by PRL or 2-O-tetradecanoylphorbol-13-acetate (TPA) and further enhanced by a combination of PRL and TPA. The Nb2 α4 associated with the catalytic subunit of protein phosphatase 2A and localized predominantly in Nb2 nuclear fractions with trace amounts in the cytosol. The immunosuppressant rapamycin inhibited proliferation of Nb2 cells in response to PRL or interleukin-2, but had no effect on Nb2-Sp cells. Furthermore, transient overexpression of α4 in COS-1 cells inhibited PRL stimulation of the immediate-early gene interferon regulatory factor-1 promoter activity. Therefore, PRL downregulation of α4 expression and/or PRL-inducible phosphorylation of α4 may be necessary for PRL receptor (PRLr) signalling to the interferon regulatory factor-1 promoter in the Nb2 cells and, furthermore, implicates cross-talk between the mTOR and PRLr signalling cascades during Nb2 cell mitogenesis.

Introduction

Prolactin receptor (PRLr) signal transduction is mediated by the activation of several receptor-associated kinase cascades and results in the transmission of a mitogenic and/or lactogenic signal in target cells (Yu-Lee 1997, Clevenger et al. 1998). PRLr-associated and PRL-activated Jak2 tyrosine kinase recruits and phosphorylates members of the signal transducer and activator of transcription (Stat) family of latent cytoplasmic transcription factors (Campbell et al. 1994, Rui et al. 1994). Stat binding to the interferon-γ-activated sequence mediates the mitogenic signalling of PRL to the immediate-early gene interferon regulatory factor-1 (IRF-1) in the rat PRL-dependent Nb2 lymphoma cells (Stevens et al. 1995, Wang et al. 1997). PRLr signal transduction also involves three other receptor-associated molecules, p59 fyn tyrosine kinase (Clevenger & Medaglia 1994), Raf-1 serine/threonine kinase (Clevenger et al. 1994) and 2′-5′oligoadenylate synthetase (OAS) (McAveney et al. 2000). PRL activation of the p59 fyn/Sos/Vav/Raf-1/MAP kinase cascade has been reported to stimulate Nb2 cell proliferation (Clevenger & Medaglia 1994, Clevenger et al. 1994) whereas OAS reduced PRL induction of IRF-1 promoter activity (McAveney et al. 2000). PRL has also been shown to stimulate tyrosine phosphorylation of cytoplasmic protein tyrosine phosphatase (PTP1D), and formation of a PRLr-Jak2-PTP1D complex was critical for transmission of a lactogenic signal (Ali et al. 1996). PRLr activation also resulted in PRL internalization.
(Vincent et al. 1997) whereby PRL is transported across the endoplasmic reticulum and nuclear envelope in a process termed nuclear retrotranslocation (Clevenger et al. 1990, Rao et al. 1995). The peptidylprolyl isomerase cyclophilin B has been revealed as an important chaperone facilitating nuclear retrotransport of PRL (Ryczyn et al. 2000).

In our studies on differential gene expression in the PRL-dependent Nb2 and the PRL-independent Nb2-Sp rat lymphoma cell lines, we have previously identified, by differential display and screening of an Nb2-Sp cDNA library, a number of genes which are differentially expressed in Nb2 cells (with or without acute PRL treatment for 3 h) versus Nb2-Sp cells (Too 1997, Johnson & Too 2001, Too et al. 2001). One of these was a PRL-responsive partial cDNA encoding the rat homologue of α4 phosphoprotein (Too 1997). The action of α4 in PRL-regulated Nb2 cell proliferation is not known. The murine α4 cDNA (Inui et al. 1995) and human α4 (IGBP1) gene (Onda et al. 1997) have also been cloned. Murine α4 was originally identified in murine lymphoid cell lines as a 52 kDa protein (p52) that co-precipitated with the Ig receptor (IgR)-related MB-1 protein (Kuwahara et al. 1994). A novel murine α4-b genomic clone has been shown to be selectively expressed in the testis and in the brain (Maeda et al. 1999).

