Impaired endothelial dysfunction in diabetes mellitus rats was restored by oral administration of prostaglandin I₂ analogue

K Matsumoto¹, R Morishita¹,², N Tomita¹, A Moriguchi¹, K Yamasaki¹, M Aoki¹, K Matsumoto³, T Nakamura³, J Higaki¹ and T Ogihara¹

¹Department of Geriatric Medicine, Graduate School of Medicine, Osaka University, 2–2 Yamada-oka, Suita 565–0871, Japan
²Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita 565–0871, Japan
³Division of Biochemistry, Biochemical Research Centre, Graduate School of Medicine, Osaka University, Suita 565–0871, Japan

(Requests for offprints should be addressed to R Morishita; Email: morishita@geriat.med.osaka-u.ac.jp)

Abstract

We have previously reported that a decrease in hepatocyte growth factor (HGF), which has many protective functions against endothelial damage by high d-glucose, might be a trigger of endothelial injury. However, the regulation of vascular HGF in diabetes mellitus (DM) has not been clarified in vivo, although vascular disease is frequently observed in DM patients. In addition, our previous report revealed that a prostaglandin I₂ (PGI₂) analogue prevented endothelial cell death through the induction of vascular HGF production in cultured human epithelial cells. Thus, in this study, we examined the effects of a PGI₂ analogue in the regulation of the local HGF system using DM rats.

A PGI₂ analogue (beraprost sodium; 300 and 600 µg/kg per day) or vehicle was administered to 16-week-old DM rats induced by administration of streptozotocin for 28 days. Endothelial function was evaluated by the vasodilator response to acetylcholine, and the expression of vascular HGF mRNA was measured by Northern blotting. Of importance, expression of HGF mRNA was significantly decreased in the blood vessels of DM rats as compared with non-DM (P<0·01). In addition, the in vitro vasodilator response of the abdominal aorta to acetylcholine was markedly impaired in DM rats. Importantly, the vasodilator response was restored by PGI₂ treatment in a dose-dependent manner (P<0·01), whereas N(omega)-nitro-L-arginine methyl ester inhibited the restoration of endothelial function. Of particular interest, vascular HGF mRNA and protein were significantly increased in the blood vessels of DM rats treated with PGI₂ as compared with vehicle. Similarly, an increase in HGF protein was also confirmed by immunohistochemical analysis. In addition, the specific HGF receptor, c-met, was also increased by PGI₂ treatment.

Overall, this study demonstrated that treatment with a PGI₂ analogue restored endothelial dysfunction in DM rats, accompanied by the induction of vascular HGF and c-met expression. Increased local vascular HGF production by a PGI₂ analogue may prevent endothelial injury, potentially resulting in the improvement of endothelial dysfunction.

Journal of Endocrinology (2002) 175, 217–223

Introduction

Endothelial cells are known to secrete various vasoactive substances. Recently, it has been hypothesized that endothelial cells may also modulate vascular growth, because they secrete many anti-proliferative factors such as nitric oxide (NO) and vascular natriuretic peptides (Itoh et al. 1990, Tare et al. 1990, Suga et al. 1992). Therefore, it is apparent that dysfunction of endothelial cells may promote abnormal vascular growth such as in atherosclerosis and arteriosclerosis (Dzau & Gibbons 1991, Dzau 1993). Our previous studies demonstrated that hepatocyte growth factor (HGF) exclusively stimulated the growth of endothelial cells without the replication of vascular smooth muscle cells (VSMCs) (Nakamura et al. 1996a,b). Moreover, the presence of a local HGF system (HGF and its receptor, c-met) in endothelial cells and VSMCs was also demonstrated in vitro as well as in vivo (Nakamura et al. 1995). Thus, it is important to know the physiological role of HGF in endothelial regulation, as the loss of anti-proliferative substances from endothelial cells might be related to the development and progression of atherosclerosis/arteriosclerosis in diabetes mellitus (DM) and hypertension.

