Serum osteoprotegerin/osteoclastogenesis-inhibitory factor during pregnancy and lactation and the relationship with calcium-regulating hormones and bone turnover markers

H Uemura, T Yasui, M Kiyokawa, A Kuwahara, H Ikawa, T Matsuzaki, M Maegawa, H Furumoto and M Irahara
Department of Obstetrics and Gynecology, University of Tokushima, School of Medicine, 3–18–15, Kuramoto-cho, Tokushima 770–8503, Japan
(Requests for offprints should be addressed to H Uemura; Email: uemura@clin.med.tokushima-u.ac.jp)

Abstract

Pregnancy and lactation induce dynamic changes in maternal bone and calcium metabolism. A novel cytokine termed osteoprotegerin (OPG)/osteoclastogenesis-inhibitory factor (OCIF) was recently isolated; this cytokine inhibits osteoclast maturation. To define the effects of pregnancy and lactation on circulating OPG/OCIF in mothers, we studied the changes in the levels of OPG/OCIF as well as those of calcium-regulating hormones and biochemical markers of bone turnover in the maternal circulation during pregnancy (at 8–11 weeks, at 22–30 weeks, at 35–36 weeks and immediately before delivery) and lactation (at 4 days and at 1 month postpartum).

Serum intact parathyroid hormone levels did not change and were almost within the normal range in this period. In contrast, serum 1,25-dihydroxyvitamin D levels increased with gestational age and were above the normal range during pregnancy. After delivery, they fell rapidly and significantly ($P<0.01$) to the normal range. The levels of serum bone-specific alkaline phosphatase, one of the markers of bone formation, increased with gestational age. After delivery, these levels were further increased at 1 month postpartum. The levels at 1 month postpartum were significantly higher than those at 8–11 and 22–30 weeks of pregnancy ($P<0.01$ and $P<0.05$ respectively). The levels of serum C-terminal telopeptides of type I collagen, one of the markers of bone resorption, did not change during pregnancy. After delivery, they rapidly and significantly ($P<0.01$) rose at 4 days postpartum, and had then fallen by 1 month postpartum. Circulating OPG/OCIF levels gradually increased with gestational age and significantly ($P<0.01$) increased immediately before delivery to $1.40\pm0.53\text{ng/ml}$ (means $\pm\text{SD}$) compared with those in the non-pregnant, non-lactating controls ($0.58\pm0.11\text{ng/ml}$). After delivery, they fell rapidly to $0.87\pm0.27\text{ng/ml}$ at 4 days postpartum and had fallen further by 1 month postpartum.

These results suggest that the fall in OPG/OCIF levels may be partially connected with the marked acceleration of bone resorption after delivery.

Introduction

The structure and volume of bone is maintained by a continued and coordinated remodeling that involves bone resorption and subsequent bone formation. Estrogen deficiency in women, such as at menopause, is a major trigger of the changes in bone metabolism and causes the loss of bone density (Lufkin et al. 1992, Raize & Shoukri 1993). Some physiological states such as pregnancy or lactation also induce dynamic changes in bone and calcium metabolism in women. During pregnancy, especially in the third trimester, considerable amounts of calcium are transported from mother to fetus through the placenta for normal bone mineralization in the growing fetus. During lactation, calcium losses in mothers are greater than those during pregnancy. Nursing mothers provide an average of 200–250 mg calcium/day to their infants, sometimes as much as 400 mg/day. In order to satisfy the increased demands for calcium, maternal metabolism of bone and calcium changes dynamically during pregnancy and lactation.