Mammalian α4 is a homologue of yeast Tap42, an essential component of the target-of-rapamycin (TOR) kinase signalling pathway controlling translational initiation and survival in yeast cells (Di Como & Arndt 1996). Yeast Tap42 associates with the serine/threonine protein phosphatases, PP2A and Sit4. The mammalian TOR (mTOR) pathway is conserved in mammalian cells. Mouse and human α4 also associate with PP2A and/or the PP2A isoforms, PP4 and PP6 (Chen et al. 1998, Inui et al. 1998). The TOR/mTOR proteins belong to a novel family of phosphatidylinositol kinase-related kinases, which include mammalian phosphatidylinositol 3-kinase. The mTOR pathway responds to mitogens and nutrients to stimulate translation initiation and cell growth via activation of p70S6 kinase (p70S6K) and inactivation of the translational repressor 4E-BP1 (or PHAS-1), as well as through effects mediated by the α4–PP2A interaction (Thomas & Hall 1997, Cutler et al. 1999). mTOR phosphorylation and activation of p70S6K leads to activation of ribosomal protein S6 to promote translation of 5′-terminal oligopyrimidine tract mRNAs, ribosome biogenesis and increased capacity of the translational machinery (Jiang & Broach 1999). mTOR phosphorylation and inactivation of 4E-BP1 alleviates inhibition of the eukaryotic translational initiation factor 4E to enhance the translation of all mRNAs (Thomas & Hall 1997). The α4–PP2A interaction is believed to stimulate the initiation of translation, through effects on p70S6K and/or 4E-BP1. The augmentation of global translation results in cell growth (in size) and proliferation (progression into G1). It is believed that by utilizing the mTOR pathway to sense nutrients and mitogenic signals, mammalian cells may co-ordinate responses to mitogens relative to the nutrients available to carry out the response (Cutler et al. 1999). The mTOR pathway is sensitive to the anti-fungal and immunosuppressive drugs, rapamycin and FK506, which bind to a cytosolic family of FK506-binding proteins (FKBPs) with peptidylprolyl isomerase activities (Sehgal 1998). The rapamycin–FKBP complex thus formed is an active intra-cellular toxin which diminishes the association of α4 (or Tap42) with PP2A, thereby inhibiting protein synthesis and arresting cells in G1 (Di Como & Arndt 1996, Thomas & Hall 1997). Indeed, rapamycin is a potent inhibitor of interleukin-2 (IL-2)-induced T-cell proliferation (Morice et al. 1993a,b). Mutations in Tap42 have been reported to confer rapamycin resistance in yeast cells (Di Como & Arndt 1996).

The present study showed that PRL-responsive rat α4 is a glycoprophoprotein which also binds to PP2Ac. We also showed that rapamycin or transient overexpression of α4 inhibited PRL-stimulated cell proliferation and IRF-1 promoter activity, suggesting cross-talk between the mTOR and PRLr signalling cascades.

Materials and Methods

Hormones and drugs

Human PRL was a generous gift from Dr R P C Shiu (Department of Physiology, University of Manitoba, Manitoba, Canada). Human recombinant IL-2 was from Upstate Biotechnology (Lake Placid, NY, USA). Rapamycin, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and biologically inactive isophorbol,4α,9α,12β,13α,20-pentahydroxytiglia-1,6-dien-3-one (4α-PHR) were from Sigma RBI (St Louis, MO, USA).

Antibodies and α4-antiserum

The commercial sources of antibodies used were as follows: mouse anti-Stat1α p91 (C-111), rabbit anti-transcription factor TFIIIB (SI-1), goat anti-glucokinase (C-20) and the horse radish peroxidase (HRP)-conjugated goat anti-mouse IgG or -donkey anti-goat IgG (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA); donkey anti-rabbit IgG–HRP conjugate (Amersham Pharmacia Biotechnology, Baie d’Urfe, Quebec, Canada); rabbit anti-mTOR (Upstate Biotechnology); mouse anti-PP2A catalytic subunit (PP2Ac) (Transduction Laboratories, Lexington, KY, USA), anti-phosphoserine (Sigma RBI); and anti-PRLr (Affinity Biotech. Inc, Golden, CO, USA). Based on the deduced rat α4 protein, anti-rat α4 antiserum was raised against a synthetic peptide conjugated to keyhole limpet haemocyanine (KLH) (KLH-EWDWDWKDATHPRGGRYGRQNMG; see Fig. 1), to
raise rabbit polyclonal antibodies to rat α4 (Research Genetics, Huntsville, AL, USA). The preimmune serum and antiserum were purified on protein A-Sepharose columns prior to use and yielded 3·2 and 5·2 mg protein/ml respectively.

Cell culture

Suspension cultures of the rat Nb2–11C (Nb2) lymphoma cell line were maintained in Fischer’s medium for leukemic cells containing 10% fetal bovine serum (FBS) as a source of lactogens and 10% lactogen-free horse serum (HS) as previously described (Too et al. 1987). Nb2 cells were growth-arrested at a cell density of ~1·0 × 10⁶ cells/ml in medium containing 10% HS alone for 18–24 h. For bioassays, quiescent cells at 0·2 × 10⁶ cells/ml in medium; cells at late-log phase were similarly reduced to 1·0 × 10⁶ cells (10⁴ per treatment) were pelleted at 200 g, 60 min. Nb2 cells were labelled with [32P]-orthophosphate and phosphoamino acid analysis was performed as described (Dodd et al. 2000), with modifications. Briefly, quiescent Nb2 cells (10 × 10⁶ per treatment) were pelleted at 200 g for

For expression studies, quiescent cells at 0·2 × 10⁶ cells/ml or 0·2 × 10⁶ cells/ml in medium containing 10% FBS. Rapid amplification of 5′-containing 10% FBS.

