Prevention of solely estrogen-induced mammary tumors in female ACI rats by tamoxifen: evidence for estrogen receptor mediation

S A Li, S J Weroha, O Tawfik and J J Li

Hormonal Carcinogenesis Laboratory, Division of Etiology and Prevention of Hormonal Cancers, Kansas Cancer Institute and the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160-7417, USA

1Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160-7417, USA

(Requests for offprints should be addressed to S A Li; Email: sli@kumc.edu)

Abstract

There is increasing evidence that both endogenous and exogenously ingested estrogens play a primary role in sporadic breast cancer causation. To establish further that solely estrogen–induced mammary oncogenesis in female ACI rats is an estrogen receptor (ERα)-driven process, we show for the first time that concomitant treatment with the antiestrogen, tamoxifen citrate (TAMc), completely prevents the induction of 17β-estradiol (E2)-induced mammary gland tumors (MGTs). This finding is also supported by the reduced mammary gland (MG) lobulo-alveolar development and proliferative activity observed in TAMc+E2-treated animals compared with MGs from animals treated with E2 alone. These data also correlated with a marked decrease in the number of MG cells expressing ERα and progesterone receptor (PR) in immunostained MG tissue sections from TAMc+E2-treated animals. Additionally, a marked decline in the level of expression of ERα 47, 56 and 66 kDa forms, and PR–A and PR–B was seen in TAMc+E2-treated MGs, compared with MGs treated solely with E2. Thus, both ERα and PR profiles in TAMc+E2-treated rats essentially revert to their respective receptor profiles seen in untreated control and TAMc-alone-treated rats. The presence of 56 and 54 kDa isoforms in chronically E2-induced MGs and in MGTs respectively may contribute to fostering the enhanced E2-dependent growth response of both precursor and frank MGT epithelial cells. These findings are consistent with an ERα/PR-mediated MG cell proliferation, a prerequisite for generating the high frequency of chromosomal instability seen in E2-induced ductal carcinomas in situ and primary MGTs in female ACI rats reported by us previously.

Journal of Endocrinology (2002) 175, 297–305

Introduction

Sporadic breast cancer (BC) accounts for 90–95% of all BC cases among women (King et al. 1993, Li CI et al. 2000). While it is believed that the etiology of human BC is multi-factorial, there is increasing evidence that both endogenous naturally occurring estrogens and exogenously ingested estrogenic agents play a crucial role in sporadic BC causation (Colditz et al. 1995, Toniolo 1997). Numerous epidemiological studies have shown that early menarche, late age at menopause, late age at first full-term pregnancy, nulliparity, absence of lactation, and post-menopausal estrogen replacement therapy are associated with increased BC risk (Pike et al. 1993, Colditz et al. 1995, Henderson & Feigelson 2000, Mahavni & Sood 2001). Even dietary and lifestyle factors, such as fat and alcohol intake, result in elevated circulating estrogen levels (Howe et al. 1991, Wu et al. 1999). Recent findings from the Breast Cancer Prevention Trials (Fisher et al. 1998) in which tamoxifen treatment showed a dramatic decline in BC risk (44–55%) in women considered at increased risk for the disease provided compelling evidence for a primary role for estrogens in BC etiology. While synthetic chemical carcinogen-induced mammary tumor models have dominated experimental BC research in the past 50 years, solely estrogen-induced mammary murine models have been generally neglected, despite the fact the latter have been known for a longer time (Noble et al. 1940, Geschickter & Byrnes 1942, Shay et al. 1949, Huggins et al. 1959, Bots & Willighagen 1975). Numerous early studies have shown that many rat strains are highly susceptible to estrogen-induced mammary tumors, including Noble, ACI and Long–Evans (60–100%), and to a lesser extent, August, Wistar–Wag and Sprague–Dawley (36–42%) (Nelson 1944, Dunning et al. 1953, Cutts & Noble 1964, Blankenstein et al. 1977). Recently, we have shown that there are distinctive critical differences between synthetic chemical carcinogen- and environmental carcinogen-induced breast tumors, both ductal carcinoma in situ (DCIS) and primary tumors, and solely