Recently, a novel cytokine termed osteoprotegerin (OPG)/osteoclastogenesis-inhibitory factor (OCIF) was purified from the conditioned medium of human embryonic lung fibroblasts IMR–90 (Tsuda et al. 1997). The administration of recombinant OPG/OCIF leads to an increase in bone mineral density, associated with a decrease in the number of active osteoclasts in normal rats (Yasuda et al. 1998), and it also prevents bone loss and restores bone strength in ovariecotomized rats by reducing bone resorption (Simonet et al. 1997). It is further revealed that OPG/OCIF circulates in human blood mainly as a monomer, that serum concentrations of OPG/OCIF increase with age in both healthy men and women, and that...
these concentrations are significantly higher in postmeno-
pausal women with osteoporosis than in age-matched
normal controls (Yano et al. 1999).

However, other physiological profiles or regulatory
mechanisms of OPG/OCIF in women have not been
clarified. To define the effects of pregnancy and lactation
on circulating OPG/OCIF in mothers, we studied the
changes in the levels of OPG/OCIF in the maternal
circulation during pregnancy and after delivery. We
further analyzed the relations between the circulating
OPG/OCIF and calcium-regulating hormones or bio-
chemical markers of bone turnover in mothers.

Materials and Methods

Experimental subjects

Fourteen Japanese women who attended the Tokushima
University Hospital from an early stage of pregnancy,
aged 23–36 years (mean ± S.D. 29·5 ± 4·4), with body
mass indices (BMI) ranging from 17·1 to 27·9 kg/m²
(mean ± S.D., 21·5 ± 3·8) were studied during pregnancy
and after delivery after providing informed consent.

None of them had any disorders that affected their
metabolism of calcium or bone, any history of endocrine,
renal or liver illness, hypertension of pregnancy or gesta-
tional diabetes, and none was regularly taking medications
or using hormonal contraceptives. All had had singleton
pregnancies lasting 37 weeks or more and intended to
breastfeed for at least 6 months.

Collection of blood samples

Fasting blood samples were collected during pregnancy
(at 8–11 weeks, at 22–30 weeks, at 35–36 weeks of
pregnancy and immediately before delivery, i.e. after
the onset of labor pain) and after delivery (at 4 days and at 1
month postpartum). Serum was immediately separated
after blood collection and promptly frozen at −40 °C until
assay.

Additional blood samples were collected from the fol-
licular phase of 14 women who had a normal menstrual
cycle, aged 21–39 years (mean ± S.D., 29·5 ± 5·0), with BMI
ranging from 16·6 to 27·5 kg/m² (mean ± S.D., 21·5 ± 2·5), for the age- and BMI-matched controls of
circulating OPG/OCIF after providing informed consent.

Determination of minerals, calcium-regulating hormones and
bone turnover markers

Total calcium, albumin and phosphorus concentrations in
sera were determined by an automatic analyzer (Olympus
AU 2000 for calcium and albumin; Olympus AU 800 for
phosphorus, Olympus Promarketing Inc., Tokyo, Japan).
Before statistical analysis, all serum calcium values were
adjusted for serum albumin concentration.

Serum intact parathyroid hormone (PTH) was measured by a two-site immunoradiometric assay (IRMA)
(Nichols Research Institute, San Juan Capistrano, CA,
USA), with a normal range of 10–65 pg/ml and an assay
sensitivity of 1 pmol/l. Serum 1,25-dihydroxyvitamin D
(1,25(OH)₂D) was determined with a radioimmunnoassay
(RIA) kit (Nichols Research Institute, San Juan Capistrano, CA,
USA), with a normal range of 10–65 pg/ml and an assay sensitivity of 1 ng/
ml. Serum BSAP was measured using an enzyme-linked
immunosorbent assay (ELISA) kit (Metrà Biosystems
Inc., Palo Alto, CA, USA). Average intra-assay variability
was <5% for all measures of bone formation. A marker of
bone resorption was C-terminal telopeptides of type I
collagen (1 CTP) determined using an RIA kit (Orion Diagnostica, Espoo, Finland). Average intra-assay
variability was <10%.