Suspension cultures of the rat Nb2–11C (Nb2) lymphoma cell line were

Northern analysis and semi-quantitative RT-PCR

DNA-free total RNAs were extracted from Nb2 cells and used for Northern or RT-PCR analysis. The α4 mRNA-specific primers 5′-gagttactgctggccgcttcggc-3′ and 5′-cgagccgctgctgaatgtcag-3′ gave a 304 bp product. The 18S primers used (315 bp product) were from the QuantumRNA 18S Internal Standards Kit (Ambion Inc., Austin, TX, USA). All PCR products were obtained within the linear range of the reaction.

Glutathione S-transferase (GST)-α4-V5 fusion protein

BanH1 and *EcoR1* restriction sites were incorporated into the pcDNA3·1-α4-V5 clone by PCR using primers 5′-gctttggatccagttgagctggagctgag-3′ and 5′-gaccggagcttggagctgaagct-3′ to generate a 1204 bp product. This was cloned in-frame into the *BanH1* and *EcoR1* sites of pGEX-2T GST gene fusion vector (Amersham). Transformation of competent *E. coli* with pGEX2T-α4, induction of GST-α4-V5 expression with 100 mM isopropyl-1-thio-β-d-galactoside (IPTG) and analysis of transformants were performed as described (Ausubel et al. 1994). For GST-fusion protein pull-down assays, total cell lysates were incubated with GST-α4 fusion proteins conjugated to glutathione-Sepharose beads. Protein complexes were washed, resolved by SDS-PAGE and transferred to nitrocellulose membranes for immunoblotting.

Subcellular fractionation, immunoprecipitation, affinity purification and Western analysis

Subcellular fractionation was performed as previously described (Dodd et al. 2000) to obtain nuclear (800 g pellet, 5 min), microsomal (100 000 g pellet, 60 min) and cytosolic (100 000 g supernatant) fractions. Proteins (8–20 µg/lane), representing about 4% of total protein from each fraction, were electrophoresed on 10% SDS-PAGE gels. Immunoprecipitation and Western analysis were performed as described (Dodd et al. 2000). Nb2 α4 was affinity purified using α4-antibodies bound to Plus Immobilized Protein G (Pierce, Rockford, IL, USA). Affinity-purified α4 was deglycosylated with an Enzymatic Deglycosylation Kit (BioRad Laboratories Ltd, Mississauga, Ontario, Canada) following the manufacturer’s instructions.

[32P]-orthophosphate labelling and phosphoamino acid analysis

Nb2 cells were labelled with [32P]-orthophosphate (TPA ± PRL) as described (Rayhel et al. 1988, Fulton et al. 1999), with modifications. Briefly, quiescent Nb2 cells (10 × 10⁶ per treatment) were pelleted at 200 g for
5 min at room temperature, washed twice with phosphate-free RPMI 1640 (Life Technologies, Burlington, Ontario, Canada) and resuspended in 5 ml of the same medium for a 1-h incubation at 37 °C. Cells were incubated with [32P]-orthophosphate (0·1 mCi/ml) for 70 min at 37 °C. TPA (20–80 nM) ± PRL (10 ng/ml) was added and inactive phorbol 4α-PHR (40 nM) was used as negative control. After 20 min at 37 °C, the cells were pelleted at 200 g (5 min), washed twice with ice-cold phosphate-buffered saline (PBS) containing 10 μM Na2VO4, 10 mM NaF, 10 mM Na4P2O7 and 440 μM cold phosphate-buffered saline. Transient transfection was performed as described (McAveney et al. 2000). Barnes et al. (2002) have receptors for PRL, but PRL had no detectable effects. Aliquots were used for BioRad protein assay. To assay for CAT activity, equal amounts of protein extracts were mixed with 100 mM Tris, pH 7·8 containing 0·1% Triton X–100 in a total volume of 200 μl and placed in 7 ml scintillation vials. The vials were heated at 70 °C for 10 min to inactivate heat-labile cellular acetyltransferases and then cooled at room temperature for 10 min before the addition of 75 μl reaction cocktail containing 0·5 M Tris–HCl, pH 7·8, 0·2 mCi [3H]-acetyl Coenzyme A and 1·75 mM chloramphenicol. ScintiLene SX2–4 (Fisher Scientific, Nepean, Ontario, Canada) was pre-warmed to 37 °C and 3 ml was carefully layered over the aqueous samples. The vials were capped and samples were counted for five cycles for at least 1 min/sample with no interruptions. The data were analyzed by regression analysis and expressed as c.p.m./μg protein.