On the other hand, prostaglandin (PG) I₂ has been reported to have a cytoprotective action on endothelial cells and to inhibit VSMC growth (Nilson & Olsson 1984, Kainoh et al. 1992, Koh et al. 1993). PGI₂ is well known...
to stimulate cAMP, which plays a pivotal role in the regulation of glucose metabolism, platelet aggregation and VSMC relaxation. Thus, PGI\textsubscript{2} analogues are widely used for the treatment of peripheral arterial disease observed in DM (Numano et al. 1992, Uchikawa et al. 1992, Fujitani et al. 1995). DM is characterized by the premature development of microvascular and macrovascular disease (Kannel & McGee 1979, Graier et al. 1993, Hsueh & Anderson 1993), and hyperglycaemia is an independent risk factor for the development of cardiovascular disease (Henry & Genuth 1996). Interestingly, high glucose treatment caused endothelial cell death through a decrease in local HGF production (Morishita et al. 1997\textit{a}). As addition of recombinant HGF prevented the endothelial cell death induced by high glucose (Morishita et al. 1997\textit{a}), HGF seems to play a pivotal role in the regulation of endothelial cells in DM. Interestingly, our previous report documented that PGI\textsubscript{2} stimulated local vascular HGF production using \textit{in vitro} cultured VSMCs and endothelial cells (Morishita et al. 1997\textit{b}). However, none of the reports described the \textit{in vivo} effects of PGI\textsubscript{2} on local HGF production. Therefore, in this study, we examined the effects of a stable oral PGI\textsubscript{2} analogue (beraprost sodium) on local HGF production in DM rats, to clarify the potential role of HGF in endothelial injury induced by high d-glucose.

Materials and Methods

Experimental design

DM was induced in male Wistar–Kyoto (WKY) rats (16-weeks-old; Charles River Breeding Laboratories, Tokyo, Japan) by a single i.p. injection of streptozotocin (35 mg/kg in 50 mM citric acid buffer, pH 4–5). Then, 10 days later, blood was obtained periorbitally after 8 h of fasting. Only rats having a blood glucose concentration above 300 mg/dl were kept in the protocol and randomized for experiments. The rats were maintained and bred under conventional conditions with food and tap water provided freely, except on days of blood sampling, and a 12 h light:12 h darkness photoperiod. These rats were divided into three groups and treated for 28 days as follows: vehicle (distilled water) or beraprost sodium (300 or 600 \(\mu \)g/kg per day) (each \(n = 13 \)). The drugs were donated by Yamanouchi Pharmaceutical Company (Tokyo, Japan). The animals were randomly allocated to each group, and drugs were administrated by gavage. After treatment, the rats were killed by decapitation and blood was collected. Systolic blood pressure (BP) was measured in conscious rats using the tail-cuff method with a sphygmomanometer (Softron Co., Ltd, Tokyo, Japan). All rats were free to drink water and eat standard laboratory rat chow (containing 11·3 mEq Na+/100 g, 32·6 mEq K+/100 g, and 24–6% protein by weight; Oriental Kobo Co., Osaka, Japan). Throughout the experiment, rats were housed in metabolic cages under light- and temperature-controlled conditions.

Evaluation of vasodilator properties in response to acetylcholine

Freshly harvested abdominal aortas were cleaned of fat and connective tissues, cut into helical strips, and mounted in 30 ml organ baths, containing Krebs–Henseleit buffer (120 mM NaCl, 4·7 mM KCl, 2·5 mM CaCl\textsubscript{2}, 1·2 mM MgSO\textsubscript{4}, 1·2 mM KH\textsubscript{2}PO\textsubscript{4}, 25 mM NaHCO\textsubscript{3}, 5·5 mM glucose, pH 7·4) maintained at 37 °C and oxygenated with 95% O\textsubscript{2}, 5% CO\textsubscript{2} (Hayashi et al. 2000). Vessels were equilibrated for 60 min, with changes of bathing fluid every 15 min. Isometric tension studies were performed using a Grass model 7D polygraph. Optimal resting tension was determined in baseline studies, and the response to vasoactive drugs was then determined. Cumulative dose–response curves to phenylephrine (PE: \(10^{-9} \) to \(10^{-4} \) M) were established. The vessels were then submaximally precontracted with PE (typically \(3 \times 10^{-6} \) M), and endothelial function was evaluated by means of vascular relaxation to acetylcholine (\(10^{-9} \) to \(10^{-4} \) M). NO mediation of acetylcholine responses was confirmed by blocking acetylcholine-induced relaxation by N(omega)-nitro-L-arginine methyl ester (L-NAME) (1 mM), a specific competitive inhibitor of NO synthase. Contractile responses were measured from the polygraph chart and expressed as a percentage of the maximal contraction or, for relaxation, as a percentage of the precontracted tension.

