The role of the efflux transporter P-glycoprotein in brain penetration of prednisolone

A M Karssen, O C Meijer, I C J van der Sandt, A G De Boer, E C M De Lange and E R De Kloet

Divisions of Medical Pharmacology and Pharmacology, Leiden/Amsterdam Center for Drug Research/Leiden University Medical Centre, PO Box 9502, Leiden, 2300 RA, The Netherlands

(Requests for offprints should be addressed to A M Karssen; Email: Karssen@LACDR.LeidenUniv.nl)

Abstract

In the present study, we have investigated the role of the multidrug resistance (mdr) P-glycoprotein (Pgp) at the blood–brain barrier in hampering the access of the synthetic glucocorticoid, prednisolone.

In vivo, a tracer dose of \[^{3}H\] prednisolone poorly penetrated the brain of adrenalectomised wild-type mice, but the uptake was more than threefold enhanced in the absence of Pgp expression in mdr1a \((-/-)\) mice. In vitro, in stably transfected LLC-PK1 monolayers the human MDR1 P-glycoprotein was able to transport prednisolone present at a micromolar concentration. A specific Pgp blocker, LY 335979, could block this polar transport of \[^{3}H\] prednisolone. Human Pgp does not transport all steroids, as cortexolone was not transported at all and aldosterone was only weakly transported.

The ability of Pgp to export the synthetic glucocorticoid, prednisolone, suggests that uptake of prednisolone in the human brain is impaired, leading to a discrepancy between central and peripheral actions. Furthermore, the ensuing imbalance in activation of the two types of brain corticosteroid receptors may have consequences for cognitive performance and mood.

Journal of Endocrinology (2002) 175, 251–260

Introduction

The synthetic glucocorticoids prednisolone and dexamethasone are widely used as anti-inflammatory and immunosuppressive drugs, because of their potent glucocorticoid actions in combination with their low mineralocorticoid (salt-retaining) actions. These actions are mediated by glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) respectively (De Kloet et al. 1998). Both types of corticosteroid receptors are present in the brain. Glucocorticoid treatment, therefore, has major effects on cognitive function (Belanoff et al. 2001b), whereas blockade of GR action seems to be a promising anti-depression strategy (Belanoff et al. 2001a).

Glucocorticoids are commonly believed to cross endothelial barriers with relative ease because of their highly lipophilic nature and their small size. However, we recently demonstrated that the penetration of dexamethasone into mouse brain is hampered because the multidrug resistance 1a \((mdr1a)\) P-glycoprotein \((Pgp)\) excludes this high affinity GR ligand from the brain (Schinkel et al. 1995, Meijer et al. 1998). The drug-transporting Pgp is expressed at the luminal membranes of endothelial cells of the blood–brain barrier \((BBB)\) (Cordon-Cardo et al. 1989, Thiebaut et al. 1989). This transmembrane protein is encoded by the mdr1a gene in rodents and by the highly homologous MDR1 gene in humans (Jette et al. 1995, Van de Vrie et al. 1998). We hypothesised that the synthetic GR ligand, prednisolone, is also a substrate of this efflux transporter and is thus hampered in its ability to enter the glucocorticoid target areas in the brain. A poor penetration of the BBB by this synthetic glucocorticoid may have important implications for its actions on brain function.

Pgp-mediated transport is not a common feature of steroids. We have examined Pgp-mediated transport of several naturally occurring corticosteroids. Recently, we have shown that there is a large difference in transport between the mixed MR/GR agonists cortisol and corticosterone (Karssen et al. 2001). Cortisol is transported by human MDR1 Pgp and, in line with the presence of MDR1 Pgp at the BBB, the levels of cortisol in human brain are decreased towards those of corticosterone. In contrast, the latter compound freely crosses the BBB in rodents as well as in man (Karssen et al. 2001). We now demonstrate the lack of robust Pgp-mediated transport for two other corticosteroids which are circulating in human plasma, i.e. the high affinity MR ligand, aldosterone and the precursor of cortisol, 11-deoxycortisol (cortexolone).