Chloramphenicol acetyltransferase (CAT) assay

Transient transfection of COS-1 cells and CAT assays were performed as described (McAveney et al. 2000). CAT activity was determined by the fluor-di-chromatography in isopropanol:H2O:HCl (65:8·4:6·6). Samples were dissolved in 10 μl distilled water for thin-layer chromatography in isopropanol:H2O:HCl (65:8·4:6·6). Samples were visualized with ninhydrin (0·5% in acetone) or by autoradiography.

Statistical analysis

Analysis of variance and Scheffe’s F-test were performed using Abacus Concepts, Statview (Abacus Concepts, Inc., Berkeley, CA, USA; 1992).

Results

Full-length sequence of rat α4 cDNA by 5’-RACE

A partial rat α4 3’-end cDNA was identified as PRL-responsive in the Nb2 cells (Too 1997). The full-length rat α4 cDNA (1239 bp; GenBank accession number AF000577) was obtained by 5’-RACE and it has an open reading frame of 1023 bases encoding a 340 residue protein with a predicted molecular weight (MW) of 39·1 kDa. The deduced rat α4 protein has significant sequence identity with α4 and α4-related molecules of mouse (α4, 97%; α4-b, 85%), human (α4/IGBP1, 95%) and yeast (Tap42, 48%) (Fig. 1; see also Maeda et al. 1999). Like other α4 molecules, rat α4 has multiple potential phosphorylation sites for protein kinase C (PKC) or casein kinase 2, sites for N-linked glycosylation and potential myristylation as well as a potential SH3-binding motif.

α4 mRNA is widely expressed in rat and human tissues or cell lines

The α4 transcript was expressed in quiescent Nb2 cells deprived of PRL for 20 h (Fig. 2A and B, right-hand panel; 0 h time) but this level of expression decreased within 4 h of PRL treatment as shown by Northern (Fig. 2A, 1·4 kb mRNA) or RT-PCR analyses (Fig. 2B, 304 bp product). Nb2 expression of α4 during PRL deprivation was maintained for as long as 72 h (Fig. 2B, left-hand panel). The PRL-independent Nb2-Sp cells have receptors for PRL, but PRL had no detectable effect on α4 mRNA levels in these cells (Fig. 2C).

www.endocrinology.org
Northern analysis showed ubiquitous expression of a single α4 transcript (1·4 kb) in the rat tissues examined, with the exception of the testes which did not express α4 (Fig. 3). An α4-b isoform has been shown to be selectively expressed in murine testes and brain (Maeda et al. 1999); thus, the rat testes may express an α4-b homologue. The Nb2 cells are lymphoid tumour cells and Northern analysis of commercial poly(A)+ blots showed a 1·4 kb α4 transcript in all the human immune tissues and cancer cell lines examined (Fig. 4).

α4 is glycosylated (45 kDa) and predominantly nuclear

Rat α4 has a predicted MW of 39·1 kDa. When rat α4 was expressed in E. coli as a GST-α4 (V5-tagged) fusion protein, a protein band of about 65 kDa was induced by IPTG (Fig. 5A). Thrombin cleavage released α4 (~38 kDa) from the GST moiety (27 kDa) (Fig. 5A). The rat V5-tagged α4 was expressed in COS-1 cells and Western analysis with anti-V5 antibodies detected a single immunoreactive band of 46 kDa (Fig. 5B), indicating that the α4 protein (45 kDa; the V5 epitope is 1·4 kDa) undergoes post-translational modification in eukaryotic cells.

Rat α4 is a component of the mTOR pathway and mTOR (240 kDa) was detected in Nb2 and Nb2-Sp cells (Fig. 6A). Subcellular fractionation and Western analysis of quiescent Nb2 cell fractions with α4-specific antibodies showed a single immunoreactive band of 45 kDa (Fig. 6B) which was not detected by preimmune serum (Fig. 6C). The Nb2 α4 localized predominantly in the nuclear fraction with trace amounts in the cytosol; the purity of the
fractions was confirmed by specific localization of the transcription factor TFIIIB in the nucleus, glucokinase in the cytosol and PRLr in the membrane and cytosol (Fig. 6B). Human and murine α4 have been reported to associate with the catalytic subunit PP2A (see below) and PP2Ac was also found predominantly in the nuclear fraction with trace amounts in the microsomal and cytosolic fractions (Fig. 6B). A affinity-purified α4, after enzymatic deglycosylation, revealed the predicted 39 kDa protein (Fig. 6D). Furthermore, PRL downregulation of the α4 mRNA in Nb2 cells was accompanied by a decrease of the α4 protein, of about twofold, which was detectable after 8–24 h of PRL treatment (Fig. 6E) but not earlier at 4 h (data not shown).