Measurement of tissue and serum HGF concentration

Vascular HGF concentration was determined by enzyme immunoassay (EIA) using anti-rat HGF antibodies (HGF EIA kit: Tokushumeneki Institute, Tokyo, Japan) (Yamada et al. 1995). The aortas were promptly removed without excess fat after perfusion from the apex of the heart with saline, frozen in liquid nitrogen, and stored at \(-70 \) °C until use. On the day of extraction, the tissue was thawed at \(4 \) °C, and homogenized with a polytron in assay solution. Each specimen was centrifuged at 20 000 \(\times g \) for 30 min at \(4 \) °C, to remove the lysates. Tissue HGF concentration was determined by EIA using anti-rat HGF antibody (Yamada et al. 1995).

RNA analysis

The blood vessels were promptly removed, immediately frozen in liquid nitrogen and stored at \(-80 \) °C prior to RNA extraction. Total RNA was extracted from three individual blood vessels with guanidine thiocyanate by ultracentrifugation through a dense cushion of CsCl in a standard manner. For Northern blot analysis, 20 \(\mu \)g total RNA were subjected to electrophoresis on 1·5%
agarose-formaldehyde denaturing gel and transferred to a nitrocellulose membrane (Amersham International). The filter was baked, prehybridized, and hybridized to full-length cDNA for the rat HGF probe labelled with 32P. Then the filter was washed and exposed to the films, and analysed by densitometry (Shimazu, Kyoto, Japan).

Immunohistochemical analyses

The aortas were also stained for immunoreactive HGF and c-met proteins. Tissue specimens (6 µm thick) from the mid-section of the blood vessels were sectioned at 60 µm intervals along the vessel in a proximal to distal fashion. Sections were stained using an enzyme immunohistochemical kit (Histostain-SP kit; Zymed Lab., Inc., South San Francisco, CA, USA) with rabbit polyclonal antibody against rat HGF (1:1000 dilution; Tokushu Meneki Institute (Tsuda et al. 1992)) and rat c-met (1:1000 dilution; Tokushu Meneki Institute (Nakamura et al. 2000)), which was tested for cross-reactivity with rat HGF (Nakamura et al. 2000).

Statistical analysis

All values are expressed as means ± S.E.M. ANOVA with a subsequent Bonferroni/Dunnet test was employed to determine the significance of differences in multiple comparisons. Values of $P<0.05$ were considered statistically significant.

Results

As previously reported (Morishita et al. 1997a, Hayashi et al. 1999), HGF enhances endothelial regeneration without VSMC replication and protects against endothelial damage caused by high glucose, hypoxia or angiotensin II (Ang II), probably through potent mitogenic and anti-apoptotic actions on endothelial cells. In addition, our previous studies demonstrated that high β-glucose down-regulated vascular HGF expression in VSMCs and endothelial cells (Morishita et al. 1997a). Therefore, we further examined the effect of high β-glucose on local vascular HGF production in DM rats. In the WKY rats, HGF mRNA could be readily detected in the blood vessels by Northern blotting (Fig. 1). In contrast, a significant reduction of vascular HGF mRNA was observed in DM rats as compared with non-DM rats, as assessed by Northern blot analysis (Fig. 1). In addition, vascular HGF mRNA expression was identical to the precise size (2·1 kb).