We have tested our main hypothesis about the role of Pgp at the BBB in reducing the penetration of
prednisolone into the brain in two ways. First, we tested whether mdr1a Pgp at the mouse BBB limits in vivo brain penetration of prednisolone. For this purpose we have injected adrenalec tomised mdr1a (−/−) and wild-type mice with [3H]prednisolone with or without pretreatment with excess unlabelled prednisolone. Secondly, we have investigated in vitro whether the human homologue, MDR1 Pgp, is also able to transport prednisolone. Therefore, we measured polar transport in monolayers of pig kidney epithelial cells stably transfected with human cDNA of MDR1 Pgp compared with nontransfected host cells.

Materials and Methods

In vivo distribution and autoradiography

The in vivo distribution experiments were carried out as described previously (Meijer et al. 1998, Karssen et al. 2001) with some modifications. Male mdr1a (−/−) and wild-type Friends virus B (FVB) mice were bred under specific pathogen free conditions at TNO (Leiden, The Netherlands). Male mice at the age of 18–23 weeks were used for this study. All experiments were carried out in accordance with the European Communities Council Directive 86/609/EEC and with approval from the animal care committee of the Faculty of Medicine, Leiden University (Leiden, The Netherlands).

After transport, the mice were housed individually at our laboratory, at ambient temperature and under a 12 h/12 h lighting schedule (lights on at 0700 h, lights off at 1900 h) with free access to food and water.

To remove the source of endogenous corticosterone, mice were bilaterally adrenalectomised under gas anaesthesia (isoflurane) by a dorsal approach. After adrenalectomy (ADX), the animals had free access to 0·9% saline. At the time of the experiment the animals weighed 28 ± 2·0 g (mean ± S.D.). Two days after ADX, the animals were subcutaneously injected with tritiated prednisolone (dissolved in 2% ethanol/0·9% saline) for in vivo distribution. Wild-type (n=9) and mutant mice (n=6) were injected with 3·5 µCi/10 g [2,4,6,7-3H]prednisolone (Amersham Pharmacia Biotech, UK, specific activity (SA) 48 Ci/mmol). For in vivo autoradiography, mice (n=2) were treated with 13·5 µCi/10 g [3H]prednisolone in a separate but similar experiment. As a control for non-specific retention, one mouse of each genotype was pretreated with a 100-fold excess of unlabelled prednisolone (Sigma–Aldrich, Germany). One hour after injection the animals were decapitated. Trunk blood was collected in EDTA-coated tubes and centrifuged for determination of radioactivity and of remaining corticosterone in the plasma using a 125I-corticosterone radioimmunoassay kit (ICN Biomedicals, Inc., Costa Mesa, CA, USA). The brain was dissected and quickly frozen in isopentane precooled on dry ice/ethanol. Liver, testis, intestine and cerebellum were dissected and frozen on dry ice. All tissues were stored at –80°C until further use.

All organ tissues studied, except for the brain, were homogenised using Soluene–350 (Packard Bioscience, Groningen, The Netherlands). Hionic–Fluor (Packard Bioscience) was added to tissue homogenates, and plasma and radioactivity was determined in a Tricarb β-counter (Packard Instruments, Meriden, USA). Twelve-micrometre coronal sections of brain were cut on a cryostat and thaw-mounted on poly-l-lysine (Sigma Chemical Co., St Louis, MO, USA)-coated microscopic slides. The slides were put in an X-ray exposure holder (Amersham Pharmacia Biotech) and apposed to Ultrofilm (Leica Corp., Heerbrugg, Switzerland) for 18 months.

Transepithelial transport and inhibition studies

In order to examine the interactions of the glucocorticoid prednisolone, the mineralocorticoid aldosterone and the antiglucocorticoid cortexolone with the human P-glycoprotein, we used monolayers of the porcine kidney epithelial cell-line LLC-PK1 and LLC-PK1 cells stably transfected with cDNA of the human MDR1 gene (LLC-PK1:MDR1). Cells obtained from the American Type Culture Collection (Manassas, VA, USA) were kindly provided by the Dutch Cancer Institute (Amsterdam, The Netherlands) (Schinkel et al. 1995). Human P-glycoprotein has been shown before to be specifically expressed on the apical surface of LLC-PK1:MDR1 cells in these monolayers (Ueda et al. 1992). Therefore, Pgp substrates entering these cells from the basal side will be translocated to the apical compartment, while those entering the apical membrane will be pumped back into the medium, thus resulting in polarised transport of substrates. This system models the way Pgp is likely to function in the BBB in excluding drugs from the brain (Yamazaki et al. 2001).