Downloaded from Bioscientifica.com at 12/13/2022 10:10:59AM via free access
estrogen-induced mammary neoplasms (Li SA et al. 2000, Li et al. 2002). These differences include early genomic destabilization (aneuploidy) and c-myc amplification, both features commonly found in human BCs. To further establish that mammary gland (MG) estrogen-induced oncogenesis in female ACI rats is an estrogen receptor (ERα)-driven process, we now demonstrate, for the first time, that concomitant treatment with tamoxifen completely prevents the induction of these mammary tumors by estrogen. Moreover, characterization of ERα and progesterone receptors (PR) during mammary tumor induction further supports our contention for a crucial role of estrogens in the oncogenic process of the ACI rat MG.

Materials and Methods

Animals and treatment

Intact female ACI rats, 6 weeks of age (Harlan SD, Indianapolis, IN, USA), were housed in facilities certified by the American Association for the Accreditation of Laboratory Animal Care. The rats were acclimated for at least 1 week prior to treatment, and then randomly distributed into various control and treatment groups. They were maintained on a 12 h light:12 h darkness cycle, and freely fed Ralston-Purina Teklad Rodent Diet 8604 (Teklad, Madison, WI, USA) and tap water. The animal studies were carried out in adherence to the guidelines established in the Guide for the Care and Use of Laboratory Animals (US Department of Health and Human Resources, NIH 1985). The female ACI rats were divided into five groups, each group contained 6–12 animals: group 1 remained untreated and served as control; groups 2 and 3 received a single 20 mg pellet of 17β-estradiol (E2), containing either 2 or 3 mg E2, plus 18 or 17 mg cholesterol respectively; group 4 received a single 40 mg pellet of tamoxifen citrate (TAMc); and group 5 received a 40 mg pellet of TAMc, and 1 week later, a 20 mg pellet of E2 containing 3 mg E2. Hormone pellets, prepared without binder by Hormone Pellet Press (Leawood, KS, USA), were implanted subcutaneously in the shoulder region as described previously (Li et al. 1998). These di
eral rats were killed by decapitation, subjected to macroscopic examination, and the presence of mammary gland tumors (MGTs), both number and location, was recorded. The abdominal–inguinal MGs and the MGTs, freed of connective and necrotic tissue respectively, were quickly removed. Portions of these tissues were immediately frozen in liquid nitrogen and stored at −80 °C for future analysis, while others were fixed in 10% buffered formalin, followed by a rapid paraffin–embedding process. Uterine tissue from ACI female rats (ERα and PR), and dorsal and ventral prostates from male Sprague-Dawley (SD) rats (ERβ) were also harvested and processed in the same manner as the MG samples as positive controls for Western and Northern blot analyses.

Histological and immunohistochemical analysis

For histopathological evaluation, MG sections (6 µm) were prepared from paraffin–embedded blocks and stained with hematoxylin and eosin. For immunohistochemical analysis, sections were dewaxed and treated with 3% H2O2 for 15 min to block endogenous peroxidases. Antigens were retrieved (Dako Target Retrieval Solution; Dako, Carpinteria, CA, USA) by heating in a water bath set at 97 °C for 40 min for ERα, 15 min for PR staining, and 10 min for proliferating cell nuclear antigen (PCNA) staining. After blocking with 6% of the appropriate serum in 1% BSA, the primary antibodies, rabbit polyclonal ERα MC20 and PR C19, and PCNA mouse monoclonal PC10 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), were applied to the sections overnight at 4 °C. Tissues were also incubated in the presence of their respective blocking peptides to determine the specificity of the immunoreactions. Slides were counterstained with hematoxylin, dehydrated in alcohol, and mounted in Permount medium (1:1 Permount:xylene) before being examined under the microscope.

RIA

Blood was collected during decapitation. Serum samples were collected after centrifugation and stored at −20 °C until needed. E2 circulating levels were determined by RIA, as previously described by us (Li et al. 1994), using an ultra-sensitive E2 kit from Diagnostic Systems Laboratories, Inc. (Webster, TX, USA).

