The phytochemical lindleyin, isolated from *Rhei rhizoma*, mediates hormonal effects through estrogen receptors

T Usui¹, Y Ikeda¹,², T Tagami³, K Matsuda¹, K Moriyama¹,
K Yamada¹, H Kuzuya¹, S Kohno² and A Shimatsu¹

¹Clinical Research Institute, Center for Endocrine and Metabolic Disease, Kyoto National Hospital, Kyoto, Japan
²Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan

(Requests for offprints should be addressed to T Usui, 1-1 Mukaihata-cho Fukakusa, Fushimi-ku Kyoto, 612-8555 Japan; Email: tusui@kyotolan.hosp.go.jp)

Abstract

Some plant compounds or herb mixtures are popular alternatives to conventional therapies and contain organic compounds that bind to some nuclear receptors, such as the estrogen receptor (ER), to exert various biological effects. We studied the effect of various herbal extracts on ERα and ERβ isoforms. One herbal extract, *Rhei rhizoma* (rhubarb), acts as an agonist to both ERα and ERβ. The phytochemical lindleyin, a major component of rhubarb, might contribute to this estrogenic activity through ERα and ERβ. 4-Hydroxytamoxifen, an ER antagonist, completely reversed the estrogenic activity of lindleyin.

Lindleyin binds to ERα in vitro, as demonstrated using a fluorescent polarization assay. The in vivo effect of rhubarb extract was studied using a vitellogenin assay system in the freshwater fish, Japanese medaka (*Oryzias latipes*). There were marked increases in serum vitellogenin levels in male medaka exposed to rhubarb extract. We conclude that lindleyin, a component of some herbal medicines, is a novel phytoestrogen and might trigger many of the biological responses evoked by the physiological estrogens. *Journal of Endocrinology* (2002) 175, 289–296

Introduction

Phytoestrogens are plant (predominantly legumes and grasses) substances that have structural and functional similarity to estradiol-17β (Jordan et al. 1985). Plant-derived isoflavonoids, coumestans, and ligands compete with estradiol with varying affinities to bind to estrogen receptors (ERs), induce transcription of estrogen-responsive genes (Kuiper et al. 1998) and, depending on the outcome measured, either mimic or antagonize the action of steroidal estrogens (Hughes 1996). Humans are exposed to phytoestrogens through their diet, a major source being soy and soy-derived foods, which contain high levels of the isoflavone class of non-steroidal estrogenic compounds, genistein and daidzein (Martin et al. 1978, Price & Fenwick 1985, Setchell & Cassidy 1999, de Kleijn et al. 2001). The impact of dietary phytoestrogens on normal biological processes was first recognized in sheep (Schinckel 1948). Observations on sheep grazing on fields rich in clover and cheetahs fed high soy diets in zoos suggested that flavonoids and related phytochemicals can affect mammalian health (Bennetts et al. 1946, Shutt 1976, Setchell et al. 1987). Therefore, the fact that these compounds function as phytoestrogens might be an important dietary factor affecting human health (Adlercreutz 1995, Bingham et al. 1998, Cline & Hughes 1998, Humfrey 1998, Murkies et al. 1998, Tham et al. 1998). Among their widespread clinical effects, dietary phytoestrogens are purported to reduce the risk of cancer, have antioxidant and free radical scavenger activity, reduce serum cholesterol, induce cellular differentiation, and inhibit angiogenesis (Fotsis et al. 1993, Murkies et al. 1998, Tham et al. 1998). Phytoestrogens can therefore potentially benefit humans, and yet there are probably many more unidentified phytoestrogens in nature.

Herbal therapies are unconventional treatments in wide use for many diseases. They can have important biological activity. For example, saw palmetto inhibits 5α-reductase, an enzyme involved in testosterone metabolism (Delos et al. 1995), and St Johnswort, similar to pharmacologic antidepressants, blocks monoamine oxidase activity (Cott 1997). Recently, DiPaola et al. (1998) reported that PC-SPES (Botaniclab, Byea, CA, USA), a commercially available combination of eight herbs used as a non-estrogenic treatment for cancer of the prostate, has potent estrogenic activity both in vivo and in vitro. In many cases, however, the mechanisms by which these herbs produce their effect remains to be fully elucidated. Little is known about the agonistic or antagonistic effects of various herbs that are used as herbal medicine on nuclear receptors. In the present study, 24 herbs traditionally used by herbalists for treating a variety of health problems were extracted and tested for their interaction with ERs.