Cells were cultured at 37°C in the presence of 5% CO2 in complete medium, which consisted of DMEM (Biowhittaker Europe, Verviers, Belgium) supplied with 25 mM HEPES and 4·5 g/l glucose and supplemented with 100 000 U/l penicillin, 100 mg/l streptomycin, 2 mM l-glutamine and 10% (vol/vol) foetal calf serum. The LLC-PK1 and LLC-PK1:MDR1 cell lines were subcultured by trypsination every 3 to 4 days and medium was replaced twice a week.

During the experiments complete medium was used. The LLC-PK1 and LLC-PK1:MDR1 cells were seeded on microporous polycarbonate membrane filters (0·4 µm pore size, 12 mm diameter, Transwell, Costar, Corning BV, Schiphol-Rijk, The Netherlands) at a density of 120 × 103 cells/cm2. The cells were grown for 5–6 days in complete medium with a medium replacement at day 3. Two hours before the start of the experiment, the medium was replaced with 800 µl fresh medium at both the apical and basal side of the monolayer. In the inhibition
experiments, one hour later the potent and selective P-glycoprotein blocker LY 335979 (1 μM in water; kindly provided by Eli Lilly & Co (USA)) or water was added at the basal side. To measure the transepithelial transport from the apical to the basal side or from the basal to the apical side 8 μl of a 100 times stock of tritiated steroid in ethanol were added in triplicate at the apical or basal side respectively, at the start of the experiment (t=0). We have tested [3H]prednisolone, and [1,2,6,7-3H]aldosterone (Amersham Pharmacia Biotech, UK; SA 64 Ci/mmol), (1,2(n))-[3H]deoxycorticosterone (=cortisolone; NEN Life Science Products, Boston, USA; SA 57 Ci/mmol) and, as a positive control, [1,2,4,6,7-3H]dexamethasone (Amersham Pharmacia Biotech, UK; SA 91 Ci/mmol). As we were interested whether MDR1 Pgp was able to transport prednisolone even at high concentrations we supplemented [3H]prednisolone with 1 μM unlabelled prednisolone. The starting concentrations for each experiment are mentioned in the legends of the corresponding Figures. Over the four hours of study, 75 μl aliquots were taken once every hour from both compartments. Eight microlitre samples of the 100 times stock, and samples from the compartment opposite the one to which activity was added, were counted in a Tricarb β-counter after adding 3 ml Emulsifier Safe (Packard). Basal-to-apical and apical-to-basal transport is presented as a percentage of the monolayer experiments were analysed by repeated measures ANOVA. Significance was taken at P<0.05.

Statistical analysis
Mouse data were evaluated by Student’s t-test. The results of the monolayer experiments were analysed by repeated measures ANOVA. Significance was taken at P<0.05.

Results

Differences in brain uptake of [3H]prednisolone in mdr1a (−/−) and wild-type mice

One hour after administration of [3H]prednisolone to ADX mice, the uptake of radioactivity in brain showed a clear difference between mdr1a (−/−) mice and wild-type mice. After injection with 2.5 μg/kg radiolabelled prednisolone the amount of radioactivity in cerebellum homogenates was 3.2-fold higher in mutants than in mdr1a (+/+) mice (Table 1). The plasma levels of radioactivity were similar and the concentrations in the liver or any other peripheral tissue examined were not significantly different between the genotypes (Table 1). Comparable results were obtained after administration of 10 μg/kg [3H]prednisolone (Table 1). Although absolute levels in all tissues and blood were obviously higher after this higher dose, the brain-to-blood ratios were not significantly different from the ratios obtained after administration of the lower dose (Table 1). Remarkably, pretreatment with unlabelled prednisolone does not lead to any change in uptake of radioactivity in the cerebellum (Table 2). Thus, disruption of the mdr1a gene leads to enhanced uptake of prednisolone into the brain.

