IGF and IGF-binding protein expression in the growth plate of normal, dexamethasone-treated and human IGF-II transgenic mice

J J Smink, J G Koster, M G Gresnigt, R Rooman1, J A Koedam and S C Van Buul-Offers

Department of Pediatric Endocrinology, University Medical Center Utrecht, PO Box 85090, NL-3508 AB Utrecht, The Netherlands
1Department of Pediatrics, Antwerp University Hospital, Belgium

Requests for offprints should be addressed to J J Smink; Email: J.Smink@wkz.azu.nl

Abstract

Glucocorticoid (GC) treatment in childhood can lead to suppression of longitudinal growth as a side effect. The actions of GCs are thought to be mediated in part by impaired action of the insulin-like growth factors (IGF-I and IGF-II) and their binding proteins (IGFBP-1 to -6). We have studied the effects of GCs on IGF and IGFBP expression at the local level of the growth plate, using non-radioactive in situ hybridization.

We treated 3-week-old normal mice for 4 weeks with dexamethasone (DXM). We also treated human IGF-II (hIGF-II) transgenic mice in order to investigate whether IGF-II could protect against the growth retarding effect of this GC. DXM treatment resulted in general growth retardation in both mice strains, however, only in normal mice was tibial length decreased. In both normal and hIGF-II transgenic mice, the total width of the growth plate was not affected, whereas the width of the proliferative zone decreased as a result of the DXM treatment. Additionally, only in normal mice, the width of the hypertrophic zone thickened.

Only expression of IGF-I, IGF-II and IGFBP-2 could be detected in the growth plates of 7-week-old normal mice. IGFBP-1, -3, -4, -5 and -6 mRNAs were not detected. DXM treatment of normal mice induced a significant 2.4-fold increase in the number of cells expressing IGF-I mRNA, whereas IGF-II and IGFBP-2 mRNA levels were not affected.

In hIGF-II transgenic mice, IGF-I mRNA levels were significantly increased, while endogenous IGF-II and IGFBP-2 mRNAs were unaffected, compared to normal animals. DXM treatment of the hIGF-II transgenic mice induced a further increase of IGF-I mRNA expression, to a similar extent as in DXM-treated normal mice.

The increase of IGF-I due to DXM treatment in normal mice might be a reaction in order to minimize the GC-induced growth retardation. Another possibility could be that the increase of IGF-I would contribute to the GC-induced growth retardation by accelerating the differentiation of chondrocytes, resulting in accelerated ossification. In the growth plates of hIGF-II transgenic mice, the higher basal level of IGF-I, might be responsible for the observed partial protection against the adverse effects of GCs on bone.

Journal of Endocrinology (2002) 175, 143–153

Introduction

Long-term high-dose glucocorticoid (GC) treatment as anti-inflammatory and immunosuppressive therapy is associated with marked skeletal growth retardation in children (Allen 1996, Ward et al. 1999). In experimental animal models, high doses of GCs also have a growth-suppressive effect on longitudinal bone growth (Price et al. 1992, Leili & Scanes 1998, Rooman et al. 1999, Silvestrini et al. 2000). GCs have been shown to act locally to inhibit longitudinal growth, suggesting a local mechanism within the growth plate (Baron et al. 1992, Silvestrini et al. 2000).

Locally produced insulin-like growth factor (IGF) axis components, including both IGF-I and -II, their binding proteins (IGFBP)-1 to -6 and their receptors, play a key role in longitudinal bone growth (Ohlsson et al. 1998, Olney & Mougey 1999). Disruption of the IGF signaling results in growth retardation (Baker et al. 1993). Besides being produced by growth plate chondrocytes, exogenously added IGFs have a stimulatory effect on longitudinal bone growth (Hunziker 1994, Van Buul-Offers et al. 1994). IGF-I and IGF-II both have a unique and complementary role in augmenting longitudinal bone growth (LeRoith et al. 2001). However, there still exists some doubt as to whether both IGF-I and IGF-II are produced in the growth plate. Several in vitro data have shown expression of both IGFs (Bhaumick 1993, Olney & Mougey 1999), while several in vivo studies have shown conflicting results (Nilsson et al. 1990, Shinar et al. 1993,

