Estrogen receptor specificity for the effects of estrogen in ovariectomized mice

M K Lindberg, Z Weihua2, N Andersson, S Movérare, H Gao2, O Vidal, M Erlandsson1, S Windahl2, G Andersson3, D B Lubahn4, H Carlsten1, K Dahlman-Wright2, J-Å Gustafsson2 and C Ohlsson

Division of Endocrinology, Department of Internal Medicine, Gröna Sträket 8, Sahlgrenska University Hospital, S-41345 Göteborg, Sweden
1Division of Rheumatology, Department of Internal Medicine, Sahlgrenska University Hospital, S-41345 Göteborg, Sweden
2Departments of Bioosciences and Medical Nutrition, Karolinska Institute, Novum, S-14157 Huddinge Sweden
3Division of Pathology, Karolinska Institute, Huddinge Hospital, S-14186 Huddinge, Sweden
4Departments of Biochemistry and Child Health, University of Missouri–Columbia, Missouri, USA

(Requests for offprints should be addressed to C Ohlsson; Email: claes.ohlsson@medic.gu.se)

Abstract

Estrogen exerts a variety of important physiological effects, which have been suggested to be mediated via the two known estrogen receptors (ERs), α and β. Three–month-old ovariectomized mice, lacking one or both of the two estrogen receptors, were given estrogen subcutaneously (2.3 µg/mouse per day) and the effects on different estrogen-responsive parameters, including skeletal effects, were studied. We found that estrogen increased the cortical bone dimensions in both wild-type (WT) and double ER knockout (DERKO) mice. DNA microarray analysis was performed to characterize this effect on cortical bone and it identified four genes that were regulated by estrogen in both WT and DERKO mice. The effect of estrogen on cortical bone in DERKO mice might either be due to remaining ERα activity or represent an ERα/ERβ-independent effect. Other effects of estrogen, such as increased trabecular bone mineral density, thymic atrophy, fat reduction and increased uterine weight, were mainly ERα mediated. Journal of Endocrinology (2002) 174, 167–178

Introduction

Estrogen is the most frequently prescribed medication in the United States. Estrogen deficiency increases the risk of a wide variety of illnesses, including cardiovascular diseases, obesity, rheumatoid arthritis, osteoporosis and neuro-degenerative diseases, while estrogen substitution reduces the risk of these ailments (Cosman & Lindsay 1999). However, long-term estrogen replacement therapy is also associated with side-effects including increased risk of breast cancer and deep venous thrombosis (Daly et al. 1996, Collaborative Group on Hormonal Factors in Breast Cancer 1997). Agents that can maintain the benefit of estrogen but avoid the risks are therefore needed. Most of the effects of estrogen are exerted via the two known estrogen receptors (ERs), ERα and ERβ. An increased understanding of the receptor specificity in different organs for the effects of estrogen is of importance for the development of such agents. We have, in the present study, determined ER specificity for the effects of estrogen on adult bone metabolism, the immune system, fat mass and the uterus.

Previous experimental bone studies have demonstrated that ovariectomy reduces trabecular bone mineral density (BMD) as well as the cross-sectional cortical bone area while estrogen substitution of ovariectomized (ovx) mice restores both these bone compartments (Turner 1999, Windahl et al. 1999, Daci et al. 2000). Estrogens are also known to exert multiple effects on the development and regulation of the immune system (Olsen & Kovacs 1996). It is well established that estrogen is important for the development of the thymus and for estrogen-induced thymic atrophy during pregnancy (Clarke & Kendall 1994). Exposure of adult mice to endogenous or exogenous estrogen induces massive reduction of thymic weight and cellularity (Scrupanti et al. 1989).