The autoradiograms also clearly demonstrate the difference between knockouts and controls. The mdr1a (+/+) animals showed negligible labelling of brain tissue after administration of [3H]prednisolone (Fig. 1A). Labelling in brain sections was restricted to the cerebral ventricles. Some radioactive label seemed to have penetrated into the brain tissue around the ventricles, but the amount was considerably lower compared with the amount taken up

Table 1 Uptake of radioactivity in tissue homogenates and blood 1 h after administration of [3H]prednisolone at two dose levels. Results are means ± S.E.M.

<table>
<thead>
<tr>
<th></th>
<th>Wild-type</th>
<th>mdr1a (−/−)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3H]Prednisolone (2·5 μg/kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Cerebellum (nCi/mg)</td>
<td>0·009 ± 0·001</td>
<td>0·030 ± 0·001*</td>
</tr>
<tr>
<td>Plasma (nCi/μl)</td>
<td>0·044 ± 0·003</td>
<td>0·043 ± 0·001</td>
</tr>
<tr>
<td>Liver (nCi/mg)</td>
<td>1·443 ± 0·076</td>
<td>1·565 ± 0·147</td>
</tr>
<tr>
<td>Testis (nCi/mg)</td>
<td>0·030 ± 0·001</td>
<td>0·033 ± 0·003</td>
</tr>
<tr>
<td>Intestine (nCi/mg)</td>
<td>1·040 ± 0·246</td>
<td>1·146 ± 0·325</td>
</tr>
<tr>
<td>Brain/blood ratio</td>
<td>0·225 ± 0·022</td>
<td>0·725 ± 0·026*</td>
</tr>
</tbody>
</table>

[3H]Prednisolone (10 μg/kg)		
n	2	2
Cerebellum (nCi/mg)	0·050 ± 0·010	0·225 ± 0·021*
Plasma (nCi/μl)	0·247 ± 0·035	0·337 ± 0·034
Brain/blood ratio	0·202 ± 0·014	0·668 ± 0·004*

*p<0.05, Student’s t-test, pretreated animals are not excluded from the analysis.

Table 2 Uptake of radioactivity in tissue homogenates and blood after pretreatment with unlabelled prednisolone

<table>
<thead>
<tr>
<th></th>
<th>Wild-type</th>
<th>mdr1a (−/−)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretreated with 0·25 mg/kg prednisolone followed by 2·5 μg/kg [3H]prednisolone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cerebellum (nCi/mg)</td>
<td>0·009 ± 0·001</td>
<td>0·031</td>
</tr>
<tr>
<td>Plasma (nCi/μl)</td>
<td>0·040 ± 0·003</td>
<td>0·038</td>
</tr>
<tr>
<td>Liver (nCi/mg)</td>
<td>1·244 ± 0·018</td>
<td>1·234</td>
</tr>
<tr>
<td>Testis (nCi/mg)</td>
<td>0·027 ± 0·002</td>
<td>0·026</td>
</tr>
<tr>
<td>Intestine (nCi/mg)</td>
<td>1·951 ± 0·533</td>
<td>2·191</td>
</tr>
<tr>
<td>Brain/blood ratio</td>
<td>0·222 ± 0·002</td>
<td>0·645</td>
</tr>
</tbody>
</table>

Pretreated with 1 mg/kg prednisolone followed by 10 μg/kg [3H]prednisolone

<table>
<thead>
<tr>
<th></th>
<th>Wild-type</th>
<th>mdr1a (−/−)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cerebellum (nCi/mg)</td>
<td>0·061</td>
<td>0·204</td>
</tr>
<tr>
<td>Plasma (nCi/μl)</td>
<td>0·282</td>
<td>0·303</td>
</tr>
<tr>
<td>Brain/blood ratio</td>
<td>0·216</td>
<td>0·673</td>
</tr>
</tbody>
</table>

Downloaded from Bioscientifica.com at 02/15/2019 04:06:58AM via free access
by the brain of mdr1a (−/−) mice. These mutant mice showed increased labelling of whole brain (Fig. 1B). In particular, radioactivity was retained in the paraventricular nucleus (PVN) and hippocampal cell fields. These brain areas abundantly express GRs. Pretreatment with a 100-fold excess of unlabelled prednisolone prevents this specific labelling (Fig. 1C). Remarkably, this pretreatment does not affect the labelling of the rest of the brain as was also shown in the cerebellum homogenates. Accordingly, these data clearly demonstrate that the presence of mdr1a Pgp in the BBB hampers the access of prednisolone to the mouse brain, particularly to the target areas within the brain that abundantly express GR.