It has been suggested that the growth-inhibiting side-effect of GCs is partially mediated by impaired action of the IGF axis components in in vitro studies (Jux et al. 1998, Klaus et al. 2000, Koedam et al. 2000, Smink et al. 2002). GCs and IGF axis components have opposite effects on growth, as described above. In addition, GCs regulate the expression of IGFs (Jux et al. 1998) and IGFBPs (Koedam et al. 2000) in chondrocytes in vitro. Few data are available, however, concerning the regulation by GCs in vivo (Price et al. 1992) and it has been reported that serum levels of IGF axis components provide little insight into the mechanisms of GC-induced growth retardation and the possible involvement of the IGF axis components therein (Ward et al. 1999). Therefore, in order to elucidate the possible involvement of IGF axis components in GC-induced growth retardation, it is important to study locally produced IGFs and IGFBPs and their regulation by GCs in the growth plate.

We have previously treated 3-week-old female mice for 4 weeks with 20 µg dexamethasone (DXM)/day or saline (phosphate-buffered saline; PBS) (Rooman et al. 1999). These mice showed general growth retardation and a significant reduction in tibial length and weight. We have now studied the effects of this GC treatment on growth plate morphology. We have also studied the possible involvement of locally expressed IGFs and IGFBPs in this GC-induced growth retardation, by analyzing their expression in the growth plates of these mice using non-radioactive in situ hybridization. This study also served to analyze whether only hIGF-II or both IGF-I and IGF-II are expressed by growth plate chondrocytes.

We previously suggested a possible protective effect of IGF-II against GC-induced growth retardation (Rooman et al. 1999). It was shown that DXM did not affect tibial length and weight to the same degree in human (h) IGF-II transgenic mice as in normal mice (Rooman et al. 1999). This suggested that hIGF-II overexpression might be able to partially counteract the growth-inhibitory effect of DXM at the level of the growth plate. In order to study the possible role of the hIGF-II transgene in GC-induced growth retardation, we also analyzed the morphology of the growth plates of these mice and the expression patterns of the IGFs and IGFBPs, which were compared with normal PBS- and DXM-treated animals.

Materials and Methods

Materials

Restriction enzymes and modifying enzymes, digoxigenin-UTP, anti-digoxigenin Fab-fragments, nitro blue tetrazolium (NBT), 5-bromo-4-chloro-3-indoly-phosphatase (BCIP) and blocking reagent were purchased from Roche Molecular Biochemicals (Mannheim, Germany). Polyvinyl alcohol was obtained from Aldrich (Milwaukee, WI, USA). Euparal mounting medium was purchased from Klinipath (Duiven, The Netherlands).

Mice and tissue preparation

hIGF-II transgenic mice were generated by the introduction of a human IGF-II gene, under the control of the H-2Kb promoter and containing the SV40 small t intron and early polyadenylation signal, into FVB mice as described in detail previously (Van Buul-Offers et al. 1995). Throughout the study, the transgenic line designated 5’-74 (TgII) and normal FVB/N mice were used for our experiments. The animals were kept under standardized laboratory conditions.

Three-week-old female FVB and TgII mice were divided into two groups of five mice each. The animals were injected subcutaneously with 0·1 ml vehicle (PBS; pH 7·4) or 20 µg DXM once a day, 5 days a week for 4 weeks (experiment 2 in Rooman et al. 1999). The mice were killed by decapitation after ether anesthesia 2 h after the last injection, at the age of 7 weeks. At this age the animals are maturing sexually and are still growing (van Buul & Van den Brande 1978). The protocol received the approval of the Committee for Animal Experiments of the University Medical Center Utrecht, The Netherlands.

The tibiae were dissected and fixed in buffered 3·8% formalin for 24 h. Tibiae were subsequently decalcified for 24 h in 0·45 M phosphate-buffered EDTA, pH 8·0, washed in PBS, dehydrated through a series of ethanol and embedded in paraffin in a standardized manner to ensure proper orientation.