Figure 1 Vascular HGF mRNA in aortas of diabetic rats. DM=diabetic rats, DM+PGI$_2$ (300 µg/kg/day)=DM rats treated with a low dose of beraprost sodium (300 µg/kg per day), DM+PGI$_2$ (600 µg/kg/day)=DM rats treated with a high dose of beraprost sodium (600 µg/kg per day), Endothelial cells=human aortic endothelial cells (positive control), WKY=non-diabetic WKY rats. GAPDH=glyceraldehyde 3-phosphate dehydrogenase. HGF mRNA expression was identical to the precise size (2·1 kb).

Figure 2 Vascular HGF concentration in aortas of diabetic rats as assessed by EIA. non DM=non-diabetic rats, DM=diabetic rats, untreated=DM rats treated with vehicle, PGI$_2$(300)=DM rats treated with a low dose of beraprost sodium (300 µg/kg per day), PGI$_2$(600)=DM rats treated with a high dose of beraprost sodium (600 µg/kg per day). $n=8$ per group (means ± S.E.M.).
the decrease in vascular HGF mRNA induced by DM (vehicle 100%, +PGI2 37.2 ± 8.2%, P < 0.01).

We also examined staining for HGF and its specific receptor, c-met, in the aorta of DM rats. In non-DM rats, positive staining for HGF protein could be detected in VSMCs in the media and endothelial cells in the endothelium. In contrast, a marked reduction of vascular HGF protein was observed in DM rats as compared with non-DM rats as assessed by immunohistochemical analysis (Fig. 3A). Similarly, as shown in Fig. 3B, in non-DM rats, positive staining for c-met was observed in the endothelium, while little staining for c-met was detected in the blood vessels of DM rats. Interestingly, positive staining for vascular HGF protein and c-met was markedly increased in DM rats treated with beraprost sodium as compared with vehicle (Figs 2 and 3). Positive staining for HGF protein could be detected mainly in both endothelial cells and VSMCs in DM rats treated with beraprost sodium, whereas positive immunostaining for c-met could be detected mainly in endothelial cells in DM rats treated with beraprost sodium (Fig. 3B).

Finally, we examined the effects of high glucose on vasodilator response. As shown in Fig. 4, blood vessels from DM rats treated with vehicle demonstrated impairment of the vasodilator response to acetylcholine administration as compared with untreated non-DM rats (P < 0.01). In contrast, administration of acetylcholine into precontracted vessels from DM rats treated with beraprost sodium resulted in significant dilation as compared with vessels treated with vehicle, in a dose-dependent manner (Fig. 4A and B, P < 0.01). The endothelium-dependent dilation in arteries treated with beraprost sodium was also supported by the observation that the increase in dilation was completely abolished by administration of L-NAME (Fig. 4B). In contrast, there was no significant change in systolic BP or body weight in rats treated with low and high concentrations of beraprost sodium (data not shown). Similarly, there was no significant difference in
blood glucose level among all groups (vehicle 612 ± 31, beraprost sodium 300 µg/kg per day 604 ± 31 mg/dl, not significant).

Discussion

HGF is a mesenchyme-derived pleiotropic factor which regulates cell growth, cell motility, and morphogenesis of various types of cells, and is thus considered a humoral mediator of epithelial-mesenchymal interactions responsible for morphogenic tissue interactions during embryonic development and organogenesis (Matsumoto & Nakamura 1991, Nakamura 1991, Boros & Miller 1995). Moreover, we found that HGF fulfils the characteristics of an endothelium-specific growth factor, as HGF can stimulate the growth of endothelial cells without VSMC replication (Nakamura et al. 1996a, b). Therefore, we hypothesized that HGF may also have an important role in the regulation of endothelial cells. Indeed, we have previously reported that endothelial cell death induced by high d-glucose is accompanied by decreased local HGF production in vascular cells through transforming growth factor-β (TGF-β) activation (Morishita et al. 1997a). This phenomenon should be important, since dysfunction of endothelial cells causing loss of multiple endothelium-derived substances (PGI2, NO, C-type natriuretic peptide) results in the progression of arteriosclerotic vascular changes in DM (Kannel & McGee 1979, Graier et al. 1993, Hsueh & Andersen 1993).