Measurement of circulating OPG/OCIF

Serum OPG/OCIF levels were determined using an
ELISA kit (Cosmo Bio Co., Tokyo, Japan). Briefly, a serum sample was diluted ten times with specimen diluent
supplied in this kit. The diluted specimen was pipetted
into a reaction well coated with anti-human OPG/OCIF
monoclonal antibody. During the incubation time, the
anti-human OPG/OCIF monoclonal antibody immuno-
logically binds the OPG/OCIF in the patient’s specimen.
After thorough washing, another anti-human OPG/OCIF
monoclonal antibody conjugated with horseradish peroxi-
dase was added to the reaction well and incubated with
the coated antibody–antigen complex. The conjugated
antibody binds to the OPG/OCIF antigen on the complex
and makes an antibody–antigen–antibody complex by two
steps (two-stepped sandwich method). After the second
washing step, o-phenylenediamine solution containing
hydrogen peroxide was added to the reaction well and,
during an incubation period, a yellow color developed in
proportion to the amount of enzyme conjugate bound to
the well. The enzyme reaction was stopped by the
addition of acid. The absorbance value of the specimens
was determined using a spectrophotometer with the wave-
length set at 492 nm. The assay range was 31·25–500 pg/
ml. Average intra-assay variability was less than 10%.

Statistical analysis

Data are expressed as the means ± S.D. For the analyses of
clinical and laboratory data, non-parametric analysis of
variance (Kruskall–Wallis test) was used because of the
presence of non-homogeneous variances across the group.
The Scheffe’s multiple range test was used for post
hoc comparisons. Correlations between the serum
concentrations of OPG/OCIF and calcium-regulating hormones or biochemical markers of bone metabolism were determined by linear regression analysis. All \(P \) values \(\leq 0.05 \) were considered statistically significant. Analyses were carried out using a Stat Works program (Cricket Software, Inc., Philadelphia, PA, USA).

Results

Changes in minerals and calcium-regulating hormones

The changes in the levels of serum calcium and phosphorus during pregnancy and lactation are shown in Fig. 1. The levels of serum calcium did not change, while those of serum phosphorus at 4 days postpartum were significantly \((P<0.05) \) higher than those at 22–30 and 35–36 weeks of pregnancy. The changes in the levels of circulating calcium-regulating hormones during pregnancy and lactation are shown in Fig. 2. The levels of serum intact PTH did not change statistically and were almost within the normal range. In contrast, the levels of serum 1,25(OH)\(_2\)D increased with gestational age to 35–36 weeks and were above the normal range during pregnancy. After delivery, they fell rapidly and significantly \((P<0.01) \) at 4 days postpartum to the normal range.

Changes in markers of bone formation and resorption

The changes in the levels of the markers of bone formation and resorption during pregnancy and lactation are shown in Fig. 3. Serum BSAP levels increased with gestational age. After delivery, these levels remained at the same level at 4 days postpartum, then further increased at 1 month postpartum. These levels at 1 month postpartum were significantly higher than those at 8–11 and 22–30 weeks of pregnancy \((P<0.01 \text{ and } P<0.05 \text{ respectively}) \). Serum osteocalcin levels were low during pregnancy, and those in 12 of 14 samples at 22–30 weeks and those in nine immediately before delivery were below the sensitivity of the assay. They then continued to rise after delivery to 1 month postpartum. These levels at 1 month postpartum were significantly higher than those at all stages of pregnancy \((P<0.01) \) and at 4 days postpartum \((P<0.05) \).
Serum levels of 1 CTP did not change through pregnancy and were 5.0 ± 1.2 ng/ml immediately before delivery. After delivery, they rapidly and significantly (P < 0.01) rose to 28.9 ± 8.1 ng/ml at 4 days postpartum, then fell by 1 month postpartum to 8.5 ± 1.8 ng/ml.