Morphometry of the growth plate

Growth plate sections were stained with hematoxylin and eosin and photographs of the sections were taken with a Zeiss Axiomat HRC camera equipped with AxioVision software version 3·0 (Zeiss, München–Hallbergmoos, Germany). The interactive measurement module was used for measurements of the growth plate width. Corresponding sections of the tibia of the different groups were used to ensure correct comparison between the different groups. Total width of the growth plate (distance between the epiphysis and the chondro-osseous junction) was determined from one image (magnification×50) per growth plate section, covering the entire transverse area excluding the periphery of the growth plate. Five animals per treatment group were analyzed (two sections per animal). From the images, measurements at 100 µm intervals were performed (about 18 measurements per growth plate) and averaged. The measuring lines were subsequently shortened to the first appearance of regular chondrocyte columns (the boundary between the resting and the proliferative zone) and to the first enlargement of the flattened cells (the boundary between the proliferative
and the hypertrophic zones). From the lengths of these lines the widths of the three different zones of the growth plate were calculated.

Probes

Standard RNA synthesis reactions using T7- or T3-RNA polymerase were carried out using digoxigenin-UTP as substrate (Melton et al. 1984). cDNAs encoding hIGF-I and IGF-II (Jansen et al. 1983, 1985), cDNA encompassing the 1 kb BamHI–BamHI SV40 fragment (Van Buul-Offers et al. 1995) and mouse IGFBP-1, -2, -3, -4, -5 and -6 cDNAs (kindly provided by S L S Drop and J W van Neck, Department of Pediatrics, Rotterdam, The Netherlands) (Schuller et al. 1993) were used as templates for the synthesis of antisense and sense digoxigenin-labeled cRNA probes. All probes used were specific for the mRNAs analyzed. The hIGF-II probe detects both endogenous mouse IGF-II as well as the hIGF-II transgene mRNA (Smink et al. 1999). The SV40 fragment detects specifically the hIGF-II transgene, making it possible to discriminate between the endogenous and transgene IGF-II mRNAs. Probes were checked for possible cross-hybridization using in situ hybridization on different types of mouse tissues (spleen, thymus and complete mice embryos) (Schuller et al. 1993, Smink et al. 1999) for the IGFBP probes, and brain for the IGF probes (C Reijnders, personal communication). The various probes displayed distinct expression patterns in these tissues. Northern blot analysis of different tissues using the same probes yielded bands of the expected sizes, verifying the correct identity of the probes.

In situ hybridization

Paraffin tissue sections (10 µm) were cut in a standardized way and mounted on 2% amino-propyl-triethoxysilane/3% glutaraldehyde-coated glass slides. Corresponding sections of the tibia of the different tissues were used for the same probes to ensure reliable comparison between the groups. Sections were dewaxed, hydrated, rinsed in PBS and treated with protease K (0–21 units/ml) for 30 min at 37 °C, treated with 0·2 M HCl for 10 min at room temperature and subjected to an acetylation treatment (Wilkinson 1992). Sections were rinsed in 2 × SSC and kept in this solution until the start of the hybridization.

Hybridization was performed in a solution containing 50% formamide, 2 × SSC, 1 × Denhardt’s solution, 1 µg/µl yeast RNA and 10% dextran sulphate and the digoxigenin-labeled cRNA probe at a concentration of 1000–1500 pg/µl. Sections were hybridized overnight at 51 °C, except for IGF-II where 58 °C was used. After hybridization, sections were washed with 50% formamide in 2 × SSC at the hybridization temperature for 30 min and treated with RNase A (1 unit/ml) for 30 min at 37 °C. Subsequently, sections were rinsed in 2 × SSC, treated with 10% lamb serum for 30 min and incubated with sheep anti-digoxigenin Fab-fragments coupled to alkaline phosphatase (1:1250) overnight at 4 °C.

Chromogenesis was performed with 0·38 mg/ml NBT and 0·19 mg/ml BCIP in the presence of 6% (w/v) polyvinylalcohol (De Block & Debrouwer 1993) at room temperature in the dark, resulting in a blue precipitate. Sections were counterstained with nuclear fast red, dehydrated through a series of ethanol and mounted with Euparal.

Five different animals per treatment group were used per analyzed mRNA. Each analyzed glass slide contained six sections, three of a PBS- and three of a DXM-treated mouse (either a normal or an hIGF-II transgenic mouse). Both strains were analyzed in the same in situ hybridization experiment. For quantitative evaluation of the number of chondrocytes expressing mRNA, sections were coded and analyzed using the Image-Pro Plus software program from Media Cybernetics (Silver Springs, MD, USA). The number of positive cells in the growth plates (excluding the periphery of the growth plates) were counted and expressed relative to the number of positive cells in the FVB PBS-treated group (control group).