Transepithelial transport of prednisolone in monolayers of LLC-PK1 and LLC-PK1:MDR1 cells

To test whether the human homologue of the mdr1a Pgp, MDR1 Pgp, is also able to transport prednisolone, we studied the transport capabilities of monolayers of pig kidney cells stably transfected with the human MDR1 cDNA compared with untransfected cells. Unlabelled prednisolone (1 µM) supplemented with a tracer dose of [3H]prednisolone was added to the basal or apical compartment. Prednisolone was transported in a clear polarised fashion in the MDR1-transfected monolayers, but not in monolayers of the parental cells (Fig. 2A), indicating that the human Pgp is able to transport prednisolone, even at the high concentration tested. Polarisated transport in MDR1 monolayers of prednisolone was abolished in the presence of LY 335979, a potent and selective Pgp blocker (Starling et al. 1997, Dantzig et al. 1999), resulting in similar fractions transported as in untransfected cells (Fig. 2B). This confirms that prednisolone transport is largely mediated by human P-glycoprotein.

As a positive control, we also assessed transepithelial transport of dexamethasone in our monolayers and demonstrated that MDR1 Pgp also efficiently transports this synthetic glucocorticoid (data not shown), as has been shown previously (Ueda et al. 1992, Schinkel et al. 1995).

Transepithelial transport of naturally occurring steroids in monolayers of LLC-PK1 and LLC-PK1:MDR1 cells

Furthermore, we tested corticosteroids that are naturally occurring in humans. Previously, we published the marked difference between transport of cortisol and corticosterone (Karssen et al. 2001). Now we focused on two additional corticosteroids, cortexolone and aldosterone. Cortexolone transport in the MDR1-transfected monolayers was not different from transport in monolayers of control cells (Fig. 3A), although polarised transport was observed in both cell lines which is probably caused by other renal transporters. This indicates the absence of human MDR1 Pgp-mediated transport of cortexolone. Administration of LY 335979 did not change the fraction of cortexolone translocated through the membrane (Fig. 3B), confirming the lack of Pgp contribution to the transport of cortexolone.

Examination of the transport of aldosterone shows that, although aldosterone displayed polarised transport in both transfected and parental monolayers, there was a small but
significant MDR1 Pgp contribution (Fig. 3C). This Pgp-mediated transport could be partly blocked by LY 335979 (Fig. 3D). These results demonstrate that aldosterone is only weakly transported by MDR1 Pgp.

Discussion

The present study indicates that the efflux transporter Pgp at the level of the BBB decreases the degree of brain exposure to the synthetic glucocorticoid prednisolone. Our in vivo autoradiography data show that the mdr1a Pgp present in BBB hampers the penetration of [3H]prednisolone into the mouse brain, whereas our results with monolayers of human MDR1 cDNA-transfected LLC-PK1 cells suggest that Pgp exports prednisolone from the human brain as well. We further demonstrated that aldosterone is transported by Pgp to a much smaller extent, while cortexolone is not transported at all.