Western blot analysis

For Western blot analysis of ERα, ERβ, PR, PCNA and actin, MG, MGT and uterine cytosolic fractions from 6–12 female ACI rats/group were used, as well as the prostates of six intact male SD rats. The tissue samples, harvested from individual rats from each group, were homogenized with a Polytron (Brinkmann Instruments, Inc., Westbury, NY, USA) in a lysate buffer containing: 50 mM Tris–HCl pH 7.4, 0.2 M NaCl, 2 mM EDTA, 0.5% NP-40, 50 mM NaF, 0.5 mM Na3VO4, 20 mM sodium pyrophosphate, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml aprotinin, 10 µg/ml leupeptin and 1 mM dithiothreitol, and centrifuged at 12 500 g for 20 min at 4 °C. The tissue lysates were collected and centrifuged again as before. The supernatant fractions were collected and their protein content determined with BCA reagents (Pierce, Rockford, IL, USA). Protein aliquots (20 µg) were electrofractionated on 4–20% gradient Tris–glycine SDS-PAGE under reducing conditions. Thereafter, proteins were transferred onto nitrocellulose membranes, blocked with non–fat milk, and probed with primary antibodies followed by secondary antibodies conjugated with horseradish peroxidase. The immunoblots were visualized by chemiluminescence using
ECL Western blot detection reagents (Amersham Life Science, Arlington Heights, IL, USA). The intensity of each signal was quantified by densitometric scanning (Molecular Dynamics, Sunnyvale, CA, USA). Equal loading was monitored by hybridization of the same membranes with an anti-β-actin antibody. The primary antibodies and their respective blocking peptides for ERα, PR and PCNA were the same used for the immunohistochemical analysis. For the detection of ERβ, three different antibodies were tested: L-20 and H-150 of human origin and corresponding to the carboxy- and amino-termini respectively, and Y-19 of mouse origin and corresponding to the amino-terminus. For β-actin, a mouse monoclonal C2 primary antibody was used. All the antibodies were obtained from Santa Cruz Biotechnology.

Northern blot analysis

Total RNA was extracted as previously described (Chomczynski & Sacchi 1987) with some modifications. Briefly, tissue samples were homogenized for 60 s in 5 ml 4 M guanidinium isothiocyanate using a Polytron set at maximum speed, followed by phenol/chloroform extraction. Total RNA was precipitated with isopropanol and dissolved in ribonuclease-free water. The RNA concentration was determined by absorbance at 260 nm. The RNA was separated by electrophoresis in a denaturing formaldehyde agarose gel, and blotted onto Hybond nylon membranes (Amersham Life Science). The RNA was crosslinked to the membranes by irradiation for 1 min under u.v. light, and baked for 3 h at 65°C. A random priming probe kit from Promega (Madison, WI, USA) was used to label a 700 bp cDNA synthesized from a linearized human ERα cDNA, and a 56 bp oligonucleotide probe specific for the rat ERβ and glyceraldehyde 3-phosphate dehydrogenase (GADPH). The blots were hybridized for 16–18 h at 65°C with 32P-labeled ERα and ERβ cDNA probes. After washing twice with 2 × SSC/0-1% SDS, the membranes were exposed for 18–72 h at −70°C to Kodak XAR-5 film (Eastman Kodak, Rochester, NY, USA) with intensifying screens. Control for equal loading and blotting of RNA was performed by stripping blots in boiling 0-05 × SSC/0-1% SDS and rehybridizing with antisense riboprobes generated from cDNA clones for GADPH.