Statistical analysis

Data are expressed as means ± S.E.M. The effects of the DXM treatment and the hIGF-II transgene were statistically tested by one-way ANOVA with Bonferroni–Dunn post hoc tests using InStat version 3·00 (GraphPad Software, Inc., San Diego, CA, USA). The effects of the DXM treatment on body and tibial length of both mice strains (FVB and hIGF-II transgenic) were calculated using Student’s t-test. A P value of less than 0·05 was considered statistically significant.

Results

Growth plate morphology

Normal FVB mice were treated for 4 weeks with 20 µg/day DXM, which resulted in a significant inhibition of body length and weight (Rooman et al. 1999). Tibial length was also significantly inhibited, to a similar extent as total body length as summarized in Table 1. DXM treatment of hIGF-II transgenic mice resulted in a similar inhibition of body length as in FVB mice. However, tibial length was not significantly affected in the hIGF-II transgenic mice (Table 1).

DXM treatment of FVB mice had no effect on the total width of the proximal tibial growth plate. However, the width of the proliferative zone was significantly decreased (by 11%), whereas the width of the hypertrophic zone was significantly increased (by 17%). The resting zone was not affected by the DXM treatment (Table 2). hIGF-II
transgenic mice showed a significantly larger width of the growth plate compared with untreated FVB mice (12% increase). This increase was caused by a non-significant increase in the width of all three zones of the growth plate. Treatment with DXM caused a significant decrease in the width of the proliferative zone (14%), a similar decrease as that seen in FVB mice. In contrast, in hIGF-II transgenic mice, DXM did not affect the width of the hypertrophic zone (Table 2). As in FVB mice, the resting zone was not affected by the DXM treatment.

Expression of IGF axis components in the postnatal growth plate

To analyze the endogenous expression of the IGFs and their binding proteins, IGFBP-1 to -6, in the postnatal epiphyseal growth plate of mice, non-radioactive in situ hybridization was performed on tibial epiphyseal growth plates of 7-week-old PBS-treated normal mice. At the age of 7 weeks, the mice are maturing sexually and are still growing (van Buul & Van den Brande 1978). As a control for specific hybridization, sections were hybridized with the appropriate sense probes, which showed no signals in any of the treatment groups (Figs 1E, 2E and 3E).

In the growth plates of these mice, IGF-I, IGF-II and IGFBP-2 transcripts were present, each showing a similar expression pattern. However, no expression of IGFBP-1, -3, -4, -5 and -6 could be detected (data not shown). Using the same probes, we have previously demonstrated the expression of IGFBP-2, -3, -4, -5 and -6 in lymphoid tissues (Smink et al. 1999).

IGF-I mRNA was predominantly present in hypertrophic chondrocytes and less in late hypertrophic chondrocytes (Fig. 1A). IGF-I transcripts were also detected in proliferative chondrocytes located at the periphery of the growth plate (not shown), but not in proliferative chondrocytes in the central area. Weak expression of IGF-I was present in some of the resting chondrocytes. In addition, IGF-I transcripts were also detected in osteoblasts lining the trabeculae.

Like IGF-I, IGF-II was predominantly expressed in the hypertrophic zone. However, in the late hypertrophic zone fewer cells expressed IGF-II than was observed for IGF-I (Fig. 2A). IGF-II mRNA was also present in proliferative chondrocytes located at the periphery of the growth plate (not shown), but not in proliferative chondrocytes in the central area. Weak expression of IGF-I was present in some of the resting chondrocytes. In addition, IGF-I transcripts were also detected in osteoblasts lining the trabeculae.

Like IGF-I, IGF-II was predominantly expressed in the hypertrophic zone. However, in the late hypertrophic zone fewer cells expressed IGF-II than was observed for IGF-I (Fig. 2A). IGF-II mRNA was also present in proliferative chondrocytes located at the periphery of the growth plate (not shown), but not in proliferative chondrocytes in the central area. In contrast to IGF-I, IGF-II mRNA was not detected in the resting zone. In the peripheral sections of the growth plate, more cells expressed IGF-I and IGF-II mRNA (not shown) than in sections of the center of the tibia. In these peripheral sections also, more proliferative chondrocytes showed expression of both IGFs. Like IGF-I, IGF-II was also expressed in osteoblasts lining the trabeculae.