0022–0795/02/0175–289 © 2002 Society for Endocrinology Printed in Great Britain

Online version via http://www.endocrinology.org
Here we report that one of the herbs, *Rhei rhizoma* (rhubarb), has estrogenic activity both in vivo and in vitro. We also demonstrated that the phytochemical lindleyin, a major component of rhubarb extract, is a major contributor to this estrogenic activity and is a novel phytoestrogen.

Materials and Methods

Materials

Herb powders were kindly provided by Tsumura & Co. (Tokyo, Japan). (−)-Epicatechin 3-α-gallate, rhein, sennoside A, and lindleyin were also provided by Tsumura & Co. Naphthalene was purchased from Nacalai Tesque (Kyoto, Japan). The ER agonist estradiol-17β (E2) was purchased from Nacalai Tesque, and 4-hydroxytamoxifen, the ER antagonist, was purchased from Sigma Chemical Co. (St Louis, MO, USA). Triiodothyronine (T3) was purchased from Nacalai Tesque. Troglitazone was provided by Sankyo Pharmaceutical Company (Tokyo, Japan). Daidzein and genistein were purchased from Daido Chemical Industries, Osaka, Japan. **Gardeniae fructus**, **Moutan cortex**, **Ginseng radix**, **Cnidii rhizoma**, and **Tokyo, Japan**). Herb powders were kindly provided by Tsumura & Co. (Tokyo, Japan). (−)-Epicatechin 3-α-gallate, rhein, sennoside A, and lindleyin were also provided by Tsumura & Co. Naphthalene was purchased from Nacalai Tesque (Kyoto, Japan). The ER agonist estradiol-17β (E2) was purchased from Nacalai Tesque, and 4-hydroxytamoxifen, the ER antagonist, was purchased from Sigma Chemical Co. (St Louis, MO, USA). Triiodothyronine (T3) was purchased from Nacalai Tesque. Troglitazone was provided by Sankyo Pharmaceutical Company (Tokyo, Japan). Daidzein and genistein were purchased from Daido Chemical Industries, Osaka, Japan.

Preparation of herbal extracts

Stock solutions of herbal extracts were prepared as follows. Herbal powders (100 mg) were suspended in 10 ml water (dilution 1:100, w/v), sonicated for 1 min, and centrifuged at 3500 r.p.m. for 15 min. The supernatants were filtered through a 0.45 μm filter (DISMIC25CS; Tokyo Roshii, Tokyo, Japan). The herbs used in this study were numbered as follows: 1 *Cnidii rhizoma*, 2 *Fosythiae fructus*, 3 *Atractylodis rhizoma*, 4 *Ginseng radix*, 5 *Paconiae radix*, 6 *Cinnamoni cortex*, 7 *Moutan cortex*, 8 *Sinomeni caulis et rhizoma*, 9 *Zingiberis rhizoma*, 10 *Schizonepetae spica*, 11 *Atractylodis lanceae rhizoma*, 12 *Hoelen*, 13 *Schisandrae fructus*, 14 *Pinelliae tuber*, 15 *Gardeniae fructus*, 16 *Zizyphi fructus*, 17 *Bupleuri radix*, 18 *Platycephali radix*, 19 *Alismatis rhizoma*, 20 *Angelicae radix*, 21 *Magnoliae flos*, 22 *Rhei rhizoma* (rhubarb), 23 *Polyposi*, and 24 *Ophiopogonis tuber*.

Plasmids

pGAL-ERα, pGAL-ERβ, pGAL-TRα, and pGAL-PPARγ were constructed as follows: the ligand-binding domain of human ERα (amino acid 282–595), ERβ (amino acids 240–530), thyroid hormone receptor (TR)-α (amino acids 120–410), and peroxisome proliferator-activated receptor-γ (PPARγ) (amino acids 204–506) were amplified by polymerase chain reaction (PCR) and subcloned into a PM vector (Clontech, Palo Alto, CA, USA) which carries the DNA-binding domain of GAL4 (GALDBD) in frame to generate GALDBD, a chimeric protein. Expression vector for full-length ERα (pCMXERα, called pERαfull) has been described elsewhere. Chien et al. (1999). Expression vector for full-length human ERβ (pERβfull) was generated by PCR and subcloned into pcDNA3.1 (Invitrogen). PG5-luc, which has a firefly luciferase reporter gene under the control of five tandem repeats of the GAL4 recognition site, and pRL-TK, which harbors the Renilla luciferase reporter gene driven by thymidine kinase promoter, were obtained from Promega (Madison, WI, USA). The reporter plasmid ERα2-tk109-luc was described previously (Gehm et al. 1997).