Results

Serum E2 levels, body and tissue weights

Employing a single 20 mg pellet containing either 2 or 3 mg E2, serum E2 concentrations were assessed at monthly intervals. Over a 6 month treatment, the serum E2 values ranged from 52 to 89 pg/ml and from 112 to 145 pg/ml after a 2 or 3 mg dose of E2 respectively (Fig. 1). The E2 serum levels plateau rapidly after 2 months of either E2 treatment (Fig. 1; Table 1). At the higher dose of E2, a 100% MGT incidence was attained (Table 2), in the absence of either body weight loss or mortality (Table 1). A 100% MGT incidence was also found at the lower E2 dose but the MGTs were slightly smaller and less numerous (data not shown). Concomitant treatment with TAMc did not significantly alter the E2 serum levels compared with the group receiving E2 treatment alone (Table 1). Relative to untreated control animals, female rats receiving E2 alone exhibited a significant increase in MG and uterine wet weights, while a smaller, although significant, rise in MG wet weight was observed after the combined TAMc+E2 treatment (Table 1).

Prevention of solely E2-induced mammary oncogenesis by TAMc

Female rats treated with 3 mg E2 for 6 months yielded a 100% MGT incidence, and an average of 15-6 ± 1-6 (s.e.m.) MGTs/rat (Table 2). In contrast, no MGTs were detected in either control untreated or TAMc-treated rats. Importantly, after histological examination of MG serial sections, animals receiving TAMc+E2 did not exhibit evidence of MGT formation after 6 months of continuous treatment (Table 2).

MG and MGT morphology

MG tissue sections from the control untreated group revealed a limited number of lobular units which were composed of small terminal ducts surrounded by occasional ductules or acini (Fig. 2A). Terminal ducts and acini were lined by two cell layers. The inner layer was composed of luminal cuboidal epithelial cells, while the outer layer consisted of myoepithelial cells. MG sections from TAMc-treated animals (Fig. 2B) were almost identical to those of the control untreated group (Fig. 2A), with a similar
number of lobular units and cellular composition. As anticipated, after E2 treatment (Fig. 2C) a series of morphological changes became evident including enlargement of the lobular units, formation of new units, and marked epithelial hyperplasia with nuclear enlargement and prominence of nucleoli. TAMc+E2 treatment (Fig. 2D) resulted in a significant decrease in the proliferative activity of the MG as reflected by the reduced number of lobular units, and the smaller size of the cellular and nuclear components, compared with MG sections of E2-treated female ACI rats (Fig. 2C). Multiple malignant neoplastic foci were noted after 6 months of E2 treatment (Fig. 2E). These malignant foci exhibited histological features of malignant transformation such as nuclear enlargement, pleomorphism, hyperchromasia and prominence of nucleoli. Foci with early atypical dysplastic changes were evident. After 6 months of TAMc+E2 treatment (Fig. 2I), however, resulted in a significant reduction of ERα expression in MG cells to levels approaching those observed in the control untreated MGs (Fig. 2F). A slight increase in PR expression was observed after treatment with TAMc+E2 (Fig. 2N), when compared with control untreated animals (Fig. 2K); however, these levels were markedly lower from those observed after E2 treatment alone (Fig. 2M). In all MGTs examined, a consistent high expression of ERα (Fig. 2J) and PR (Fig. 2O) was observed.

Expression of MG and MGT ERα and β isoforms

Western blot analysis established the presence of ERα in female ACI rat MGs and MGTs. MGs from untreated rats revealed a single ERα 56 kDa isoform (Fig. 3, upper panel). After 6 months of E2 treatment, the appearance of a 47 kDa variant and a moderate expression of a 66 kDa ERα form, probably the full length ERα, was observed. While the primary E2-induced MGTs exhibited modest expression of both the 56 and the 66 kDa ERα forms, a 54 kDa ERα isoform, present in control untreated uterus, was also detected. It was evident that the 54 kDa isoform was the predominant form in MGTs. Strikingly, when compared with E2-treatment alone, both the MG 56 kDa and the 47 kDa ERα isoforms were markedly reduced (>5-fold) after TAMc+E2 treatment. TAMc treatment alone depressed the expression of the MG 56 kDa ERα variant (~2-fold) compared with the untreated control group. Uteri from the untreated control group exhibited high levels of ERα expression of both the 66 and the 54 kDa isoforms. ERα expression in Western blots was completely abolished in the presence of its respective