Of the IGFBPs, only IGFBP-2 could be detected in the postnatal growth plate (Fig. 3A). IGFBP-2 transcripts

Table 1 Effect of DXM treatment on body length and tibial length of normal (FVB) and hIGF-II transgenic (TgII) mice. n=5 in all cases

<table>
<thead>
<tr>
<th>Group</th>
<th>Body Length (cm)</th>
<th>S.E.M.</th>
<th>P value</th>
<th>Tibia Length (mm)</th>
<th>S.E.M.</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVB PBS</td>
<td>18·06</td>
<td>0·26</td>
<td></td>
<td>17·11</td>
<td>0·23</td>
<td></td>
</tr>
<tr>
<td>FVB DXM</td>
<td>17·24</td>
<td>0·06</td>
<td><0·02</td>
<td>16·49</td>
<td>0·10</td>
<td><0·05</td>
</tr>
<tr>
<td>TgII PBS</td>
<td>17·86</td>
<td>0·07</td>
<td></td>
<td>16·58</td>
<td>0·13</td>
<td></td>
</tr>
<tr>
<td>TgII DXM</td>
<td>17·00</td>
<td>0·09</td>
<td><0·01</td>
<td>16·27</td>
<td>0·18</td>
<td>NS</td>
</tr>
</tbody>
</table>

*1 Compared with PBS control within the same strain.

Table 2 Effect of DXM treatment on total growth plate width and width of the three zones of the growth plate in normal (FVB) and hIGF-II transgenic (TgII) mice. n=5 in all cases

<table>
<thead>
<tr>
<th>Group</th>
<th>Total Width</th>
<th>S.E.M.</th>
<th>R Width</th>
<th>S.E.M.</th>
<th>P Width</th>
<th>S.E.M.</th>
<th>H Width</th>
<th>S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVB PBS</td>
<td>168·2</td>
<td>4·9</td>
<td>21·9</td>
<td>1·1</td>
<td>85·6</td>
<td>3·7</td>
<td>59·7</td>
<td>1·8</td>
</tr>
<tr>
<td>FVB DXM</td>
<td>170·9</td>
<td>1·8</td>
<td>24·4</td>
<td>0·8</td>
<td>76·6</td>
<td>1·1</td>
<td>69·9</td>
<td>1·5</td>
</tr>
<tr>
<td>TgII PBS</td>
<td>188·0</td>
<td>2·6</td>
<td>25·6</td>
<td>1·8</td>
<td>93·2</td>
<td>1·5</td>
<td>68·9</td>
<td>1·8</td>
</tr>
<tr>
<td>TgII DXM</td>
<td>177·0</td>
<td>4·6</td>
<td>26·4</td>
<td>1·1</td>
<td>80·2</td>
<td>1·6</td>
<td>70·3</td>
<td>3·9</td>
</tr>
</tbody>
</table>

Total, total growth plate width; R, resting zone; P, proliferative zone; H, hypertrophic zone. *1P<0·05 compared with the normal, PBS group; *2P<0·05 compared with the TgII, PBS group.
were mainly detected in the hypertrophic zone and fewer cells in the late hypertrophic zone expressed IGFBP-2 mRNA. As for IGF-I and IGF-II, IGFBP-2 mRNA was also detected in the proliferative cells located at the periphery of the growth plate, but not in the proliferative cells in the center of the tibia. No IGFBP-2 mRNA was detected in the resting zone. IGFBP-2 was also expressed in osteoblasts lining the trabeculae.

Effects of DXM treatment on IGF axis components in the growth plate

DXM treatment resulted in a significant 2.4-fold (±0.3, \(P<0.001 \)) increase in the number of IGF-I-expressing chondrocytes in the epiphysial tibial growth plate (Fig. 1B). In the center of the growth plate, more rows of cells were positive for IGF-I, including proliferative chondrocytes. In contrast, in PBS-treated FVB mice, no proliferative chondrocytes were positive for IGF-I. IGF-I expression in the resting zone was not altered because of the DXM treatment. Although the width of the hypertrophic zone increased because of the DXM treatment, this could only partially account for the increase in IGF-I-expressing cells as, besides hypertrophic chondrocytes, proliferative chondrocytes also expressed IGF-I. The expression patterns and levels of IGF-II (Fig. 2B) and IGFBP-2 (Fig. 3B) were similar to those found in the growth plates of control mice.