Changes in OPG/OCIF

The levels of serum OPG/OCIF during pregnancy and lactation and in the controls are shown in Fig. 4. Serum OPG/OCIF levels in the controls were 0.58 ± 0.11 ng/ml. They steadily increased with gestational age during pregnancy. These levels immediately before delivery were significantly (**P < 0.01) higher than those in the controls. After delivery, they fell rapidly to 0.87 ± 0.27 ng/ml at 4 days postpartum and decreased furthermore to 1 month postpartum.

Relationship between circulating OPG/OCIF and bone turnover markers or calcium-regulating hormones

OPG/OCIF values in the maternal circulation did not correlate with any single parameter of the bone turnover markers or calcium-regulating hormones.
markers or calcium-regulating hormones (data not shown).

Discussion

Osteoporosis is a metabolic bone disease and it is associated with the imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Postmenopausal estrogen deficiency and aging are the two main factors which cause osteoporosis in women. In addition, particular physiological states such as pregnancy or lactation induce dynamic changes in maternal calcium metabolism. During these physiological states, the demands for calcium are large because of the growing fetal and infantile skeletons. The loss of calcium from a mother to a fetus through the placenta is about 30 g over pregnancy (Pitkin 1985). In contrast, the loss of calcium from a mother to an infant is about 40 g during 6 months of lactation. The loss of bone density in the spine and hip averages 4–6% during the first 6 months of lactation (Hayslip et al. 1989, Affinito et al. 1996, Lopez et al. 1996, Kalkwarf et al. 1997). Calcium is mobilized from the maternal skeleton to maintain serum calcium concentrations within a narrow range and to support milk production. Although the demands for calcium in the late stages of pregnancy and lactation are similar at approximately 300 mg/day (Laskey et al. 1998), the loss of bone density is none or little during pregnancy (Kent et al. 1990, 1991) while it is significant in lactation (Atkinson & West 1970, Chan et al. 1982). One probable reason why pregnancy does not affect maternal bone density is the increased capacity of intestinal calcium absorption due to the increased circulating 1,25(OH)2D (Kent et al. 1990, 1991). Another reason may be the protective effects of increased circulating estrogen on the bone. However, other details of the mechanisms are still not known.

A novel cytokine OCIF, a secreted protein consisting of 380 amino acids, was isolated as a basic glycoprotein with apparent molecular weights of 60 kDa for a monomer and 120 kDa for the homodimer (Tsuda et al. 1997) and is also called OPG. cDNA encoding OCIF has been cloned, and analysis of the cDNA sequence revealed that OCIF is a soluble member of the tumor necrosis factor (TNF) receptor family (Yasuda et al. 1998). OPG/OCIF competes with the receptor activator of NF-kB for binding to osteoclast differentiation factor, and it inhibits osteoclast maturation in vivo and in vitro. Bekker et al. (2001) showed that a single s.c. injection of OPG leads to a rapid decrease in urinary N-telopeptide and to a delayed decrease in BSAP (Yano et al. 1999). Yano et al. (1999) reported that OPG/OCIF circulates in human blood mainly as a monomer (Bekker et al. 2001). Because the ELISA kit for the determination of OPG/OCIF used in this study can measure monomeric and dimeric OPGs/OCIFs equally, it is a suitable assay for the determination of serum concentrations of OPG/OCIF. It has also been reported that serum concentrations of OPG/OCIF increase with age in both healthy men and women, and that these concentrations are significantly higher in postmenopausal women with osteoporosis than in age-matched normal controls (Yano et al. 1999). Browner et al. (2001) reported that serum OPG levels in elderly women are associated with diabetes and with cardiovascular mortality, but not with baseline bone mineral density or with subsequent strokes or fractures. It was also reported that in men more than 40 years of age serum concentrations of OPG were negatively correlated with urinary excretion of total deoxypyridinoline (Dpd), but not with biochemical markers of bone formation (Szulc et al. 2001). Other details of the profiles of serum OPG/OCIF in women are still not known. We therefore examined the changes in the serum concentrations of OPG/OCIF during pregnancy and lactation.