Immunohistochemical analysis of ER and PR in MG and MGT samples

In control untreated MG tissue samples, ERα (Fig. 2F) and PR (Fig. 2K) were expressed only in 5–10% of the terminal ducts and lobules. Staining for these hormone receptors appeared extremely heterogeneous. In MGs from TAMc-treated animals, the pattern of ERα expression (Fig. 2G) was very similar to that observed in the control untreated group (Fig. 2F). A modest increase in PR expression (Fig. 2L) was observed in this treatment group. After 6 months of E2 treatment, ERα (Fig. 2H) and PR (Fig. 2M) were upregulated in 70–95% of the MG cells. TAMc+E2 treatment (Fig. 2I), however, resulted in

Table 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of rats</th>
<th>BW (g)</th>
<th>MG wet weight (g/100 BW)</th>
<th>Uterine wet weight (g/100 BW)</th>
<th>E2 serum levels (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>6</td>
<td>198 ± 2</td>
<td>1.03 ± 0.03</td>
<td>0.24 ± 0.01</td>
<td>20 ± 3</td>
</tr>
<tr>
<td>TAMc 40 mg</td>
<td>8</td>
<td>187 ± 3</td>
<td>0.91 ± 0.07</td>
<td>0.14 ± 0.011</td>
<td>18 ± 2</td>
</tr>
<tr>
<td>E2 3 mg</td>
<td>12</td>
<td>175 ± 8</td>
<td>1.88 ± 0.151</td>
<td>0.41 ± 0.021</td>
<td>140 ± 7</td>
</tr>
<tr>
<td>TAMc 40 mg + E2 3 mg</td>
<td>8</td>
<td>186 ± 5</td>
<td>1.47 ± 0.081</td>
<td>0.22 ± 0.05</td>
<td>145 ± 8</td>
</tr>
</tbody>
</table>

1 Indicates significant difference (P ≤ 0.05) compared with untreated group (Student’s t-test).

Table 2

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of rats</th>
<th>No. of rats with tumors</th>
<th>Percent of rats with tumors</th>
<th>Tumor multiplicity/rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TAMc 40 mg</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E2 3 mg</td>
<td>12</td>
<td>12</td>
<td>100</td>
<td>15.6 ± 1.6</td>
</tr>
<tr>
<td>TAMc 40 mg + E2 3 mg</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Journal of Endocrinology (2002) 175, 297–305

www.endocrinology.org

Downloaded from Bioscientifica.com at 12/13/2022 10:10:59AM via free access
Figure 2 Consecutive sections of MG tissue samples, after 6 months of treatment, were stained separately with hematoxylin and eosin (A–E) or antibodies to ERα (F–J) and PR (K–O). (A) Normal MG section from an untreated rat exhibiting modest alveolar development and adipocytes; (B) TAMc-treated rat MGs showing modest ductal and alveolar development; (C) E2-treated rat MG depicting an increase in proliferative activity compared with that of untreated controls (A) and TAMc-treated (B) rats; (D) TAMc+E2-treated MG exhibiting moderate alveolar development; (E) DCIS after 6 months of E2 treatment (arrows) nested within surrounding hyperplastic MG cells – the MGT cells showed a marked variation in size and shape, and mitotic figures; (F and K) normal MG showing nuclear (arrows) ERα (F) and PR (K) staining in ductal epithelial cells; (G and L) TAMc-treated MG sections with few cells (arrows) exhibiting weak to moderate ERα (G) and PR (L) nuclear staining; (H and M) E2-treated MG with hyperplastic cells intensely stained for nuclear ERα (H) and PR (M); (I and N) TAMc+E2-treated MG sections showing few cells (arrows) with ERα (I) or PR (N) nuclear staining; (J and O) DCIS with numerous cells intensely stained for nuclear ERα (J) and PR (O). Magnifications × 400.
blocking peptide. No positive signals for ERβ were observed in any of the MG or MGT samples tested with three different ERβ antibodies, specific for ERβ of either mouse or human origin. However, dorsal and ventral rat prostate samples, used as positive controls, showed an intense 50 kDa band that was neutralized in the presence of the proper blocking peptides (data not shown).