As in the control animals, no expression of IGFBP-1, -3, -4, -5 and -6 was detected (data not shown).

Expression of IGF axis components in the postnatal growth plate of hIGF-II transgenic mice

To analyze the influence of hIGF-II overexpression on the expression of IGF axis components in the growth plate, sections of the growth plates of PBS-treated hIGF-II transgenic mice were also analyzed. The hIGF-II transgene itself was detected using a transgene specific probe (SV40 probe). The transgene was not detected in the epiphyseal growth plate, although transgene mRNA was detected in osteoblasts lining the trabeculae (Fig. 4C). The number of IGF-I-expressing cells was significantly increased 1.9-fold (±0.3, \(P<0.05 \)) in hIGF-II transgenic mice (Fig. 1C). This included positive cells in the proliferative zone. In contrast, the number of cells expressing

Figure 1 IGF-I expression in the postnatal growth plate. Expression patterns of IGF-I mRNA in representative sections of the growth plates of 7-week-old mice. (A) PBS-treated FVB mice, (B) DXM-treated FVB mice, (C) PBS-treated hIGF-II transgenic mice, (D) DXM-treated hIGF-II transgenic mice and (E) section of the PBS-treated FVB mice hybridized with an IGF-I sense probe, as analyzed by non-radioactive in situ hybridization, under brightfield illumination. Magnification ×200. Sections were counterstained with nuclear fast red. The mRNA signal is shown as a blue precipitate under brightfield illumination. (a) Detail of signal in PBS-treated FVB mice, magnification ×400. R, resting zone; P, proliferative zone; H, hypertrophic zone; LH, late hypertrophic zone. Arrowheads indicate IGF-I mRNA in the resting zone. Scale bar, 100 µm.
endogenous IGF-II (Fig. 2C) and IGFBP-2 (Fig. 3C) in the growth plate were not changed in hIGF-II transgenic mice as compared with normal mice. No expression of IGFBP-1, -3, -4, -5 and -6 was detected in the postnatal growth plates of hIGF-II transgenic mice (data not shown).

Effect of DXM treatment on IGF axis components in the growth plates of hIGF-II transgenic mice

When DXM-treated hIGF-II transgenic mice were compared with PBS-treated normal mice, the number of IGF-I-expressing chondrocytes in the epiphyseal tibial growth plate increased 2-6-fold (± 0.3), to a level similar to that observed in DXM-treated normal mice, including proliferative chondrocytes (Fig. 1D). This increase was significant when compared with control normal mice (P<0.001), but not significant when compared with PBS-treated hIGF-II transgenic mice. Endogenous IGF-II and IGFBP-2 gene expression were not affected by the DXM treatment (Figs 2D and 3D respectively). IGFBP-1, -3, -4, -5 and -6 transcripts were not detected in hIGF-II transgenic mice treated with DXM (data not shown). We observed no change in transgene expression levels caused by the DXM treatment (Fig. 4D).

Discussion

There are strong indications that GC-induced growth retardation involves impaired action of the IGF axis components (Price et al. 1992, Jux et al. 1998, Klaus et al. 2000, Koedam et al. 2000, Smink et al. 2002). In the present study, we analyzed the in vitro effects of GCs on the expression of the IGF axis components at the local level of the epiphyseal growth plate, where longitudinal growth is regulated and adverse effects of GCs on growth are expected to be targeted (Siebler et al. 2001). Besides studying the effects of GCs on the expression of the IGF axis components, the possible protective effect of IGFs against GCs was also studied using hIGF-II transgenic mice.

