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Abstract

Sex hormone-binding globulin (SHBG) is a multifunc-
tional protein that acts in humans to regulate the response
to steroids at several junctures. It was originally described
as a hepatically secreted protein that is the major binding
protein for sex steroids in plasma, thereby regulating the
availability of free steroids to hormone-responsive tissues.
SHBG also functions as part of a novel steroid-signaling
system that is independent of the classical intracellular

steroid receptors. Unlike the intracellular steroid receptors
that are ligand-activated transcription factors, SHBG
mediates androgen and estrogen signaling at the cell
membrane by way of cAMP. We have reviewed the
current state of knowledge on the SHBG gene and the role
of SHBG in steroid signaling (we shall not address its
function as a plasma-binding protein).
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The sex hormone-binding globulin (SHBG) gene

The SHBG gene (Fig. 1) is located on chromosome
17p13.1, only 30 kb away from the p53 tumor-suppressor
gene, and within a region known to undergo allelic
deletions and mutations in a large variety of tumors
(Cousin et al. 2000). Its proximity to p53 raises the un-
addressed question of whether genomic events that alter the
SHBG locus might also lead to changes arising in hormone-
dependent cancers, e.g. breast and prostate. This question
arises because, as we shall review, it is clear that SHBG
is synthesized in these two tissues. Two major SHBG tran-
scripts are known, each originating from a different promoter
(minor SHBG transcripts have received little attention and
will not be discussed here) (Gershagen et al. 1987, 1989,
1991, Hammond et al. 1987, 1989, Joseph et al. 1991,
Bocchinfuso et al. 1992, Bocchinfuso & Hammond 1994,
Hammond & Bocchinfuso 1996, Janne et al. 1998). The first
major transcript encodes a precursor for the secreted (plasma)
form of SHBG, and was originally described in the liver
(SHBGL) (Que & Petra 1987), while the second encodes a
protein of unknown function and was originally described in
the testis (SHBGT) (Hammond et al. 1989).

SHBGL

SHBGL is encoded by eight exons, ranging in size from
90 to 208 bp. With the exception of a 733 bp intron

separating exons 6 and 7 (which perhaps contains alterna-
tive splicing regulatory elements), the remaining introns
are relatively small (133–331 bp). SHBGL is under the
transcriptional control of a TATA-less promoter which
possesses multiple protein-binding sites, including those
for hepatocyte nuclear factor-4 and SP-1 (Janne &
Hammond 1998, Hogeveen et al. 2001). The nascent
SHBGL transcript encodes a precursor protein with a 29
amino acid, lysine-rich signal peptide (encoded within
exon 1 and part of exon 2) at its amino terminus. The
mature, secreted form of SHBG in human plasma
lacks this signal peptide and circulates as a glycosylated,
92·5 kd homodimer (Khan et al. 1985, Hammond et al.
1986, Englebienne et al. 1987, Danzo et al. 1989,
Grishkovskaya et al. 2000) containing two steroid-binding
sites (Avvakumov et al. 2001).

SHBGT

The second major transcript, SHBGT, is regulated by an
uncharacterized promoter that lies upstream of the SHBGL
promoter (Hammond & Bocchinfuso 1996). SHBGL and
SHBGT differ in their 5� sequences and in the absence of
exon 7 in SHBGT. The complete 5� end sequence of
SHBG

T
has not been reported; the incomplete sequence

contains an initial, long open reading frame wherein the
first ATG start codon does not appear until the shared
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exon 2. Based on current information, SHBGT would
encode a truncated version of the secreted SHBG precur-
sor with a different carboxyl terminus. This protein would
probably be unstable, as similar 5� end truncations of
SHBGL code for unstable proteins (Hildebrand et al.
1995). If stable, the SHBGT protein would most likely not
bind steroids, although it would possess the domain known
to contain the site of SHBG that binds to its receptor
(RSHBG) (Gershagen et al. 1989, Joseph et al. 1996, Khan
et al. 1990).

SHBG-mediated steroid signaling through the
SHBG receptor

The current view of SHBG function differs dramatically
from the way in which it was originally conceptualized,
e.g. to regulate the concentration of certain free steroids in
plasma. Although of undeniable importance, this original
model has been substantially broadened by the realization
that SHBG is also part of a signal transduction system for
steroids at the cell membrane.