Expression of MG and MGT PR forms

MGs from both the untreated control and the TAM-treated groups exhibited essentially the same level of expression of PR–C (Fig. 3 middle panel). Upon treatment with E2 for 6 months, both PR–A and PR–B were induced, albeit PR–B exhibited only weak expression. PR–A in E2-induced primary MGTs was ~6·0- to ~10·0-fold higher than that observed in untreated control MG samples. TAMc+E2 treatment yielded PR expression profiles similar to those seen in either untreated control or solely TAMc-treated MGs. PR–A was extremely low in all of these groups. In MGTs, a prominent PR–B1 form was consistently detected, which was much less evident in MGs from the solely E2-treated group. Untreated control uteri showed predominant expression of the PR–A and PR–C forms, but only a weak expression of PR–B.

ERα and ERβ transcript expression in MG and MGTs

Northern blot analysis revealed an increase in ERα mRNA expression after 6 months of E2 treatment compared with untreated control MGs (Fig. 4). A further rise in ERα transcript expression was observed in E2-induced primary MGTs. In contrast, ERβ mRNA expression was not detected in any of the MG, MGT or uterine tissues examined. Rat prostate samples, however, resulted in marked ERβ mRNA expression, thus serving as a positive control.

Cell proliferation

A comparison of the MG proliferative activity in response to the various treatments was determined by the level of PCNA expression employing Western blot analysis. When compared with the control untreated group, after 6 months of E2 treatment, a 3·5-fold increase in MG PCNA expression was detected (Fig. 5). In contrast, the groups treated with TAMc alone (1·4-fold) or in combination with E2 (1·2-fold) showed levels of expression similar to those observed in the untreated control group (1·0-fold). Moreover, solely E2-induced primary MGTs showed a 5·8- to 6·0-fold increase in PCNA expression. Similar changes were observed in MG tissue sections from all the treatment groups examined after PCNA immunohistochemical analysis (data not shown).

Discussion

The female ACI rat is particularly sensitive to E2-induced MG oncogenesis. Employing doses of 2 and 3 mg E2,
100% MGT incidence was obtained, which resulted in E₂ circulating levels between 50 and 89, and 112 and 145 pg/ml respectively. These E₂ concentrations are either within or approach physiological serum concentrations (17–88 pg/ml) previously reported in normal untreated cycling SD rats (Butcher et al. 1974). At doses of 3 mg, the serum E₂ levels were 22–60% lower than those previously reported to obtain 100% MGT incidence (Shull et al. 1997). Although very low levels of circulating E₂ are sufficient to induce a high incidence of MGTs in female ACI rats, the minimal MG oncogenic dose of E₂ has yet to be established.

Results presented herein, for the first time, demonstrate that concomitant TAMc treatment completely prevented the E₂ induction of MGT in female ACI rats, supporting the supposition that E₂-induced MG oncogenesis, in this animal model, is an ERα-mediated process. Most interestingly, this conclusion is supported by the decreased levels of expression of ERα (47, 56 and 66 kDa forms) and PR (A and B) in MGs treated with TAMc+E₂, compared with MGs treated solely with E₂. These data also correlated with a marked decrease in the number of MG cells expressing ERα and PR in immunostained MG tissue sections from TAMc+E₂-treated animals. In relation to TAMc treatment, these findings are consistent with a substantial reduction in BC risk reported when this antiestrogen was administered to women at high risk to develop the disease (Fisher et al. 1998). No ERβ expression was detected in either untreated or E₂-treated MGs and E₂-induced MGTs. These observations are consistent with the lack of ERβ expression in MG and MGTs induced by N-methyl-N-nitrosourea (NMU) in SD rats (Thordarson et al. 2001).