Transfection

TSA201 cells, a clone of human embryonic kidney 293 cells (Margolskee et al. 1993), were maintained in phenol-red-free Dulbecco’s modified Eagle’s medium (Nikken Biomedical Laboratory, Kyoto, Japan) containing 10% charcoal-treated fetal bovine serum (ICN Biochemical Inc., Costa Mesa, CA, USA), and 1% penicillin/streptomycin (Gibco-BRL, Grand Island, NY, USA) at 37 °C in 5% CO2. One day before transfection, cells were seeded at approximately 0.5 to 1 × 10⁶/well in 12-well plates, and transfection was performed using the calcium phosphate co-precipitation method. The amounts of transfected plasmids were as follows: 50 ng for pGAL-derived plasmids or expression vectors for full-length ERs (pERαfull and pERβfull), 100 ng for pG5-luc or ERα2-tk109-Luc, and 5 ng for pRL-TK plasmids per well. Herbal extracts or various chemicals were added to the medium 8 h after transfection. Forty-eight hours after transfection, cells were harvested and assayed for luciferase activity using the Picagene kit (Promega) following the manufacturer’s protocol. The luciferase activity was measured using a Plate Lumino luminometer (Stratec Biomedical Systems, Birkenfeld, Germany). In all experiments, both firefly and Renilla luciferase activities were measured to monitor the transfection efficiency and cytotoxicity of the added materials.

ER competitor assay

A fluorescence polarization assay was performed to examine the in vitro binding of lindleyin to ERα. ERα was added to a fluorescent estrogen (Fluormone™ ES2, Pan Vera, Madison, WI, USA) ligand to form an ES2/ERα complex with high fluorescence polarization. The complex was then added to various concentrations of either bisphenol A or lindleyin. These experiments were performed using an ERα competitor assay kit (Pan Vera) and performed according to the manufacturer’s protocol. Polarization values were read using a Becon 2000 fluorescence polarization instrument (Pan Vera) at 485 nm excitation and 530 nm emission. Each data point in the
Figure 1 Transcriptional activity of rhubarb extract and five major components of rhubarb for ERα and ERβ. TSA201 cells were transfected with 100 ng EREtkLuc, 5 ng pRL-TK plasmid, and 50 ng pERαfull (ER α full) or pERβfull (ER β full). (A) The cells were harvested 48 h after transfection in the presence of rhubarb extract (1/400, 1/200, and 1/100 dilution of the stock solution) or E2 (10^{-11} and 10^{-10} mol/l). (B) The cells were harvested 48 h after transfection in the presence of five components of rhubarb. The components of rhubarb used in this study were as follows: (−) epicatechin 3-o-gallate (epicatechin), 10^{-6} mol/l rhein, 10^{-6} mol/l sennoside A, 10^{-6} mol/l naphthalene, 10^{-6} mol/l lindleyin, 10^{-6} mol/l. The addition of 10^{-6} mol/l 4-hydroxytamoxifen is indicated as +T. Results are indicated as fold activation. The data represented are the means ± s.d. (n=4). *P<0.001 vs controls.
polarization assay was run in triplicate, and the reported data are the means ± S.D. of three experiments.

Medaka vitellogenin assay

Male Japanese medaka (*Oryzias latipes*, orange-red type) were purchased from a dealer. They were kept in indoor tanks and fed TetraMin flakes (TetraWerke, Melle, Germany). After a week maintained in fresh water, they were divided into three groups: exposure to E2 (3 p.p.b.), exposure to rhubarb (1/400 dilution of rhubarb stock solution), and controls. After 48 h, their blood was collected for vitellogenin assay. Vitellogenin levels were measured using an EnBio vitellogenin medaka enzyme-linked immunosorbent assay (ELISA) System (Amersham Pharmacia Biotech, Arlington Heights, IL, USA) according to the manufacturer’s protocol.