It is well known that ovariectomy results in increased fat stores and body weight in female rodents (Couse & Korach 1999). This effect can be prevented with estrogen and reproduced with anti–estrogen treatment in intact females (Couse & Korach 1999). A fat-reducing effect of endogenous estrogen is supported by the fact that aromatase-inactivated as well as ERα-inactivated mice are obese (Heine et al. 2000, Jones et al. 2000, Ohlsson et al. 2000).
A definitive role for ERα in the uterotrophic effects of estrogen has been confirmed in adult female ERα knockout mice, where there is loss of estrogen responsiveness (Lubahn et al. 1993), as well as in mice with disruption of the estrogen-responsive ring finger protein gene (Orimo et al. 1999). ERβ is present in both endometrium and myometrium and we have reported that ERβ inactivated (BERKO) mice display an exaggerated estrogen response in the immature uterus (Weihua et al. 2000). The aim of the present study was to determine the ER specificity for several different effects of estrogen in ovx mice.

Materials and Methods

Animals

Male double heterozygous (ERα+/−/β+/−) mice were mated with female double heterozygous (ERα+/−/β+/−) mice, resulting in ERα+/−/β+/−=wild-type (WT), ERα−/−/β+/−=EKKO, ERα−/−/β−/−=BERKO and ERα−/−/β−/−=DERKO offspring (Lubahn et al. 1993, Krege et al. 1998, Vidal et al. 2000). The diet, housing and genetic background were as previously described (Vidal et al. 2000). In the estrogen-exposure experiments, all mice were ovariectomized at 2 months of age. Ovaries were removed after a flank incision and the incisions were closed with metallic clips. After recovery for experiments, all mice were ovariectomized at 2 months of age. The dose of 17β-estradiol benzoate (olive oil; Apoteksbolaget, Göteborg, Sweden). The dose of 17β-estradiol chosen resulted in a serum concentration of 514 ± 184 pM. Normal serum levels of estradiol are between 70 and 110 pM in diestrus (O’Neill et al. 2000). Thus, our 17β-estradiol treatment resulted in serum levels that were similar to those normally seen during estrus in female mice. The results on cortical bone parameters were also seen in an additional large experiment (n ≥ 10 in each group) in which ovx WT and DERKO mice were treated with placebo pellets or estradiol-containing pellets (Innovation Research, Sarasota, FL, USA) to re-establish circulating physiological levels of estradiol as previously described (Iafrati et al. 1997).

Peripheral quantitative computerized tomography (pQCT)

Computerized tomography was performed with the Stratec pQCT XCT Research M (software version 5.4B; Norland, Fort Atkinson, WI, USA) operating at a resolution of 70 µm as previously described (Windahl et al. 1999, Vidal et al. 2000). Mid-diaphyseal pQCT scans of femur were performed to determine the cortical bone mineral content (BMC), cortical cross-sectional area and cortical thickness. The mid-diaphyseal region of the femur and humerus in mice contains mostly cortical bone. Metaphyseal pQCT scans of distal femur and proximal humerus were performed to measure trabecular volumetric BMD. The trabecular bone region was defined by setting an inner threshold to 45% of the total area.

Dual X-ray absorptionmetry (DXA)

DXA measurement was performed with the Norland pDEXA Sabre (Norland) and the Sabre Research software (version 3.6) as previously described (Windahl et al. 1999).

Western immunoblotting

Western immunoblotting was performed as previously described (Skrtic et al. 1997), with some modifications. Protein (50 µg), prepared from frozen bone or liver tissue, was subjected to 4–12% Bis-Tris (Novex, San Diego, CA, USA) gel electrophoresis. The primary antibody (ERα, H-184; Santa Cruz Biotechnology, Santa Cruz, CA, USA) was diluted 1:200 and the horseradish peroxidase-conjugated secondary antibody was diluted 1:2500.

DNA microarray analysis

RNA from the humerus was prepared as described elsewhere (Chomczynski & Sacchi 1987). The RNA was further purified using RNeasy Kit (Qiagen, Chatsworth, CA, USA). RNA from six different mice was prepared from each animal group (vehicle-treated WT, estrogen-treated WT, vehicle-treated DERKO and estrogen-treated DERKO). For microarray analysis, the six RNA samples were pooled in two groups of three each, resulting in two pools per animal group. The pooled RNA was reverse transcribed into cDNA, labeled and analysed by DNA microarray (MG-U74A Array; Affymetrix, Santa Clara, CA, USA). The array represents approximately 6000 mouse genes and approximately 3000 uncharacterized expression sequence tag (EST) clones. Preparation of labeled cRNA and hybridization was done according to the Affymetrix Gene Chip Expression Analysis manual.