The analyses performed in this study on the endogenous expression of the IGF axis components in the mouse postnatal growth plate (postnatal day (P) 49), showed expression of IGF-I, IGF-II and IGFBP-2. Until now, there have been conflicting reports whether both the IGFs are expressed in the postnatal epiphyseal growth plate. Expression of IGF-I was shown in the rat epiphyseal growth plate (P10, P28, P35) (Nilsson et al. 1990, Reinecke et al. 2000) and costochondral growth plate (Lin & Oberbauer 1999). In contrast, Wang et al. (1995)
detected only IGF-II in murine growth plates (P25) and Shinar et al. (1993) reported similar results in rat growth plates (P10–P35). Although species differences and age variables will influence the observed expression signals, the conflicting data are more likely caused by the detection method used. In previous studies (Nilsson et al. 1990, Shinar et al. 1993, Wang et al. 1995), in which radioactive in situ hybridization was used, less clear expression of IGF-I and IGF-II was found. This was confirmed by Reinecke et al. (2000), who also showed a better visible signal of IGF-I expression using non-radioactive in situ hybridization than that shown previously by the radioactive method (Nilsson et al. 1990). It is unlikely that the detection of both IGF-I and IGF-II is due to cross-hybridization between the probes used (described in Materials and Methods). In addition, there are differences in the expression patterns and responses to DXM treatment and the presence of the hIGF-II transgene, as discussed below.

IGF-I was mainly detected in cells of the hypertrophic zone and fewer positive cells were detected in the late hypertrophic zone. Only a few cells expressing IGF-I were detected in the resting and proliferative zones. This distribution confirms previous data (Reinecke et al. 2000). Local IGF-I synthesis of proliferative chondrocytes was previously thought to stimulate the clonal expansion of chondrocyte columns in the proliferative zone in an autocrine/paracrine manner, as described by the ‘dual effector theory’ (Ohlsson et al. 1998). It should be borne in mind, however, that the mitogenic properties of the IGFs have only been demonstrated in cultured cells, and not in in vivo models. In our study, only a small number of cells in the proliferative zone expressed IGF-I, whereas IGF-I expression was mainly detected in the hypertrophic zone, suggesting that IGF-I could be involved in the differentiation of proliferative to hypertrophic chondrocytes. In IGF-I knock-out mice, hypertrophic chondrocytes are reduced by 30% in linear dimension, accounting for most of the observed decrease in longitudinal growth (Wang et al. 1999). This further strengthens the notion that IGF-I plays an important role in augmenting chondrocyte hypertrophy (LeRoith et al. 2001, Lupu et al. 2001, Siebler et al. 2001). Furthermore, infusion of IGF-I in hypophysectomized rats showed that IGF-I stimulates growth plate chondrocytes at all stages of differentiation, including hypertrophic chondrocytes (Hunziker et al. 1994), rather than acting specifically upon proliferative chondrocytes as postulated in the ‘dual effector theory’. Previously, there was uncertainty as to the source of the IGF-I that would promote the chondrocyte hypertrophy (LeRoith et al.)

Figure 3 IGFBP-2 expression in the postnatal growth plate. Expression patterns of IGFBP-2 mRNA in representative sections of the growth plates of 7-week-old mice. (A) PBS-treated FVB mice, (B) DXM-treated FVB mice, (C) PBS-treated hIGF-II transgenic mice, (D) DXM-treated hIGF-II transgenic mice and (E) section of the PBS-treated FVB mice hybridized with an IGFBP-2 sense probe. Sections were treated as described in Fig. 1. Magnification × 200. (a) Detail of signal in PBS-treated FVB mice, magnification × 400. Scale bar, 100 µm.
Our study provides strong evidence that the source of the IGF-I is the growth plate itself. However, besides having a role in differentiation of chondrocytes, IGF-I may still play a role in the clonal expansion of proliferative chondrocytes, in a paracrine manner. Our data, however, suggest that the ‘dual effector theory’ should be extended with a role for IGF-I in chondrocyte differentiation. The type I IGF receptor, which mediates the intracellular effects of both IGF-I and IGF-II (Baserga et al. 1997), is mainly expressed in the proliferative and hypertrophic zones of the growth plate (Wang et al. 1995, Siebler et al. 2001). However, in the hypertrophic zone, distinctly higher levels of type I IGF receptor mRNA levels are present compared with the proliferative zone (Wang et al. 1995), supporting the suggestion that in addition to stimulating proliferation, IGFs play a role in differentiation of chondrocytes.

The distribution of IGF-II transcripts confirms previous data, which showed predominant expression in the hypertrophic zone and no (in our study, very low) expression in the terminally differentiated chondrocytes at the osteochondral junction (Wang et al. 1995). IGF-II has been suggested to play a role in the proliferation of chondrocytes, and also in their differentiation (Hill 1992). The presence of both IGFs, their distinct expression patterns and the difference in response to GC treatment (see below) strengthens the suggestion that they have a unique and complementary role in regulating bone growth in a paracrine manner (LeRoith et al. 2001).