From this viewpoint, HGF would be more interesting, as HGF can abrogate the cell death of endothelial cells mediated by various conditions such as high d-glucose through the inhibition of apoptosis (Morishita et al. 1997b, Hayashi et al. 2000). Recently, we revealed that local HGF expression in vascular cells was up-regulated by cAMP, and down-regulated by Ang II and TGF-β (Morishita et al. 1997b, Hayashi et al. 2000). In addition, local HGF production in blood vessels was decreased in association with increased glucose concentration (Nakamura et al. 1998). Since multiple VSMC-derived substances have profound influences on the maintenance of endothelium (Dzau & Gibbons 1991, Dzau 1993), secretion of endothelial protectants from vascular cells is very important in the control of endothelial function. Expectedly, the present study demonstrated a significant decrease in vascular HGF mRNA and protein in DM rats. Probably, a decrease in local HGF production in VSMCs by high d-glucose may affect endothelial cell growth in a paracrine manner.

Thus, we studied the effects of a PGI2 analogue, a drug well known to improve peripheral arterial disease in patients with DM (Numano et al. 1992, Uchikawa et al. 1992, Fujitani et al. 1995), on the vasodilator response of blood vessels in DM rats, to examine the contribution of an increase in vascular HGF to maintenance of the
endothelium. Of importance, PGE, a PGI2 analogue, and
cilostazol, which induce cAMP accumulation, stimulated
vascular HGF expression in human cultured VSMCs and
endothelial cells (Morishita et al. 1997b). Nevertheless, no
report has documented the regulation of vascular HGF by
these agents in vivo. The present study demonstrated that a
stable PGI2 analogue, beraprost sodium, increased local
HGF expression in blood vessels in DM rats. Given that
high d-glucose initiates apoptosis of endothelial cells
(Baumgartner-Parzer et al. 1995), increased HGF produc-
tion by beraprost sodium may attenuate apoptosis or injury
of endothelial cells. This increase in local HGF production
by a PGI2 analogue may be due to an increase in cAMP,
since the promoter region of HGF gene contains a cAMP
responsive element (Okajima et al. 1993). Increased local
HGF production from vascular cells by a PGI2 analogue
may improve endothelial dysfunction induced by high
glucose, in addition to the direct vasodilative effects on
VSMCs. This hypothesis is supported by the observation
that overexpression of HGF gene accelerated endothelial
regeneration and improved endothelial dysfunction in a rat
balloon injury model (Hayashi et al. 2000). Thus, this
hypothesis was supported by the observation that there was
no significant difference in BP and plasma glucose level
between rats treated with vehicle and beraprost sodium.
Reversal of endothelial dysfunction by a PGI2 analogue
seems to be independent from haemodynamic effects.
Unfortunately, the present study did not address the extent
of regrowth of endothelial cells, since the current meth-
odology to test the endothelial condition is quite limited.
However, the increased vascular HGF production by these
agents may contribute to the usefulness of PGI2 analogues
in the treatment of peripheral arterial disease such as
arteriosclerosis obliterans observed in DM, although fur-
ther studies are needed. Our previous clinical data dem-
onstrated a significant negative correlation between serum
HGF and glycosylated haemoglobin concentrations in
DM patients without complications, probably due to the
exposure of chronic high glucose (Nakamura et al. 1998).
Decrease in a local and circulating endothelial stimulant,
HGF, in DM may be a trigger of endothelial dysfunc-
tion, potentially resulting in the development and/or
progression of vascular changes.

Overall, we demonstrated that treatment with a PGI2
analogue improved endothelial dysfunction induced by high
d-glucose, probably through activation of local
HGF production. Increased local vascular HGF produc-
tion by PGs may prevent endothelial injury, poten-
tially resulting in the improvement of peripheral arterial
disease.