Bioinformatics

Scanned output files were analysed using Affymetrix Micro Array Suite Version 4.0.1 software. To allow comparison of gene expression, the gene chips were globally scaled to an average intensity of 500. The estrogen-regulated genes were determined by calculating the fold change on average between vehicle-treated and estrogen-treated bone samples. For each genotype, comparisons were made between the two vehicle-treated and the two estrogen-treated gene chips, generating a total of four comparisons. An average fold change and
cycles at 95°C for 2 min and 95°C for 1 min. The mRNA levels of IL-1β, MMP-9, matrix metalloproteinase 9, and complement C3 in uterus were determined as previously described (Weihua et al. 2000). Frozen sections (5 µm) were stained with hematoxylin and eosin and 20 sections of each sample (four uteri in each genotype group) were evaluated under a light microscope. Frozen tissues (200 mg liver and 50 mg uterus) were obtained by centrifugation of the homogenates for 1 h at 4°C at 204 000 g. Sucrose gradient analysis

Frozen tissues (200 mg liver and 50 mg uterus) were pulverized in a dismembrator (Braun, Melsungen, Germany) for 45 s at 1800 r.p.m. Pulverized tissue was added to a buffer composed of 10 mM Tris–HCl, pH 7·5, 1·5 mM EDTA and 5 mM sodium molybdate. Cytosols were obtained by centrifugation of the homogenates for 1 h at 4°C at 204 000 g in a 70 Ti rotor. Cytosols were incubated for 3 h at 0°C with 10 nM 6,7-3H-labeled E2 (48 Ci/mmol; New England Nuclear, Boston, MA, USA), and the bound and unbound steroids were separated with dextran-coated charcoal. Sucrose gradient sedimentation was then carried out as described previously (Jensen et al. 1968).

Uterine histomorphology and mRNA levels of interleukin (IL)-1β and complement C3 in uterus

Frozen sections (5 µm) were stained with hematoxylin and eosin and 20 sections of each sample (four uteri in each genotype group) were evaluated under a light microscope. The mRNA levels of IL-1β and complement C3 in the uterus were determined as previously described (Weihua et al. 2000).

Results

Effects of estrogen in DERKO mice

The effects of estrogen in mice with both ERα and ERβ inactivated (DERKO) were compared with the effects of
<table>
<thead>
<tr>
<th>Parameter</th>
<th>WT</th>
<th>DERKO</th>
<th>ERα/ERβ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vehicle (mg/cm3)</td>
<td>Vehicle (mg/cm3)</td>
<td>Vehicle (%)</td>
</tr>
<tr>
<td>Trabecular BMD</td>
<td>104±10</td>
<td>102±7</td>
<td>92%</td>
</tr>
<tr>
<td>Femur</td>
<td>204±33</td>
<td>17±7††</td>
<td>8%</td>
</tr>
<tr>
<td>Humerus</td>
<td>15±5</td>
<td>141±5</td>
<td>89%</td>
</tr>
<tr>
<td>Cortical bone (femur)</td>
<td></td>
<td>158±29</td>
<td>11%</td>
</tr>
<tr>
<td>BMC (mg/mm2)</td>
<td>0.79±0.02</td>
<td>0.84±0.01</td>
<td>8%</td>
</tr>
<tr>
<td>Area (mm2)</td>
<td>0.73±0.02</td>
<td>0.76±0.01</td>
<td>92%</td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td>16±5.12</td>
<td>11%</td>
</tr>
<tr>
<td>Cellularity</td>
<td>221±25</td>
<td>193±12</td>
<td>77%</td>
</tr>
<tr>
<td>Weight (mg/g)</td>
<td>47±0.1</td>
<td>44±0.1</td>
<td>66%</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td>12.2±3.1</td>
<td>34%</td>
</tr>
<tr>
<td>Weight (mg/g)</td>
<td>42.5±2.3</td>
<td>38.6±0.8</td>
<td>0%</td>
</tr>
<tr>
<td>Fat</td>
<td></td>
<td>45.2±1.3**</td>
<td>7%</td>
</tr>
<tr>
<td>Weight (mg/g)</td>
<td>15.5±1.2</td>
<td>23.5±0.06</td>
<td>93%</td>
</tr>
<tr>
<td>Uterus</td>
<td></td>
<td>23.0±1.2</td>
<td>7%</td>
</tr>
<tr>
<td>Weight (mg/g)</td>
<td>0.5±0.1</td>
<td>0.2±0.01</td>
<td>558±51††</td>
</tr>
</tbody>
</table>