The SHBG receptor

An active role for SHBG in steroid signaling was suggested
initially by the discovery of specific, high-affinity binding
sites for SHBG on uterine endometrial cell mem-
branes (Strel’chyonok et al. 1984), isolated prostatic cell
membranes (Hryb et al. 1985) and human placenta
(Avvakumov et al. 1985). Subsequently, SHBG binding
was also demonstrated in MCF-7 breast cancer cells
(Frairia et al. 1991, Porto et al. 1992b, Fissore et al. 1994),
normal breast (Frairia et al. 1991), liver (Frairia et al. 1991,
Fortunati et al. 1992a) and epididymis (Guéant et al. 1991,
Felden et al. 1992, Porto et al. 1992a, Krupenko et al.
1994), but not with striated muscle, colonic epithelia, or
lymphocytes (Avvakumov et al. 1985, Felden et al. 1992,
Fortunati et al. 1992a,b, Frairia et al. 1991, Porto et al.

1992a,b, Krupenko et al. 1994). The binding properties of
SHBG are consistent with the presence of a specific
RSHBG on cell membranes, and the biochemistry of
SHBG–RSHBG binding is well characterized. Foremost,
RSHBG only binds steroid-free SHBG. All steroids that
bind to SHBG inhibit the binding of SHBG to RSHBG;
the magnitude of the inhibition is directly proportional to
the magnitude of the association constant for the steroid–
SHBG interaction (Fig. 2) (Hryb et al. 1989, 1990). Once
bound to RSHBG, SHBG binds steroids with affinities
equal to SHBG that is in solution (Hryb et al. 1990). The
SHBG domain, or at least a portion of it, that interacts with
RSHBG has been localized to a ten amino acid stretch
(TWDPEGVIFY) (Khan et al. 1990) encoded within exon
3. This region is shared between SHBGL and SHBGT, and
is the most highly conserved portion of the molecule, both
across species (Khan et al. 1990) and in related proteins,
e.g. protein S, laminin A, merosin, and Drosophila crumbs
protein (Gershagen et al. 1987, Khan et al. 1990, Joseph &
Baker 1992). Although there is a substantial body of
knowledge about RSHBG, its structure remains elusive; the
RSHBG gene has yet to be identified and characterized.

Steroid activation of cAMP through RSHBG

Our current conception of SHBG–RSHBG–steroid signal-
ing is shown in Fig. 3. As discussed above, a specific
sequence of events is necessary to initiate signaling
through RSHBG, binding of unoccupied SHBG to RSHBG
on the cell membrane, followed by binding of steroid
to the SHBG–RSHBG complex, thereby activating it.
Activation of RSHBG induces the synthesis of cAMP
which, in turn, triggers downstream signaling and initiates
genomic effects through the activation of promoters con-
taining cAMP responsive elements (Nakhla et al. 1990,
Rosner et al. 1992). These events occur too rapidly to be
affected either by the dissociation of SHBG–RSHBG, seen
subsequent to binding of the agonist, or by the transcrip-
tional activation of classical steroid hormone receptors.

Figure 1 Structure of the human SHBG gene. The SHBG gene, and its position on chromosome 17p13.1, as set out in the
December 2001 UCSC Human Genome Project Working Draft (URL: http://genome.UCSC.edu/cgi-bin/hgTracks?position=
chr17:8117595-8120775&hgsid=7346710). The exon–intron structure of the two major SHBG gene transcripts, SHBG-L and SHBG-T
are shown, with exons represented by shaded boxes, and introns by lines with directional arrows. SHBG-L, the transcript for the
secreted form of SHBG, originally described in the liver, consists of eight coding exons spanning just over 3 kb. The full sequence of
SHBG-T, the transcript of unknown function originally described in the testis, is currently incomplete at its 5� end. It shares sequences
beginning with exon 2 of SHBG-L, but lacks exon 7. The SHBG gene lies only 30 kb away from the p53 tumor-suppressor gene.
FISH, fluorescence in situ hybridization.
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Furthermore, inhibitors of the transcriptional activation of
the estrogen receptor and androgen receptor (AR) do not
affect the cAMP response, supporting the independence of
this pathway.

RSHBG appears to be coupled to a G-protein. There is
a dose-related decrease in the binding of SHBG to RSHBG
after incubation of the receptor preparation with the
non-hydrolyzable GTP analogue, guanylyl-5� imidodi-
phosphate (Nakhla et al. 1999), a phenomenon typical of
the behavior of receptors coupled to G-proteins. In
addition, in COS-1 cells, which express a functional
RSHBG expression of dominant negative mutants of the
G-protein �-subunit (Osawa & Johnson 1991), cause a
decrease in RSHBG-mediated cAMP signaling (Nakhla
et al. 1999).