Figure 2 Prolactin (PRL) decreases α4 expression in Nb2, but not Nb2-Sp cells. Nb2 cells were growth-arrested for 20 h (− PRL, 0 h controls) and then treated with PRL (10 ng/ml) for the indicated times. Total RNA was extracted for (A) Northern blotting (1.4 kb α4 mRNA) or (B, right-hand panel) RT-PCR (304 bp α4-specific product). (B, left-hand panel) RT-PCR analysis of Nb2 cells deprived of PRL for the indicated times. (C) RT-PCR analysis of Nb2-Sp cells treated with PRL (10 ng/ml). Ethidium bromide-stained 28S or the 18S rRNA-specific PCR product (315 bp) were used as internal standards. All PCR reactions were in the linear range of amplification. Each set of data is representative of two to three independent and reproducible experiments.

Figure 3 Tissue expression of α4. Northern analysis (25 µg total RNA/ml) was performed with tissues from male rats. Ethidium bromide-stained 28S rRNA was used as a loading control. Representative of tissue samples from two male rats.

Rat α4 interacts with PP2Ac

Human and murine α4/α4-b bind specifically to PP2Ac (Murata et al. 1997, Chen et al. 1998, Inui et al. 1998, Maeda et al. 1999). Immunoprecipitation studies showed that Nb2 α4 interacted with PP2Ac (Fig. 7A). Pull-down assays of Nb2 cell lysates with immobilized GST-α4 fusion protein also revealed an interaction of the GST-α4 with PP2Ac (Fig. 7B). The α4–PP2Ac interaction was seen for as long as 8 h after PRL treatment (data not shown).

TPA and PRL induce phosphorylation of α4

The α4 proteins have multiple potential phosphorylation sites for the serine/threonine kinase, PKC. Treatment with the tumour promoter TPA (activator of PKC) for 20 min has been shown to stimulate maximal phosphorylation of murine α4 and of several other proteins immunoprecipitated by anti-α4 antibodies (Kuwahara et al. 1994). In our study, Nb2 cells were radiolabelled with [32P]-orthophosphate (± TPA or PRL) and α4 immunoprecipitates were analyzed for inducible phosphorylation of α4 and/or α4-associated proteins. PRL alone stimulated phosphorylation of at least three immunoprecipitated bands of 45 kDa (α4), 50 kDa and 120 kDa as compared with controls (Fig. 8A). Samples treated with TPA alone also showed phosphorylation of these three bands and a 25 kDa protein while the inactive phorbol 4α-PHR alone had no effect (data not shown). PRL and TPA (20–40 nM) in combination enhanced inducible phosphorylation of 120, 50, 45 and 36 kDa proteins (Fig. 8A and B). Thus, using both PRL and TPA (40 nM), these four [32P]-immunoprecipitated bands from triplicate samples
were excised from the gels and individually pooled. Phosphoamino acid analysis showed that the 120, 50, 45 and 36 kDa bands were phosphorylated predominantly on serine/threonine residues (Fig. 8C, lanes 1–4). The 25 kDa band that was phosphorylated by TPA alone (or TPA+PRL) was also analysed and was phosphorylated on serine, threonine and tyrosine residues (Fig. 8C, lane 5). The dark radioactive band in the solvent front of each sample was likely due to complete sample hydrolysis. Thus, PRL+TPA in combination stimulated serine/threonine phosphorylation of $\alpha4$ (45 kDa) and of at least three $\alpha4$-associated proteins of 36, 50 and 120 kDa. The 36 kDa phosphoserine/threonine band may or may not be PP2Ac since PP2Ac was shown to be phosphorylated on tyrosine residues by serum stimulation (Chen et al. 1994). PRL-/TPA-induced serine phosphorylation of $\alpha4$ was confirmed by immunoprecipitation with anti-$\alpha4$ antibodies followed by immunoblotting with anti-phosphoserine antibodies (Fig. 8D).