Two left-hand sections: Effects of estrogen (E) on bone, thymus, liver, fat and uterus in ovariectomised (ovx), wild-type (WT) and DERKO mice given both as actual data (vehicle and estrogen) and % increase over vehicle-treated mice (% E over V). Three-month-old ovx mice were treated for 3 weeks with 17β-estradiol or olive oil as control (=vehicle) (n=7–14). Weight values are given as mg/g body weight. Values are given as means ± S.E.M. *P<0.05, **P<0.01 compared with vehicle-treated mice; ††P<0.01 % effect of estrogen in DERKO compared with the effect of estrogen in WT (Student’s t-test).

Right-hand section: Calculations of ERα/ERβ-dependent and -independent effects of estrogen. The % effects of estrogen in WT and DERKO mice, as described in the left-hand part of the Table, were used for calculation of the relative proportion of ERα/ERβ-dependent and -independent effects of estrogen. The dependent effects are calculated as effect in (WT − DERKO)/WT × 100. The remaining effect (100-dependent effect) is considered ERα/ERβ independent. Since the vehicle-treated DERKO uteri were much smaller than the vehicle-treated WT uteri (see Figs 4B and 5A), the absolute proportion of the ERα/ERβ-dependent and -independent effects of estrogen on uterine weight is also given in brackets.
Estrogen in WT mice. Estrogen treatment of ovx WT mice resulted in an increase in the trabecular BMD and cortical bone dimensions as well as in liver and uterine weight while the thymus weight and cellularity and gonadal fat mass were reduced (Table 2). Interestingly, DERKO mice exhibited an unchanged estrogenic response with regard to the increase in cortical bone dimensions and liver weight, as compared with estrogen-treated WT mice (Table 2). The effect of estrogen on femoral cortical bone parameters was similar in WT and DERKO mice (Fig. 1). This cortical effect was due to an increased cortical thickness (Fig. 1D), resulting in an increased cortical cross-sectional area (Fig. 1C) and increased cortical BMC (Fig. 1A and B). DNA microarray analysis was performed to further characterize the molecular nature of the cortical bone effect in DERKO mice. Four probe sets, representing three genes and one EST clone (GenBank no. AI850558, 90% homology with rat α2-macroglobulin), were found to be increased by estrogen in ovx DERKO mice (Table 3). They were also regulated in a similar manner by estrogen in ovx WT mice. To further investigate the nature of the effect of estrogen on bone and liver in DERKO mice, immunohistochemistry and sucrose gradient analysis were performed. Western immunoblots demonstrated ERα immunoreactivity in liver and bone samples from ERα+/+ (WT and BERKO) but not ERα−/− (ERKO and DERKO) mice (Fig. 2A and B). Sucrose gradient analysis of cytosolic extracts from liver samples from WT mice demonstrated a peak with a sedimentation value similar to that of ERα, while no specific estrogen binding was seen in samples from DERKO mice (Fig. 2D). Neither bone samples from WT mice nor bone samples from DERKO mice demonstrated any specific estrogen binding as determined by sucrose gradient analysis (data not shown).