Results

The effect of rhubarb and lindleyin on ERα- and ERβ-transfected cells

Of the 24 herbs examined in this study, only rhubarb extract showed significant reporter gene activation in ER-transfected TSA201 cells (data not shown). The effect of rhubarb extract was dose dependent, and the addition of a 1/200 dilution of stock solution to the culture medium was equivalent to approximately 10⁻¹⁰ mol/l E2. The rhubarb-induced reporter gene activation was blocked by 4-hydroxytamoxifen (Fig. 1A). To determine which components of rhubarb extract contribute to its estrogenic activity, we studied the effects of five known major components of rhubarb on reporter gene expression. Epicatechin 3-ο-gallate, rhein, sennoside A, and naphthalene had no effect on reporter gene expression in pG5-luc, pRL-TK, and pM, pGAL-ERα (GAL-ERα), pGAL-ERβ (GAL-ERβ), pGAL-TRα (GAL-TRα), or pGAL-PPARγ (GAL-PPARγ). The cells were harvested 48 h after transfection in the presence of extract (1/100 dilution (w/v) of stock solution), lindleyin (10⁻⁶ mol/l) and E2 (10⁻¹⁰ mol/l) for ERs, T3 (10⁻⁶ mol/l) for TR, and troglitazone (10⁻⁶ mol/l) for PPARγ. Results are indicated as fold activation compared with the pM-transfected cells. The data represented are the means ± S.D. (n=4).

![Figure 2](image-url)
shows the effects of lindleyin, genistein, and daidzein on GAL4-ERs and full-length ERs on reporter gene expression. Lindleyin at 10^{-5} mol/l activated GAL4-ER and full-length-mediated reporter gene expression. The potency of 10^{-5} mol/l lindleyin is equivalent to approximately 10^{-6} mol/l genistein and daidzein.

Lindleyin binds to ERα in vitro

A fluorescence polarization assay was performed to confirm the in vitro binding of lindleyin to ERα. Lindleyin (10⁶ nmol/l) replaced approximately 40% of the labeled estrogen (Fig. 4). The IC₅₀ values of E2 and bisphenol A were 13·9 nmol/l and 45 µmol/l respectively. The IC₅₀ of lindleyin was calculated to be 225·2 to 435·8 µmol/l, which is approximately 0·005% that of E2 and 14% that of bisphenol A.

Exposure to rhubarb extract increased serum vitellogenin levels in male medaka

The in vivo effect of rhubarb was studied using a vitellogenin assay in Japanese medaka. Vitellogenin is a yolk protein, which is scarcely present in male medaka, and is markedly induced by environmental estrogenic compounds (Gronen et al. 1999, Shioda & Wakabayashi 2000). Exposure to 3 p.p.b. of E2 markedly increased serum vitellogenin levels. Exposure to a 1/400 dilution of stock solution of rhubarb markedly increased serum vitellogenin levels (Gronen et al. 1999, Shioda & Wakabayashi 2000).
levels, whereas none of the control medaka had increased serum vitellogenin concentrations (Fig. 5).

Discussion

Herbal medicine is used as an alternative medicine in most countries. The precise molecular mechanisms of the various biological effects, however, are not known. Some herbal components such as PC-SPES, a blend of eight Chinese medical herbs, have estrogenic activity both in vitro and in vivo, and improve the tumor marker level in prostate cancer patients (DiPaola et al. 1998). Some plants have estrogenic compounds known as phytoestrogens or estrogenic flavonoids. The results of the present study demonstrated that rhubarb extract has profound estrogenic effects via both ERα and ERβ. As the major components of rhubarb contain no known phytoestrogens, this herb must contain some unknown phytoestrogens. Rhubarb is traditionally used as an antiphlogistic, cathartic, antipyretic, anticoagulant, and homeostatic prescription in Chinese medicine (Kosuge & Ishida 1985). A 1/200 dilution of the stock solution of rhubarb has estrogenic activity equivalent to 10^{-10} mol/l E2 in ERα-transfected cells. Of the five major components of rhubarb, only lindleyin stimulates reporter gene expression, suggesting that lindleyin might be the major contributor to the ER-mediated estrogenic activity of rhubarb. The fact that the estrogenic activity of rhubarb and lindleyin was completely reversed by adding 4-hydroxytamoxifen indicates that these effects were due to interactions with the ERs. Previous reports have demonstrated greater binding to and activation of ERβ vs ERα by phytoestrogens (Kuiper et al. 1997, 1998, Barkhem et al. 1998, McInerney et al. 1998, An et al. 2001). At the concentrations of genistein and daidzein that were used in these previous reports, stronger transcriptional activity was observed on ERβ than ERα in our reporter gene assay system (data not shown). Unlike these known phytoestrogens, lindleyin interacts equally with ERα and ERβ when the full-length plasmid is used. Both rhubarb extract and lindleyin, however, had no effect on other nuclear receptors such as TRα or PPARγ, suggesting that the ER interactions are specific. In our reporter gene assay, the estrogenic activity of lindleyin is approximately tenfold less effective at the same concentration of genistein or daidzein.