Rapamycin inhibits Nb2 cell proliferation

The $\alpha4$ protein is a component of the rapamycin-sensitive mTOR pathway and the effects of rapamycin on Nb2 cell proliferation in response to PRL or IL-2, which also acts as a mitogen in these cells, was investigated. PRL- or IL-2-stimulated Nb2 cell proliferation was maximally inhibited by 100 nM rapamycin (Fig. 9A). Rapamycin, at a concentration of 100 nM, inhibited Nb2 cell proliferation in response to increasing concentrations of PRL or IL-2 by about 50% (Fig. 9B and C). Surprisingly, Nb2-Sp cell proliferation was not affected by rapamycin at concentrations as high as 10 µM (Fig. 9D).

a4 overexpression inhibits PRL signalling to the IRF-1 gene

Nb2 sensitivity to rapamycin indicates a functional mTOR signalling pathway. The possibility of an effect of the mTOR pathway on PRLr action was examined by ectopic overexpression of $\alpha4$ in COS-1 cells. Control COS-1 cells expressed $\alpha4$ and Stat1 proteins (Fig. 10A, lane 1). Endogenous levels of Stat1α were increased about threefold by transient transfection of the Stat1α construct (Fig. 10A, lanes 2 and 3). When co-transfected with the $\alpha4$ construct, COS-1 cells showed a fivefold increase of endogenous $\alpha4$ without any adverse effect on Stat1α protein synthesis (Fig. 10A, lane 4). The antisense-$\alpha4$ construct used did not obliterate endogenous levels of $\alpha4$ but was used as an additional control. CAT assays indicated that overexpression of $\alpha4$ consistently decreased basal IRF-1 promoter activity by 30–40% and PRL-stimulated IRF-1 promoter activity by 40–50% (Fig. 10B). Studies reporting OAS inhibition of IRF-1 promoter activity also showed inhibition of both basal and PRL-inducible IRF-1 promoter activities (McAveney et al. 2000). Taken together, the present data suggest that ectopic overexpression of $\alpha4$ inhibits PRLr signalling to the IRF-1 promoter.

Discussion

The present study showed that PRL downregulated Nb2 $\alpha4$ mRNA expression which was accompanied by a modest decrease in $\alpha4$ protein levels. PRL also induced phosphorylation of the Nb2 $\alpha4$ protein, an effect that was enhanced by a combination of PRL and TPA. The $\alpha4$ is a glycoprotein and was predominantly nuclear. Similar to...
human and murine α4/α4-b proteins, the rat (Nb2) α4 bound specifically to PP2Ac and to other proteins which are as yet unidentified.

Murine α4 was initially found as a surface protein by external biotinylation (Kuwahara et al. 1994). However, murine α4 (Inui et al. 1995) and rat α4 (present study) have no apparent transmembrane domain or a leader sequence. The mammalian α4 proteins have a C-terminus myristylation-like site (GNRQNMG) (see Fig. 1). This motif, when located at the N-terminus, was reported to be commonly used by membrane-attached molecules involved in signal transduction (Resh 1994). Thus, it has been suggested that this C-terminus motif of α4 may be used for dynamic movement in signal transduction and not for direct membrane attachment (Inui et al. 1995). Our study showed cytosolic α4 in Nb2 cells as anticipated but, surprisingly, the α4 protein was predominantly in the cell nuclei. We also showed that the Nb2 α4 was an O- linked glycoprotein, without an apparent leader sequence. Protein glycosylation is classically viewed to occur exclusively on extracellular and luminal polypeptides. However, O-glycosylation at specific serine or threonine residues by single N-acetylglucosamine moieties (O-GlcNAc) has been reported in many eukaryotic nuclear and cytoplasmic proteins (Hart 1997, Comer & Hart 1999). The enzymes for the attachment or removal of the O-GlcNAc moieties are cytosolic and/or nuclear (Comer & Hart 2000). O-GlcNAc modification of proteins has been implicated in nuclear transport (Miller & Hanover 1994) and has been suggested to act as an alternative nuclear transport signal on some proteins (Hubert et al. 1989, Duverger et al. 1996). Thus, it is possible that cytosolic O-GlcNAc

Figure 6 Nb2 α4 is glycosylated and predominantly nuclear. (A) Western analysis of immunoprecipitated mTOR in Nb2 and Nb2-Sp cell lysates. (B) Nuclear (N; 800 g pellet), microsomal (M; 100 000 g pellet) or cytosolic (C; 100 000 g supernatant) fractions from quiescent Nb2 cells were used for Western analysis of α4 (8–20 µg protein/lane; representing 4% of total protein in each fraction). Protein markers used were: TFIIIB, glucokinase (GCK) and PRLr. (C) Nuclear (N; 800 g pellet) and cytosolic (C; 800 g supernatant) fractions from Nb2 cell lysates were Western blotted (20 µg protein/lane) with α4 antisera or preimmune serum. (D) Affinity-purified Nb2 α4 (lane 1) was deglycosylated under denaturing (lane 2) or non-denaturing (lane 3) conditions and Western blotted with anti-α4 antibodies. In (A–D), each set of data is representative of two to three independent experiments. (E) Upper: Western analysis of α4 in arrested (0 h) or PRL-treated Nb2 cell lysates (40 µg protein/lane); lower: densitometric analysis of the 0 and 8 h time-points (n=6).
modification of the Nb2 α4 phosphoprotein contributed to its nuclear localization. Interestingly, O-GlcNAc modification has also been implicated in signal transduction cascades (Wells et al. 2001) and to have functional roles in gene expression at the level of transcription and translation (Comer & Hart 1999). All known O-GlcNAc proteins identified to date occur as phosphorylated proteins and, in several cases, phosphorylation and O-GlcNAc modification are reciprocal, occurring at the same or adjacent hydroxyl moieties (Comer & Hart 2000).