Figure 1 Effects of estrogen in DERKO mice. (A) Representative dual X-ray absorptiometry (DXA) scans of the diaphyseal region of the femur. H=high bone mineral density (BMD), L=low BMD, V=vehicle, E=17β-estradiol. (B) Cortical bone mineral content (BMC), (C) cortical cross-sectional area and (D) cortical thickness as measured by a mid-diaphyseal peripheral quantitative computerized tomography (pQCT) scan of the femur. Three-month-old ovariectomized (ovx) mice were treated for 3 weeks with 17β-estradiol or the vehicle (n=7–14). Values are given as means ± s.e.m. **P<0·01 compared with vehicle treatment (Student’s t-test).

Estrogen exerts ERα/ERβ-dependent effects

In contrast to the effects on cortical bone and liver, the estrogenic response to several other parameters, including the trabecular BMD, thymic atrophy, gonadal fat mass and uterine weight were absent or largely reduced in DERKO mice (Table 2). Thus, these parameters were clearly ERα/ERβ dependent. The ER specificity was further investigated by comparing the magnitude of the effect in WT, ERKO, BERKO and DERKO mice simultaneously in the same experiment.
Table 3 DNA microarray analysis of the effect of estrogen in ovx DERKO mice. List of mRNAs that are increased >2.5-fold by estrogen in DERKO mice

<table>
<thead>
<tr>
<th>GenBank accession</th>
<th>Gene description</th>
<th>DERKO</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>L20232</td>
<td>Bone sialoprotein (BSP)</td>
<td>3.6</td>
<td>2.0</td>
</tr>
<tr>
<td>X72795</td>
<td>Matrix metalloproteinase 9 (MMP-9)</td>
<td>2.8</td>
<td>1.8</td>
</tr>
<tr>
<td>X66976</td>
<td>α1 chain of collagen VIII</td>
<td>3.9</td>
<td>5.1</td>
</tr>
<tr>
<td>AI850558</td>
<td>EST clone (90% homology with rat α-macroglobulin)</td>
<td>6.0</td>
<td>6.5</td>
</tr>
</tbody>
</table>

RNA from humerus from six different mice was prepared from each animal group (vehicle-treated WT, estrogen-treated WT, vehicle-treated DERKO and estrogen-treated DERKO). For microarray analysis, the six RNA samples were pooled in two groups of three each, resulting in two pools per animal group. Comparisons were made between the two vehicle-treated and the two estrogen-treated Gene Chips, generating a total of four comparisons for each genotype. An average fold change of the four comparisons was calculated. Four probe sets were identified as increased by estrogen in DERKO, using the strict criteria described in Materials and Methods. As indicated, all these four probe sets were also regulated in a similar manner by estrogen in WT mice. The effects of estrogen on mRNA levels for all four genes were confirmed by real-time PCR analysis (data not shown).

Figure 2 Estrogen receptor (ERα) immunoreactivity and estrogen binding. Western immunoblotting for ERα in (A) bone and (B) liver from WT, ERKO, BERKO and DERKO mice. Sucrose gradient analysis on (C) uterine and (D) liver extracts of WT (○) and DERKO (●) mice. A magnification of the marked area is shown in the insert in (D). Cytosols were layered onto 10–30% sucrose gradients and centrifuged to equilibrium, and fractions were collected and counted. The arrows indicate the location of a sedimentation value similar to that of ERα as determined by simultaneous analysis of cytosols from MCF-7 cells (data not shown).
Regulation of trabecular BMD is mediated via ERα

In WT and BERKO mice, estrogen augmented trabecular BMD while no significant effect of estrogen was seen in ERKO or DERKO mice (Figs 3A and 4A). Histomorphometric analysis of bone volume/total volume in the proximal metaphyseal area of tibia showed similar results as were presented for the trabecular volumetric BMD (data not shown). This finding clearly demonstrates that the effect was mainly ERα dependent (Figs 3A and 4A).