Cells expressing P-glycoproteins are able to exclude a wide variety of structurally and functionally unrelated drugs, a phenomenon called multidrug resistance (Van de Vrie et al. 1998). It is now well established that Pgp is expressed in many normal tissues including the intestinal epithelium, the adrenals and brain capillary endothelial cells (Schinkel 1999). Several steroids such as dexamethasone and cortisol but not corticosterone are among its substrates (Ueda et al. 1992, Bourgeois et al. 1993, Ueda et al. 1996, Karssen et al. 2001). In the last decade, several studies have established the Pgp-mediated transport of the widely used synthetic glucocorticoid, dexamethasone (Barnes et al. 1996), while the steroid is transported in a polarised fashion in monolayers of LLC-PK1 cells transfected with MDR1 (Ueda et al. 1992, Schinkel et al. 1995, this study). Furthermore, dexamethasone penetration into mdr1a (−/−) mouse brain is enhanced compared with wild-type brain (Schinkel et al. 1995), increasing the access to the glucocorticoid receptor (Meijer et al. 1998). While dexamethasone transport by Pgp has thus been convincingly demonstrated, information about Pgp-mediated transport of prednisolone is sparse. Bourgeois et al. (1993) have shown that murine thymoma cells expressing mdr1b Pgp are resistant to prednisolone (and dexamethasone)-induced apoptosis, but this second murine multidrug resistance Pgp is not expressed at the BBB. Our study clearly shows that both mouse mdr1a and human MDR1 Pgp transport prednisolone, as has been shown previously for dexamethasone and cortisol. This implies that any GR-expressing cell type which also expresses the efflux transporter Pgp is resistant to these glucocorticoids, which is in line with the recent results of Pariante et al. (2001).

In contrast to these glucocorticoids, Pgp does not transport corticosterone (Karssen et al. 2001), a glucocorticoid that also circulates in human plasma but at 10-fold lower levels than cortisol and some other naturally occurring steroids. In line with the presence of MDR1 Pgp at the BBB, the levels of cortisol in human brain are decreased towards the brain levels of corticosterone as measured in post mortem specimens with liquid chromatography–mass spectrometry (Karssen et al. 2001). We now demonstrate that Pgp is also unable to transport cortisol. As a result of these experiments, it is suggested that Pgp is not a passive transporter of glucocorticoids.
in vitro (Kaiser & Mayer 1980, Schmidt & Davidson 1987) and in vivo (Acs & Stark 1975, Duncan & Duncan 1979, Kaiser & Mayer 1980). In addition, the high affinity MR ligand aldosterone is only weakly transported by Pgp as demonstrated by our data. These results agree with several in vitro studies on Pgp-mediated transport of aldosterone. Using comparable monolayers to those in this study, Ueda et al. (1992) have demonstrated that aldosterone is moderately transported by the human MDR1 Pgp, while Bourgeois et al. (1993) showed that cortexolone was not and aldosterone was only weakly transported by mdr1b Pgp. The weak transport of aldosterone by Pgp cannot explain why this mineralocorticoid seems to play a limited role in limbic functioning relative to corticosterone, while both steroids bind with similar affinity to MR in vitro (Veldhuis et al. 1982, De Kloet 1991). Moreover, upon administration of tracer amounts of [3H]corticosterone and [3H]aldosterone to adrenalectomised rodents both steroids are retained very well in limbic brain structures that abundantly express MR (Birmingham et al. 1984). However, in adrenal-intact animals only a small amount of aldosterone is extracted from hippocampal cell nuclei relative to corticosterone, probably because the latter steroid circulates in one hundred to one thousand times higher concentrations in the blood (Yongue & Roy 1987). Cells conferring aldosterone

Figure 3 Activity of [3H]cortexolone (A, B) and [3H]aldosterone (C, D) present in medium at different time points after adding [3H] steroid to the opposite compartment at t=0. (A, C) Transepithelial transport from the basal to apical (△, ●) and from the apical to basal (○, ■) compartment was measured in wild-type LLC-PK1 (dotted line) or MDR1-transfected LLC-PK1 (solid line) monolayers. (B, D) Transepithelial transport from the basal to apical (△, ●) and from the apical to basal (○, ■) compartment was measured in MDR1-transfected LLC-PK1 monolayers after adding 1 µM LY 335979 (broken line) or water (solid line) one hour before the start of the experiment. Results are presented as the fraction of the dose of radioactivity, which is 4 to 5 nM for both steroids, added to the respective compartment. Each point represents the mean of three monolayers ± s.e.m. In the case of aldosterone the experiment was repeated three times with similar results. Repeated measures ANOVA did not show a significant interaction of time*cell type*transport for either corticosteroid.
selectivity are present in the periventricular brain areas involved in salt appetite, regulation of the electrolyte balance and autonomic outflow (Seckl 1997, Van Acker et al. 2002). This aldosterone selectivity is due to an 11β-steroid dehydrogenase that breaks down corticosterone allowing aldosterone access to MR (Seckl 1997). In the hippocampus this reductase activity is absent (Robson et al. 1998). Further studies with mdr1a (−/−) mice are necessary to directly examine the involvement of Pgp in aldosterone uptake in brain.