Our results revealed that the concentrations of serum OPG/OCIF in mothers steadily increased during pregnancy and the levels immediately before delivery were about 2.5 times as high as those in non-pregnant, nonpuerperal women. Then they fell rapidly and significantly after delivery. It has been reported that the concentration of circulating OPG/OCIF in the mouse markedly increases during pregnancy (Yano et al. 2001). From these results, it can be suggested that circulating OPG/OCIF may play an important role in bone metabolism during pregnancy in mammals. Simonet et al. (1997) reported that OPG/OCIF mRNA expression in the placenta is strong in the mouse and the human, and suggested that the sequential expression of the OPG/OCIF gene in maternal tissues such as decidua and placenta may play a role in the control of bone metabolism in a pregnant female. The main reason that circulating OPG/OCIF levels were high during pregnancy from this point is thought to be production by the placenta. The levels of circulating OPG/OCIF rose sharply from 35–36 weeks to immediately before delivery. This might be a result of the larger loss of calcium in mothers in the late stages of pregnancy.

Our study also showed that serum levels of BSAP, one of the markers of bone formation, increased during pregnancy and were above the normal range during pregnancy. After delivery, these levels remained at the same level at 4 days postpartum, then further increased at 1 month postpartum. It is widely recognized that osteocalcin is a sensitive and specific clinical marker of bone turnover in most situations (Price et al. 1980, Gundberg et al. 1983). However, serum osteocalcin measurements are not useful as a marker of bone turnover during pregnancy because serum osteocalcin may be destroyed by a placental mechanism (Rodin et al. 1989). In this study, serum osteocalcin levels were low during pregnancy, and especially those in 12 of 14 samples at 22–30 weeks and those in nine immediately before delivery which were below the sensitivity of the assay. These results are consistent with previous reports (Martinez et al. 1985, Cole et al. 1987, Rico et al. 1987, Rodin et al. 1989). Serum levels of 1
CTP, one of the markers of bone resorption, did not change through pregnancy. These levels remained within the standard level until 35–36 weeks of pregnancy and were slightly over the standard level immediately before delivery. After delivery, they rapidly and markedly rose at 4 days postpartum. Naylor et al. (2000) reported that the levels of urinary pyridinoline (Pyd) and Dpd, which are the urinary markers of bone resorption, were higher during pregnancy than those in the non-pregnant, non-lactating period and increased with gestational age. After delivery, these levels further increased (Naylor et al. 2000). During pregnancy, the changes in the levels of serum 1 CTP were quite different from those of urinary Pyd and Dpd. Serum 1 CTP may be decomposed to some degree by a placental mechanism the same as serum osteocalcin. In our results and those of Naylor et al. (2000), bone formation and resorption were accelerated during pregnancy, especially in the late stages. After delivery, bone resorption markedly rose at 4 days postpartum and fell at 1 month postpartum, while bone formation remained increased at 4 days postpartum and was still increased at 1 month postpartum. It has been reported that calcium supplementation cannot prevent the loss of bone density and does not affect calcium homeostasis and bone turnover in lactating women (Kalkwarf et al. 1997, 1999). Therefore, loss of calcium induced by lactation may not be the only cause of the loss of bone density in lactating women. Lactating women show lower estrogen levels, higher prolactin levels and higher PTH-related peptide levels than non-lactating women (Sowers et al. 1996). These conditions must be the cause of the loss of bone density during lactation. Other triggers by which bone resorption accelerates after delivery are the decrease of 1,25(OH)2D and may be the fall of OPG/OCIF, according to our results.

In our analyses of cord blood profiles, the levels of calcium, phosphorus and the biomarkers of both bone formation and resorption were quite high, while those of intact PTH were low and those of 1,25(OH)2D were within the normal range. Mean OPG/OCIF levels in cord blood were 0.35 ng/ml and lower than those in adult blood were 0.35 ng/ml and lower than those in adult

References

Received in final form 30 April 2002
Accepted 1 May 2002