ER specificity for the regulation of thymic atrophy

We have demonstrated here that ERKO and DERKO mice display a strongly reduced estrogen-induced thymic atrophy (reduction in thymus cellularity and thymus weight) while no decrease, but rather an increase, in estrogen-induced thymic involution was seen in BERKO, as compared with WT, demonstrating that ERα is the main receptor responsible for thymic atrophy (Fig. 3B and data not shown).

ER specificity for the regulation of fat mass

In the present experiment, the gonadal fat mass was reduced by estrogen in WT and BERKO but not in ERKO or DERKO, demonstrating that ERα is responsible for this effect (Fig. 3C). Similar to that seen for thymic involution, an increase in estrogenic response was found in BERKO mice (Fig. 3C).

ER specificity for the regulation of uterine weight

The estrogenic response was reduced for both the uterine wet weight and the uterine dry weight in ERKO and DERKO but not in BERKO mice, confirming the importance of ERα for the uterine response (Figs 3D and 4B). Histomorphology of uteri of ovx mice revealed, as expected, atrophied tissue in all of the genotypes (Fig. 4C). Upon estradiol treatment, though ERKO and DERKO uteri showed much less response than those of WT and BERKO, all four genotypes showed uterotrophic response in terms of water imbibition, elongated nucleus of luminal epithelial cells and decreased density of stromal cells (Fig. 4C). When considering the relative increase in uterine wet weight it would appear as if 42% of the effect of estrogen was preserved in DERKO mice (Table 2, Figs 3D and 4B). However, it should be emphasized that the vehicle-treated DERKO mice had much smaller uteri than the vehicle-treated WT and BERKO mice and somewhat smaller uteri than ERKO mice (WT...
Figure 4 ERα is of importance for the regulation of trabecular bone and uterus. (A) Effect on trabecular bone after treatment of 3-month-old ovx mice with 17β-estradiol (E) or vehicle (V) for 3 weeks. The arrow indicates a central area of the proximal tibial metaphysis consisting of trabecular bone. (B) Macroscopic photographs of uteri after treatment of 3-month-old ovx mice with 17β-estradiol or vehicle for 3 weeks. Scale bars = 5 mm. (C) Uterine histomorphology. Mitotic figures are indicated by arrows. *= Water inhibition underneath epithelium; + = luminal fluid. Scale bars = 50 μm.
11·6 ± 1·3 mg; ERKO 8·0 ± 1·3 mg; BERKO 10·8 ± 0·9 mg; DERKO 3·9 ± 0·3 mg (Figs 4B and 5A). The absolute estrogen-induced increase in uterine weight was much larger in WT and BERKO mice than in ERKO and DERKO mice (Figs 4B and 5A). Thus, most of the effect of estrogen on the uterus is ERα dependent (85%, Table 2). Sucrose gradient analysis of uterine extracts from WT mice demonstrated a large peak with a sedimentation value similar to that of ERα while a very small peak (approximately 4% of the WT peak) was found with uterine extracts from DERKO mice (Fig. 2C). The effect of estrogen on IL-1β and complement C3 expression, two genes well known to be regulated by estrogen in the uterus, was determined in the DERKO uterus. Both IL-1β and C3 were induced by estrogen in WT mice, while neither of these two genes was significantly induced by estrogen in DERKO mice (Fig. 5B).

Discussion

Effects of estrogen in DERKO mice

Our results have demonstrated that DERKO mice exhibit an unchanged estrogenic response with regard to cortical bone dimensions and liver weight, indicating that estrogen exerts some effects independent of ERα and ERβ. However, a recent report, which was published during the preparation of the present manuscript, suggests that the ERKO mice used in the present study are not completely ERα inactivated, supported by the fact that they express one or two N-terminally modified ERα transcripts associated with minor remaining ER activity with regard to uterine weight and endothelial nitric oxide production (Pendaries et al. 2002). The remaining ERα activity is suggested to be mediated via remaining activation function-2 (AF-2) activity while there is no AF-1 activity left (Pendaries et al. 2002). Thus, the ERKO and DERKO mice used in our study might have a functional ERα AF-2, which may result in a minor ERα activity. Thus, the effect of estrogen on cortical bone in DERKO mice might either be due to remaining ERα AF-2 activity or represent an ERα/ERβ-independent effect.