Acknowledgements

We wish to thank Rie Kosai and Keiko Yamaguchi for
their excellent technical assistance. This work was partially
supported by grants from the Japan Health Sciences
Foundation, a Grant-in-Aid from The Ministry of Public
Health and Welfare, a Grant-in-Aid for the Development
of Innovative Technology, a Grant-in-Aid from Japan
Promotion of Science, and through Special Coordination
Funds from the Ministry of Education, Culture, Sports,
Science and Technology, the Japanese Government.

References

Baumgartner-Parzer SM, Wagner I, Pettermann M, Grillj J, Gessi A
& Waldhaus W 1995 High-glucose-triggered apoptosis in cultured
endothelial cells. Diabetes 44 1323–1327.
Boros P & Miller CM. 1995 Hepatocyte growth factor: a
multifunctional cytokine. Lancer 345 293–295.
Dzau VJ 1993 The role of mechanical and humoral factors in growth
regulation of vascular smooth muscle cells and cardiac myocytes.
Current Opinion in Nephrology and Hypertension 2 27–32.
Dzau VJ & Gibbons GH 1991 Endothelium and growth factors in vascular
remodeling of hypertension. Hypertension 18 (Suppl III)
115–121.
Fujitani K, Kambayashi J, Murata K, Yano Y, Shiozaki K, Yukawa
M, Sakon M, Murata T, Kawasaki T, Shiba E & Mori T 1995
Clinical evaluation of combined administration of oral prostacyclin
analogue beraprost and phosphodiesterase inhibitor cilostazol.
Pharmacological Research 31 121–125.
Graer WF, Wascher TC, Lackner L, Toplak H, Krejs GJ & Kukovetz
WR 1993 Exposure to elevated d-glucose concentrations modulates
vascular endothelial cell vasoactivity response. Diabetes 42
1497–1505.
Hayashi S, Morishita R, Nakamura S, Yamamoto K, Moriguchi A,
Nagano T, Taizi M, Noguchi H, Matsumoto K, Nakamura T,
Higaki J & Oghara T 1999 Potential role of hepatocyte growth
factor, a novel angiogenic growth factor, in peripheral arterial
disease: down-regulation of HGF in response to hyperoxia in vascular
cells. Circulation 100 1301–1308.
Hayashi K, Nakamura S, Morishita R, Moriguchi A, Aoki M,
Matsumoto K, Nakamura T, Kameda Y, Sakai N & Oghara T 2000 In vivo transfer of human hepatocyte growth factor gene
delivery accelerates re-endothelialization and inhibits neointimal formation
Henry RR & Gennuth S 1996 Forum one: current recommendations
about intensification of metabolic control in non-insulin-dependent
Hueh WA & Anderson PW 1993 Systemic hypertension and the
renin–angiotensin system in diabetic vascular complications.
American Journal of Cardiology 72 14H–21H.
Itoh H, Pratt RE & Dzau VJ 1990 Atrial natriuretic polypeptide
inhibits hypertrophy of vascular smooth muscle cells. Journal of
Clinical Investigation 86 1690–1697.
Kanoh M, Nishio S & Nakadate T 1992 Cytoprotective action of
beraprost sodium against peroxide-induced damage in vascular
endothelial cells. Pharmacology 45 61–70.
Kannel WB & McGee DL 1979 Diabetes and glucose tolerance as risk
factors for cardiovascular disease: the Framingham study. Diabetes
Care 241 2035–2038.
Koh E, Morimoto S, Jiang B, Inoue T, Nabata T, Kitano S, Yasuda
O, Fukuo K & Oghara T 1993 Effects of beraprost sodium, a
stable analogue of prostacyclin, on hyperplasia, hypertrophy and
glycosaminoglycan synthesis of rat aortic smooth muscle cells. Artery
20 242–252.
Matsumoto K & Nakamura T 1991 Roles of HGF as a pleiotropic
factor in organ regeneration. In Hepatocyte Growth Factor–Scatter
Factor (HGF–SF) and C-Met Receptor, pp 225–249. Eds ID Goldberg

Received in final form 22 May 2002
Accepted 10 June 2002