Although prednisolone is one of the most common clinically used glucocorticoids, this study is the first that shows the fate of prednisolone in brain, whereas other frequently occurring glucocorticoids have been extensively studied before (for review see McEwen et al. 1986). In contrast to uptake into the brain of both corticosterone and aldosterone (McEwen et al. 1968, 1976, De Kloet et al. 1975, De Nicola et al. 1981, Coutard et al. 1987), access of dexamethasone and cortisol to brain is impaired (De Kloet et al. 1974, 1975, Rees et al. 1975, McEwen et al. 1976, Karssen et al. 2001), which has been shown to be caused by the presence of Pgp at the BBB (Meijer et al. 1998, Karssen et al. 2001). We now demonstrate that prednisolone is also hampered in its ability to reach the brain due to the presence of Pgp at this barrier. The active exclusion from the brain provides an explanation for the long-established puzzling phenomenon that GR in the brain is not labelled after in vivo administration of tracer doses of synthetic GR ligands.

In mdr1a null mice the high affinity GR ligand prednisolone is retained by hippocampal and paraventricular neurons as expected based on localisation of GR expressing cells (Van Eekelen et al. 1987). Among the hippocampal subfields, the CA3 pyramidal layer retained the lowest amount of label, in accordance with the neuro-anatomical distribution of hippocampal GR as measured with immunocytochemistry and in situ hybridisation (Van Eekelen et al. 1987, 1988). Pretreatment of mice with 100-fold excess of unlabelled prednisolone abolishes this selective retention in hippocampal cells and the PVN, but does not affect the overall uptake elsewhere in the brain. This indicates that the uniform labelling of the rest of the brain may be due mainly to non-receptor bound, freely moving prednisolone masking specific nuclear retention of low abundantly expressed GR in these areas.

Prednisolone, like dexamethasone, can bind to MR in vitro, but the affinity to this receptor is much lower than to GR to which these steroids bind with very high affinity (<1 nM) (Lan et al. 1981, 1982, De Kloet et al. 1984). In contrast, corticosterone and cortisol bind with high affinity to MR (<1 nM) and with tenfold lower affinity to GR. In line with this low affinity to the MR, prednisolone has only minor effects on salt retention in the kidney (Karssen & De Kloet 2000). Using in vivo autoradiography, only very high affinity receptors can be visualised due to the low doses used (De Kloet 1991); e.g. in mdr1a (−/−) mice only MR can be made visible with [3H]cortisol autoradiography as is the case with [3H]corticosterone in both wild-type and mutant mice (Karssen et al. 2001). In this study, prednisolone is only able to visualise GR, while the MR has too low an affinity for this steroid for detection.

The lack of effect of pretreatment of unlabelled prednisolone on uptake of [3H]prednisolone in wild-type brain indicates that the capacity of Pgp to expel prednisolone from brain is rather high. Furthermore, the monolayer results using 1 µM prednisolone also suggest that even at high concentrations Pgp is able to reduce prednisolone concentrations in the brain. Therapeutically, prednisolone is used in high doses in the treatment of diverse medical conditions, including pulmonary, rheumatological, neurological and autoimmune diseases and immune suppression following organ transplantation. Our results suggest that in humans treated with prednisolone, the resultant glucocorticoid levels in brain would be considerably lower than plasma levels. As most peripheral tissues are not protected by a Pgp expressing barrier, peripheral effects would therefore be relatively more potent than central effects, although this does not preclude central effects of prednisolone.