The molecular nature of the preserved effect of estrogen on bone in DERKO mice was investigated by global gene expression analysis. DNA microarray analysis identified three genes and an EST clone, which were increased by estrogen in DERKO mice. The estrogen-induced genes in ovx DERKO mice include BSP, MMP-9 and the α1 chain of collagen VIII. BSP is a protein expressed by osteoblasts and associated with mineralization of bones (Ganss et al. 1999). MMP-9 has been described as being expressed by osteoblasts, osteocytes, osteoclasts and macrophages, and has been suggested to be involved in endochondral ossification (McClelland et al. 1998, Vu et al. 1998). Interestingly, it has previously been demonstrated that bone formation induced by intermittent parathyroid hormone administration is associated with a stimulation of MMP-9 expression in osteoblasts (McClelland et al. 1998). Thus, BSP and MMP-9 might be important candidate genes involved in the stimulatory effects of estrogen on cortical bone in mice. The physiological role of collagen VIII in bone is unclear but it has been reported to stimulate the production of MMP-9 (Hou et al. 2000). ERα immunoreactivity was found in liver and bone samples from ERα+/+ but not ERα−/− mice and it has been previously demonstrated that no ERβ immunoreactivity is detected in ERβ−/− mice (Krege et al. 1998). Furthermore, sucrose gradient analysis on cytosolic extracts from liver detected ERα in WT but not in DERKO mice. These data may indicate that the effect of estrogen on cortical bone and liver in DERKO mice might be ERα/ERβ independent but, as described above, one cannot exclude a remaining ERα activity. Alternatively, estrogen has been suggested to exert non-genomic actions via cell membrane receptors in a variety of cell types, including osteoblasts (Nemere & Farach-Carson 1998, Le Mellay et al. 1999, Kousteni et al. 2001) and the effect in DERKO mice might...
also be due to some low affinity binding to other known nuclear receptors (Kousteni et al. 2001). However, one cannot exclude the possibility that the effects on bone and liver are indirect, mediated via other mechanisms, which, for instance, might include an effect on the hypothalamic/pituitary axis. The exact mechanism behind the effects of estrogen on cortical bone and liver in DERKO mice remains to be elucidated.

Trabecular BMD effect is mediated via ER\(\alpha\)

Estrogen increased the trabecular BMD in ovx WT and BERKO, but not in ERKO or DERKO mice. This finding clearly demonstrates that the effect was ER\(\alpha\) dependent. Interestingly, as described above, the other major bone compartment, the cortical bone, did respond to estrogen in DERKO compared with WT mice. Separate mechanisms of action for estrogen in the regulation of the trabecular bone versus the cortical bone are also important. In other words, the trabecular bone responded differently to estrogen deficiency compared with cortical bone in plasminogen activator inhibitor-1- and IL-6-deficient mice (Poli et al. 1994, Daci et al. 2000).

Thymic atrophy and fat mass effects are mediated via ER\(\alpha\) while ER\(\beta\) inhibits these effects

The present study confirmed previous studies demonstrating that ER\(\alpha\) is the receptor responsible for thymic atrophy and regulation of fat mass (Staples et al. 1999, Heine et al. 2000, Ohlsson et al. 2000). Interestingly, an increased estrogenic response for these two parameters was found in BERKO mice, indicating that ER\(\beta\) might act as a repressor of these ER\(\alpha\)-mediated effects.