Steroids that bind to SHBG act as either agonists or
antagonists of RSHBG-mediated signaling. Furthermore,
whether or not a steroid is an agonist of RSHBG-mediated
signaling appears to be dependent on cell type. In the
prostate, two steroids, estradiol and 5�-androstan-3�,17�
diol (3�-diol) are potent agonists (Nakhla et al. 1990,

1995). In fact, 3�-diol, which is active in this system at
physiologic concentrations, was previously thought to be
an inactive metabolite of dihydrotestosterone (DHT).
Other steroids that bind SHBG with high affinity, e.g.
DHT, testosterone, and 2-methoxyestradiol, are not
agonists, but instead antagonize the effects of 3�-diol. On
the contrary, DHT is an agonist for SHBG–RSHBG in both
the LNCaP prostate cancer cell line (Nakhla et al. 1990)
and in cultured human placenta (Queipo et al. 1998). Not
surprisingly, the degree to which agonists induce cAMP
through RSHBG appears to vary with cell type. For
instance, the fractional increase in cAMP in cultures of
human (Nakhla et al. 1994) and canine prostate (Nakhla
et al. 1995) far exceeds that seen in LNCaP cells. It should
not be lost sight of that, in both LNCaP cells (Nakhla et al.
1990) and placenta (Queipo et al. 1998), SHBG in the
absence of steroid causes a modest increase in cAMP.
Although the relationship between steroidal structure and
affinity for SHBG has been examined in some detail
(Cunningham et al. 1979, 1981), those studies shed no
light on whether a given steroid might be an agonist or
antagonist in the SHBG–RSHBG system.

Biologic effects of steroid signaling through RSHBG

Induction of prostate specific antigen (PSA) in prostate cells

Delineation of the biologic effects of SHBG signaling
through RSHBG has lagged behind our understanding of
the biochemical analysis of its signaling pathway. Details
regarding the downstream effects of steroid signaling
through SHBG exist, but are not extensive. A downstream
event of potential biologic importance is the intersection of
this pathway with an AR-mediated event, the activation
of the PSA gene and secretion of its translational product
(Nakhla et al. 1997). The human PSA gene possesses an
androgen response element in its promoter, and is tran-
scribed upon activation of the AR in prostate cells.
Prostate explants secrete PSA when treated with DHT;
however, they do not when treated with estradiol, which
does not bind to the AR. When such explants were
treated first with SHBG, and then with estradiol, they
produced PSA at concentrations similar to those seen
when they were exposed to DHT. Furthermore,
inhibitors of estrogen receptor activation did not block
estradiol–SHBG–RSHBG-mediated PSA induction,
whereas inhibitors of AR activation did. These results
indicate that estradiol–SHBG–RSHBG initiates ligand-
independent activation of PSA secretion.

Cell growth

RSHBG signaling affects growth in two different cell lines,
with opposite results. It decreases the estrogen-mediated
growth of the human breast carcinoma cell line, MCF-7

Figure 2 Inhibition of the binding of 125I-SHBG to the soluble
RSHBG by steroids (from Hryb et al. 1990). Soluble RSHBG was
added to a constant amount of 125I-SHBG and varying
concentrations of either cold SHBG or the steroids indicated.
Incubations were for 40 h at 37 �C, which achieved steady-state
binding. The receptor is stable for this period of time at this
temperature. SDS gel electrophoresis, followed by autoradiography
of both receptor-bound and free 125I-SHBG, after 40 h, showed
the 125I-SHBG to be unmetabolized. Each steroid caused an
inhibition in the binding of 125I-SHBG to the soluble SHBG
receptor. Further, their inhibitory potency (Ki) is in precisely the
same sequence (DHT> >2-methoxyestradiol (2-MethoxyE2)>
testosterone (Testo)>estradiol> > >methyltrienolone (R188)
>cortisol) as the tightness of their association (KA) with
SHBG. Indeed, the relative (to testosterone) ability of each
steroid to inhibit the binding of SHBG to its receptor
(Ki(testosterone)/Ki(steroid)) was almost identical to its relative
SHBG-binding activity (KA(steroid)/KA(testosterone)). These results,
taken together with double reciprocal plots (not shown), show
that the inhibitory effects of the steroids were due to the
interaction between them and SHBG (non-competitive inhibition),
and not between the steroid and the RSHBG. Thus, liganded SHBG
must have a conformation which prevents it from binding to its
receptor.
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(Fortunati et al. 1996), whereas the human prostate cancer
cell line, ALVA-41, has its growth enhanced by both
estradiol and DHT in the presence of SHBG–RSHBG
(Nakhla & Rosner 1996). These results mirror the effect of
cAMP in each of the two cell lines. Whether SHBG–
RSHBG-induced cAMP elevation is solely responsible for
these observations, or whether other factors involved in
growth regulation play a role, remains to be investigated.
Furthermore, these are cancer cell lines; whether signaling
through RSHBG has the same effects on normal breast and
prostate epithelial cells is not known. On a very specu-
lative note, if this relationship exists in normal cells, SHBG
might be considered a tumor-suppressor gene in breast
cancer, and agonists of the SHBG–RSHBG pathway might
be used to suppress the malignant phenotype, while
antagonists of SHBG–RSHBG signaling might be useful in
prostate cancer, where inhibition is wanted.