Concerning the IGFBPs, we are the first to detect expression of IGFBP-2 in the postnatal growth plates of sexually maturing mice (P49). The detection of IGFBP-2 is specific and is not due to cross-hybridization with other IGFBPs (described in Materials and Methods). This contrasts with the fetal situation where expression of IGFBP-2 to -6 in the growth plate in vivo has been reported previously in sheep (de los Rios & Hill 1999) and cows (Olney & Mougey 1999). However, expression was at such a low level that detection was only possible using RT-PCR (Olney & Mougey 1999, de los Rios & Hill 1999). In fetal murine growth plates (Wang et al. 1995), radioactive in situ hybridization only showed expression of IGFBP-5 and -6 in the growth plate, which rapidly declined with age. IGFBP-5 was no longer detectable after embryonic day 18 and only low levels of IGFBP-6 were detectable up to at least P25 (Wang et al. 1995).
IGFBP-1 has never been detected in the growth plate, neither pre- nor postnatally (Luo & Murphy 1989, Wang et al. 1995, Olney & Mougey 1999). In our study, IGFBP-2 is mainly expressed in the hypertrophic zone in co-localization with IGF-I and IGF-II. Various studies have suggested that IGFBP-2 plays a role in growth and development (Streck et al. 1992, Hoeflich et al. 1999). In addition, a role for IGFBP-2 in the growth plate is suggested by its presence in cultured chondrocytes (Borromeo et al. 1996, Smink et al. 2002). The specific localization of IGFBP-2 in the pre- and hypertrophic zone of the growth plate and the fact that IGFBP-2 is the only member of the IGFBPs present at this stage of development suggests a modulating role for this IGFBP in chondrocyte differentiation and maturation, in collaboration with the IGFs.

Treatment of normal mice with DXM induced general growth retardation and a decrease in tibial length (experiment 2 in Rooman et al. 1999). We now report that total growth plate width was not affected, while the proliferative zone decreased and the hypertrophic zone increased. In contrast, in hiGF-II transgenic mice, DXM decreased only total body length, whereas tibial length was not affected. The DXM-induced reduction in the proliferative zone of the growth plate remained, whereas the hypertrophic zone was no longer affected in the hiGF-II transgenic mice. Thus, there appears to be a correlation between tibial growth retardation and an increase in the hypertrophic zone of the growth plate. This increase of the hypertrophic zone could be caused by an accelerated differentiation of proliferative chondrocytes. Premature maturation of chondrocytes has previously been shown to lead to growth retardation. In parathyroid hormone-related protein (PTHrP) receptor knockouts for example, an accelerated chondrocyte differentiation led to premature ossification (Lanske et al. 1996, Jobert et al. 1998). However, the effect of GCs on the proliferative zone could also be important in GC-induced growth retardation, as shown in in vitro studies (Jux et al. 1998, Robson et al. 1998, Smink et al. 2002).

Tibial growth retardation by GCs is not due to an increased serum IGF-I level. The increase in IGF-I already present in the growth plate of the untreated mice do show a similar growth retardation to that of the normal mice when treated with DXM. However, while this treatment resulted in a significant reduction in tibial length and weight of normal mice, no significant effects on the tibia and the hypertrophic zone of the growth plate of hiGF-II transgenic mice were observed. The high levels of IGF-I already present in the growth plate of the untreated hiGF-II transgenic mice might be responsible for the
observed partial protection against the GCs with regard to growth retardation of the tibia. This is supported by data that showed that increased IGF-I levels, in the presence of GCs, could counterbalance the growth-inhibiting effect of the GCs (Klaus et al. 2000).

Acknowledgements

Thanks are due to I van de Brink for taking care of the animals.

References

Allen DB 1996 Growth suppression by glucocorticoid therapy.

Siëbler T, Robson H, Shalet S & Williams GR 2001 Glucocorticoids, thyroid hormone and growth hormone interactions: implications for the growth plate. *Hormone Research* **56** (Suppl 1) 7–12.

Stevens DA & Williams GR 1999 Hormone regulation of chondrocyte differentiation and endochondral bone formation. *Molecular and Cellular Endocrinology* **151** 195–204.

Received 20 June 2002
Accepted 3 July 2002