It is also possible that PP2Ac (and other α4-associated molecules) act as chaperone(s) to target α4 into the nucleus. PP2Ac has been shown to undergo differential methylation, conformational changes and redistribution in the nucleus versus cytoplasm during progression into the cell cycle (Turowski et al. 1995). Particulate distribution of PP2A has also been reported (Sim et al. 1994, 1998). Nuclear PP2A has been shown to dephosphorylate the protein kinase A-phosphorylated cAMP-regulatory element binding protein (CREB) to regulate CREB transcriptional stimulation (Wadzinski et al. 1993), to inhibit telomerase activity in human breast cancer cells (Li et al. 1997) and to inhibit transcriptional activation of c-Jun and AP-1 (Al-Murrani et al. 1999). Conversely, it is conceivable that α4 itself (with O-glycosylation) may act as a chaperone targeting the phosphatase activity of PP2Ac into the cell nucleus. This is analogous to the nuclear translocation of PRL through its interaction with cyclophilin B and where PRL was viewed as a scaffold protein targeting the peptidylprolyl isomerase activity of cyclophilin B to transcription factors (Ryczyn et al. 2000).

Murine α4 was initially detected as a protein that was inducibly phosphorylated by TPA (Kuwahara et al. 1994) and phosphorylation was exclusively on serine residues (Murata et al. 1997). In our study, phosphorylation of the rat (Nb2) α4 on serine/threonine residues was induced by PRL or TPA and further enhanced by PRL+TPA. The phosphorylated proteins of 36, 50 and 120 kDa may be associated with α4 or its protein partner PP2Ac. Increased phosphorylation of α4 by PRL and TPA has additional significance in Nb2 cells. TPA is known to enhance PRL-stimulated Nb2 c-myc expression, DNA synthesis and cell proliferation but TPA alone has no effect (Gertler et al. 1985, Murphy et al. 1988). The effecter of this TPA (and PRL) action is not known but the present data suggest that it may be α4. Thus, PRL downregulation of the α4 mRNA and protein, albeit not more than twofold, was accompanied by PRL-inducible phosphorylation of α4. These events, in combination, may act to regulate efficiently the action of α4 in the proliferation of the Nb2 cells.

The immunosuppressant rapamycin is a potent inhibitor of IL-2-induced T-cell proliferation and it also inhibited growth of IL-2-dependent murine cytotoxic T-cell line, CTLL-2, by 50–70% via inhibition of G- to S-phase progression (Morice et al. 1993a, b). Our study showed that rapamycin partially inhibited (~50%) Nb2 cell proliferation in response to optimal doses of PRL or IL-2, but the drug had no effect on the proliferation of the PRL-independent Nb2-Sp cell line. The molecular basis of rapamycin resistance in Nb2-Sp cells is not known. However, resistance to growth inhibition by rapamycin may arise from mutations in TOR/mTOR (Luo et al. 1996) or any of its downstream components including Tap42, FKBP and p70S6K (Heitman et al. 1991, Dumont et al. 1995, Fruman et al. 1995, Di Como & Arndt 1996, Brennan et al. 1999). Introduction of the murine α4 cDNA into Jurkat cells or the increased association of PP2Ac/α4 in culture with low serum concentration have also been reported to confer rapamycin resistance to cells (Inui et al. 1998). The rapamycin sensitivity of the α4–PP2A interaction is controversial. While formation of a GST-α4 fusion protein with PP2A in COS-7 or Jurkat cell lines was shown to be rapamycin sensitive (Murata et al. 1997, Inui et al. 1998), α4–PP2A interaction in human embryonic kidney 293 cells was shown to be constitutive and rapamycin insensitive (Nanahoshi et al. 1998). Recently, mTOR was shown to be a direct target of the phosphoinositide 3'-kinase.
Figure 8 PRL-/TPA-inducible phosphorylation of α4. (A, B) Nb2 cells were radiolabelled with [32P]-orthophosphate in the presence of PRL (10 ng/ml) and/or TPA (A, 20 nM; B, as indicated) for 20 min. Controls (Con) were untreated. Total cell lysates were immunoprecipitated with anti-α4 antibodies. Immuno-complexes were analyzed by SDS-PAGE and autoradiography. The MWs of the radiolabelled bands (1–5) are indicated on the right. (C) Cells were radiolabelled in the presence of PRL + TPA (40 nM). Anti-α-immunoprecipitated bands 1–5 from triplicate samples were excised from the gel for phosphoamino acid analysis. Thin layer chromatography and autoradiography of acid-hydrolyzed samples and standards (pSer, pThr and pTyr) were performed. (D) Immunoprecipitation (IP) and blotting (IB) of Nb2 cell lysates after PRL ± TPA (20 nM) treatment. Each set of data is representative of two to three independent experiments.
(PI3K–AKT/protein kinase B signalling pathway in mitogen-stimulated cells and the activation status of the PI3K–AKT pathway in cancer cells was suggested as an important determinant of cellular sensitivity to rapamycin (Sekulic et al. 2000).