Uterine weight effect is mainly mediated via ER\(\alpha\)

The estrogenic uterine responses in mature ovx WT, ERKO, BERKO and DERKO mice have not previously been compared. Responses were reduced for both the uterine wet weight and the uterine dry weight in ERKO and DERKO but not in BERKO mice, confirming previous studies regarding the importance of ER\(\alpha\) for the uterine response (Lubahn et al. 1993, Couse et al. 1999). However, there was a small but significant remaining uterotrophic effect of estrogen in ERKO and DERKO mice. A similar remaining effect of estrogen in DERKO mice has recently been reported by Pendaries et al. (2002) and shown to be dependent on the AF-2 activity of the truncated ER\(\alpha\) present in the uterus of our ERKO model. Sucrose gradient analysis of uterine extracts from WT mice demonstrated a large ER\(\alpha\)-like peak while a very small peak was found with uterine extracts from DERKO mice. Thus, it cannot be excluded that the receptor responsible for this small remaining estrogen-binding capacity is involved in the minor uterotrophic effect of estrogen in DERKO mice. Both IL-1\(\beta\) and C3 were induced by estrogen in WT mice, while neither of these two genes was significantly induced by estrogen in DERKO mice. These measurements indicate that the effect of estrogen in DERKO uterus may, at least partly, differ from that seen in WT mice. Why, then, do vehicle-treated ovx DERKO mice have smaller uteri than vehicle-treated ovx WT mice? This might be explained by an ER\(\alpha\)/ER\(\beta\)-dependent stimulation by exogenous estrogens, including diet-derived phytoestrogens or by ER\(\alpha\)/ER\(\beta\) being of some importance for the early development of the uterus. We have previously shown that estrogen treatment of young, sexually immature, female mice results in a more pronounced uterine response in BERKO mice compared with WT mice (Weihua et al. 2000). In contrast, the uterine response to estrogen was, in the present study, not increased in BERKO mice. However, there are two important differences between our present and previous study: (1) in the present study the mice were sexually mature while they were immature in the previous study and (2) the mice in the present but not in the previous study were ovariecotomized before treatment with estrogen.

ER\(\beta\) represses some ER\(\alpha\)-mediated effects

Although ER\(\alpha\) appears to be of major importance in the ER\(\alpha\)/ER\(\beta\)-dependent responses studied in this investigation, ER\(\beta\) plays an important role in some other physiological contexts. For instance, ER\(\beta\) is indispensable for normal ovarian morphology and function as inferred from ER\(\beta\) knockout studies in mice (Krege et al. 1998). Very recently we have also demonstrated, using the same animal model, that ER\(\beta\) is necessary for normal morphology in several regions of the central nervous system (Wang et al. 2001). Studies on these animals also indicate that ER\(\beta\) has an antiproliferative effect in the immature uterus and in the prostate, at least partially by balancing the proliferative activity of ER\(\alpha\) (‘yin-yang effect’) (Weihua et al. 2000, 2001). It has also been suggested that ER\(\beta\) may repress the expression of ER\(\alpha\) (Windahl et al. 2001). Thus, the increased effect of estrogen on thymus involution and fat reduction in BERKO mice, observed in the current study, might be explained by an unopposed ER\(\alpha\) activity.

In conclusion, estrogen increased the cortical bone dimensions in both WT and DERKO mice. DNA microarray analysis identified four genes that were regulated by estrogen in DERKO mice. The effect of estrogen on cortical bone in DERKO mice might be due either to remaining ER\(\alpha\) activity or might represent an ER\(\alpha\)/ER\(\beta\)-independent effect. Other effects such as increased trabecular BMD, thymic atrophy, fat reduction and increased uterine weight were mainly ER\(\alpha\) mediated.
Acknowledgements

This study was supported by the Swedish Medical Research Council, the Swedish Foundation for Strategic Research, the Lundberg Foundation, the Swedish Medical Society, the Novo Nordisk Foundation, the Torsten and Ragnar Söderbergs Foundation, the Emil and Vera Cornell Foundation, the Petrus and Augusta Hedlunds Foundation, the Swedish Association Against Rheumatic Disease, the Swedish Cancer Fund and Karo Bio AB. We also thank SWEGENE Center for Bio-Imaging (CBI), Göteborg University, for technical support regarding image analysis.

References

Couse JF & Korach KS 1999 Estrogen receptor null mice: what have we learned and where will they lead us? *Endocrine Reviews* 20 358–417.

www.endocrinology.org

Received in final form 29 April 2002
Accepted 14 May 2002