Hippocampal-dependent memory impairment after long-term high dose treatment with prednisone (which is quickly converted to prednisolone in vivo) has been described (Keenan et al. 1996). As hippocampal GR is involved in memory performance (Otitzl & De Kloet 1992), these effects could be attributed to activation of this receptor. On the other hand, an imbalance in central MR and GR activation as a result of prednisolone treatment could provide an alternative explanation. Differential effects mediated by MR and GR activation on cognitive function have been proposed (De Kloet et al. 1999, Lupien & Lepage 2001). Although mainly based on animal studies, De Kloet and colleagues (De Kloet 1991, De Kloet et al. 1999) have postulated that a balance between MR- and GR-mediated effects critically determines human cognitive functioning. Whether prednisolone reaches the brain or not, due to the prednisolone-induced suppression of pituitary–adrenal activity and thus of adrenocortical secretion, the brain becomes deprived of the endogenous glucocorticoids, corticosterone and cortisol. As a consequence, the ratio of MR/GR occupation will shift towards GR occupation with consequences for cognitive performance, mood and regulation of the behavioural stress response.

As many different drugs used in the clinic are Pgp substrates as well, one has to be aware of undesired side effects when prednisolone (or dexamethasone) is used in conjunction with these drugs. Cotreatment may be able to enhance the brain uptake of the synthetic glucocorticoid. The potent immunosuppressants FK506 and cyclosporine A have been shown to potentiate dexamethasone-
but not corticosterone-mediated transcriptional activity, apparently due to inhibition of a MDR pump similar to Pgp (Medh et al. 1998). The facilitation of prednisolone’s poor penetration into the brain by anti-cancer drugs may also give a rationale to the reported success of combination therapy in treatment of different types of brain tumours (Shibamoto et al. 1999, Wu et al. 1999, Maipang & Janjindamai 2000). Many anti-cancer drugs (e.g. Vinca alkaloids, anthracyclines, and taxanes) are known to be Pgp substrates. In fact, the first reports of Pgp expression dealt with tumour cells developing multidrug resistance after treatment with a single cytotoxic drug. Further treatment of these tumours is difficult. Provided that the tumour does not disrupt the BBB, brain tumours are even intrinsically resistant to these drugs, as they are behind the BBB (Regina et al. 2001). A combination of drugs including prednisolone, which are all Pgp substrates, may mutually increase their active brain levels by saturating Pgp.

It is remarkable that, in spite of its broad spectrum of substrates (Schinkel et al. 1994), Pgp distinguishes subtle differences in steroid structure. The differences shown in this study reflect the importance of both the 17-hydroxyl and the 11-hydroxyl group in determining the ability of steroids to be transported by Pgp as shown by Bourgeois et al. (1993). Pgp transports steroids having both these hydroxyl groups (such as prednisolone and dexamethasone). Steroids lacking one of these groups (such as aldosterone, corticosterone and cortexolone) and steroids without any of these groups are minimally transported, if at all. The high affinity MR ligand deoxycorticosterone belongs to the latter group and therefore it should easily be retained in the brain. However, although it readily enters the brain (Kraulis et al. 1975), McEwen et al. (1976) have shown that deoxycorticosterone is poorly retained by MR in different brain areas and pituitary of ADX rats. This suggests that there are additional factors, e.g. local metabolism, determining the retention of this mineralocorticoid in potential target areas.

In conclusion, we have demonstrated the involvement of Pgp in hampering the access of the synthetic glucocorticoid prednisolone to mouse brain. The ability of the human MDR1 Pgp to transport prednisolone suggests that prednisolone access to human brain is also impeded. The poor penetration of prednisolone into human brain would presumably lead to a discrepancy in the extent of central and peripheral actions of prednisolone. The subsequent imbalance in MR and GR activation may explain the reported changes in cognitive performance and mood in response to prednisone/prednisolone therapy.

Acknowledgements

Marc Fluttert, Sergiu Dalm and Dirk-Jan van den Berg are gratefully acknowledged for animal handling and technical assistance. We are grateful to Margret Blom and Heleen Voorwinden for assistance with cell cultures.

References

www.endocrinology.org

Downloaded from Bioscientifica.com at 02/15/2019 04:06:58AM via free access

Received 31 May 2002
Accepted 14 June 2002