To confirm that the estrogenic effects of lindleyin occurred through direct receptor interaction, the binding of lindleyin to ERα was analyzed using a fluorescent polarization assay. The binding affinity of lindleyin to ERα was approximately 0.005% that of E2 and 14% that of bisphenol. The binding affinities of genistein and daidzein to ERα were reported to be 4% and 0.1% in solid-phase competition experiments, and 0.7% and 0.2% in solubilized receptor competition experiments (Kuiper et al. 1998). The discrepancy between the low binding affinity to the receptor and strong transactivation in vivo might be explained by the fact that lindleyin can induce, at least partially, conformational changes involved in the formation of a transcriptionally competent activation function in the ligand-binding domain (Brzozowski et al. 1997).

Because of the limited amount of lindleyin available, we studied the in vivo effect using rhubarb extract in a medaka vitellogenin assay system. Vitellogenin levels in medaka exposed to rhubarb extract were remarkably higher than in controls, showing that rhubarb contains some estrogenic
Lindleyin is a novel phytoestrogen

Figure 6 Structures of lindleyin, genistein, and estradiol.

compounds that affect vitellogenin synthesis through ERs expressed in medaka liver.

Lindleyin is a glucoside obtained from *Aeonium lindleyi* (Darias et al. 1978), a crassulaceae endemic to the Canary Islands. Its formula (4-(4′-hydroxyphenyl)-2-butanone-4′-O-β-D-(6′′-O-gallyl)glucopyranoside) is shown in Fig. 6. Like other estrogenic compounds, it has a phenolic backbone. We therefore conclude that lindleyin is a novel phytoestrogen. The potential biological impact of environmental and dietary estrogens on human health has generated considerable interest (Cotton 1994, Safe 1995, Feldman 1997). These agents include phytoestrogens as well as a variety of synthetic compounds. Pharmacological information about lindleyin is limited and there are no reports on the measurement of plasma lindleyin levels in humans. An estrogenic hydroxystilbene was recently reported to occur naturally in wood (Mellanen et al. 1996), and hops contain the potential phytoestrogen, 8-prenylnaringenin (Milligan et al. 1999). Gehm et al. (1998) reported that the phytochemical, resveratrol, present in grapes and wine, is a phytoestrogen which exhibits variable degrees of ER agonism. Bowers et al. (2000) reported that resveratrol acts as a mixed agonist/antagonist for ERα and ERβ. Recently, Burow et al. (2001) reported that phytochemical glyceollins mediate antihormonal effects through ERα and ERβ.

The finding that lindleyin is estrogenic not only expands the spectrum of known dietary phytoestrogens but is also useful as a novel tool for examining the action of estrogen. There are no reports on the long-term effect of lindleyin or rhubarb on human health; however, it has a potential benefit as a novel selective ER modulator (Cosman & Lindsay 1999) for the postmenopausal syndrome, atherosclerosis, or osteoporosis. Further studies, however, are required to assess the physiological significance of lindleyin in humans, and a more complete understanding of its estrogenic action is needed to understand its role as a dietary substance.

Acknowledgements

We thank Tsumura & Co. for providing the herbal powders and chemical components of rhubarb. We also thank Takara Shuzo Co. Ltd for performing the fluorescence polarization assay. This work was supported in part by a grant from the Ministry of Health, Labor, and Welfare, Suzuken Memorial Foundation and the Foundation for the Growth of Science in Japan.

References

Bennetts HW, Underwood EJ & Shier FL 1946 A specific breeding problem of sheep on subterranean clover pastures in Western Australia. *Australian Veterinary Journal* 22 2–12.

Chen PY, Ito M, Park Y, Tagami T, Gehm BD & Jameson JL 1999 A fusion protein of the estrogen receptor (ER) and nuclear receptor a fusion protein of the estrogen receptor (ER) and nuclear receptor
Lindleyin is a novel phytoestrogen

Received 29 May 2002
Accepted 23 July 2002