Localized expression of SHBG in
hormone-responsive tissues

The presence of SHBG in cells that respond to sex steroids
has been examined in a number of laboratories. Early
immunohistochemical studies, using rabbit polyclonal
antisera, showed SHBG antigen in both the prostate and
breast (Bordin & Petra 1980, Tardivel-Lacombe et al.
1984, Sinnecker et al. 1988, 1990, Meyer et al. 1994,
Germain et al. 1997). However, whether SHBG was
delivered to these cells through the plasma or was locally
expressed remained a question. Indeed, although all the
antisera were raised using highly purified SHBG, there
was no proof that this intracellular antigenic activity was
SHBG, rather than a related antigen.

More recently, SHBG mRNA has been demonstrated
in a number of non-hepatic tissues and cell lines (Larrea
et al. 1993, Misao et al. 1994, 1997, Moore et al. 1996,
Murayama et al. 1999). Although the data in the cell lines
that stain for SHBG protein, and show SHBG mRNA by
RT-PCR and/or by Northern blotting, are convincing,
the conclusions based on experiments using human tissue
sections are ambiguous. With one exception (Noe 1999),
studies showing the tissue mRNA did not show the
protein, and those demonstrating the protein did not show
the mRNA. In the one exception, Noe (1999) detected
both the protein (immunostaining) and the mRNA by
RT-PCR in human Fallopian tubes. However, no studies
were presented to ascertain whether the mRNA was
translated, e.g. the possibility remained that the mRNA
was not translated and the protein arrived via the plasma.
Although it is possible to demonstrate the causal relation-
ship between an mRNA and its protein in cell lines, this
cannot be done in tissue sections. The strongest inferential
evidence that is possible, under these circumstances, is to
show that the mRNA (in situ hybridization) and the
protein exist in the same cells. Thus, we (Hryb et al. 2002)

undertook an examination of human prostate and breast
tissue sections by in situ hybridization and immunocyto-
chemistry. In the prostate, cells that expressed SHBG
mRNA (Fig. 4A) also stained for SHBG protein with
a monospecific, polyclonal rabbit anti-SHBG (64–4)
(Fig. 4B) or monoclonal antibodies (data not shown).
Comparable results were obtained for breast tissue
(authors’ unpublished observations). While we cannot
dismiss internalization of plasma SHBG as at least a partial
source of the immunoreactive SHBG in these studies, it is
likely that locally produced SHBG is the major species in
these cells. If so, regulated SHBG synthesis and secretion
in the breast and prostate could affect intracellular free
steroid concentrations and participate in RSHBG signaling
independent of plasma SHBG. These results raise a
number of important new questions. (1) Does locally
expressed SHBG affect intracellular steroid signaling
pathways or act in an autocrine or paracrine manner
through RSHBG? (2) Does SHBG participate in crosstalk
between epithelial and stromal cells, as SHBG is predomi-
nantly expressed in the former and RSHBG is predomi-
nantly expressed in the latter? (3) Do perturbations of
SHBG expression in cancer cells, through allelic deletions,
contribute to the malignant phenotype and, if so, can
agonists or antagonists of RSHBG signaling serve as useful
therapeutic agents?

In summary, the portrait of SHBG as a monofunctional
plasma steroid-binding protein has changed to that of one
with multiple functions. It appears that it not only partici-
pates in steroid signaling at the cell membrane, but that the
regulation of its synthesis and secretion in target cells offers
new possibilities for the local modification of steroid
hormone effects.
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