Our study also demonstrated that overexpression of the α4 protein in COS-7 cells inhibited PRLr signalling to the IRF-1 promoter, an effect that was not due to global protein shutdown since the transfected Stat1α protein remained elevated. Transient overexpression of α4 in Nb2-Sp cells has also been reported to have no effect on protein synthesis (Chung et al. 1999). Taken together, PRL downregulation of α4 mRNA and protein and/or the modulation of α4 protein action through PRL-inducible phosphorylation may facilitate activation of PRL-responsive genes (e.g. IRF-1) culminating in Nb2 cell proliferation. The constitutive expression of α4 in Nb2-Sp cells may not be inconsistent with this model, for

Figure 9 Rapamycin inhibits proliferation of Nb2 but not Nb2-Sp cells. (A) Quiescent Nb2 cells were treated with PRL (10 ng/ml) or IL-2 (30 U/ml) and increasing concentrations of rapamycin. Controls received mitogen alone. Cell count was determined in a 3-day bioassay and data plotted as a % of the maximum response seen in controls. (B and C) Quiescent Nb cells were treated with 100 nM rapamycin with increasing doses of (B) PRL or (C) IL-2 for a 3-day bioassay. Controls received no rapamycin. (D) Nb2-Sp cells were treated with rapamycin while controls were untreated. Data are plotted as in (A). Each graph is representative of two to three independent experiments, each treatment done in triplicate. Values are means ± S.D.
these cells are insensitive to rapamycin, indicating that mTOR signalling may be defective or sub-optimal in Nb2-Sp cells. Inhibition of PP2A, the a4 partner, has been shown to induce serine/threonine phosphorylation, subcellular redistribution and functional inhibition of Stat3 (Woetmann et al. 1999). The role of the mTOR components (a4/PP2A) in modulating PRLr action through Stat activity is under further investigation.

Acknowledgements

We would like to thank Dr Li-yuan Yu-Lee (Baylor College of Medicine) for excellent advice and for kindly providing the constructs and COS-1 cells used for the CAT assays. R T M B was supported in part by a Cancer Research and Education (CaRE)–Nova Scotia trainee award, with funding from the Faculty of Medicine, Dalhousie University. L M J was supported by a CaRE–Nova Scotia Summer Studentship. C K L T was a Scholar of the Canadian Institutes of Health Research (CIHR). This study was supported by CIHR grant MOP12895 (CKLT).

References

Clevenger CV & Medaglia MV 1994 The protein tyrosine kinase p59v is associated with prolactin (PRL) receptor and is activated by PRL stimulation of T-lymphocytes. Molecular Endocrinology 8 674–681.

Cutler NS, Heitman J & Cardenas ME 1999 TOR kinase homologs function in a signal transduction pathway that is conserved from yeast to mammals. Molecular and Cellular Endocrinology 155 135–142.

Inui S, Sanjo H, Maeda K, Yamamoto H, Miyamoto E & Sakaguchi N 1998 Ig receptor binding protein 1 (alpha4) is associated with a rapamycin-sensitive signal transduction in lymphocytes through direct binding to the catalytic subunit of protein phosphatase 2A. Blood 92 539–546.

Kuwahara K, Matuo T, Nomura J, Igarashi H, Kimoto M, Inui S & Sakaguchi N 1994 Identification of a 52-kDa molecule (p52) coprecipitated with the Ig receptor-related MB-1 protein that is inducibly phosphorylated by the stimulation with phorbol myristate acetate. Journal of Immunology 152 2742–2752.

McAvoney KM, Book ML, Ling P, Chebath J & Yu-Lee L 2000 Association of 2’,5’-dideoxyadenosine synthetase with the prolactin (PRL) receptor; alteration in PRL-inducible Stat1 (signal transducer and activator of transcription 1) signaling to the IRF-1 (interferon-regulatory factor 1) promoter. Molecular Endocrinology 14 293–306.

www.endocrinology.org

Received 26 November 2001
Accepted 5 February 2002