Although it remains to be established, the presence of 56 and 54 kDa isoforms in MGs and MGTs respectively, after chronic treatment with E₂, suggests that these isoforms may contribute to fostering the growth advantage seen in frank MGT epithelial cells, by differently affecting signaling responses. Moreover, the 54 kDa ERα isoform, consistently the prominent isoform present in E₂-induced primary MGTs, was also the major ERα isoform present in the uterus. A study comparing the ERα content in MGs of different rat strains, including the female ACI rat, at a given physiological state (18–20 days of lactation), has shown that the levels of MG ERα are very similar, 56–75 fmol/mg protein (Wichle & Wittliff 1983). Although a single, 66–67 kDa, ERα native form has been reported in MGs of female untreated SD rats (Saji et al. 2000), estrogen/androgen-treated MGs and -induced MGTs in male Noble rats exhibit multiple ERα isoforms (Liao et al. 1998), comparable in many respects with the ERα isoforms reported herein for similar MG tissues of female ACI rats.

There is considerable evidence that both estrogen and progesterone positively affect MG gene expression and subsequent cell proliferation (Shyamala et al. 2000, Hofseth et al. 1999, Fata et al. 2001, Ginger et al. 2001, Raafat et al. 2001). Morphologically, progesterone treatment alone promotes a marked increase in the number of tertiary branching of primary and secondary breast tissue networks (Atwood et al. 2000). Consequently, the substantial rise in PR–A, and to a lesser extent PR–B in MGs and MGTs shown herein, after E₂ treatment, is consistent with the increased MG ductal branching and lobular-alveolar development reported in transgenic PR–A and PR–B mice (Shyamala et al. 2000), and during MGT cell proliferation (Liao et al. 1998). Taken together, these findings are supportive of an ERα/PR–driven cell proliferation in MGs of intact female ACI rats.

Common characteristics between estrogen- and synthetic chemical carcinogen (dimethylbenzanthracene and NMU)-induced MGTs include their histological features and estrogen dependence (Dao 1962, Russo & Russo 1996, Thordarson et al. 2001). Moreover, MGTs induced by synthetic chemical carcinogens can be prevented by antiestrogens (Jordan 1976, Gottardis & Jordan 1987).

Figure 5 PCNA expression in MG and MGT samples. Western blot analysis was performed after 6 months of treatment on 20 μg protein aliquots. MC, untreated, TAMc-treated (MTx), TAMc+E₂-treated (MTx+E), E₂-treated (ME), three individual primary E₂-induced MGT (MT₁ to MT₃) and untreated uterus (UC). The primary antibodies used were PCNA (PC10) and β-actin (C10). The relative PCNA levels were determined by densitometry. The figure is representative of three independent experiments.

Table 1 Western blot analysis of ERα and PR expression in MGs and MGTs. ERα and PR were detected in untreated and E₂-treated MGs and MGTs, respectively. The figure is representative of three independent experiments.
However, crucial differences exist in MGT causation since both DCIS and primary MGTs induced by estrogens are highly aneuploid and exhibit a high frequency of c-myc amplification (Li SA et al. 2000, Li et al. 2002), whereas DCIS and MGTs induced by synthetic chemical carcinogens are largely diploid and exhibit high frequencies of H-ras activation (Zhang et al. 1991, Li et al. 2002). It is evident that the DCIS and MGTs induced by estrogen alone more closely resemble human DCIS and invasive ductal BCs, since the latter are also highly aneuploid (Alalen et al. 1997, Arnerlov et al. 2001), and show a high frequency of c-myc amplification (Escot et al. 1986, Watson et al. 1993).

Acknowledgement

This work was supported by Grant CA 58030 (SAL) from the National Cancer Institute.

References

Alalen KA, Lintu M & Joensuu H 1997 Image cytometry of breast carcinomas that are DNA diploid by flow cytometry. Time to revisit the concept of DNA diploidy? Analytical and Quantitative Cytology and Histology 20 178–186.

Butcher RL, Collins WE & Fugo NW 1974 Plasma concentration of LH, FSH, progesterone, and estradiol-17β throughout the 4-day estrous cycle of the rat. Endocrinology 94 1704–1708.

Hofeth LJ, Raafat OM, Oushe JR, Parahak DR, Slomski CA & Haslan SZ 1999 Hormone replacement therapy with estrogen or progesterone plus medroxyprogesterone acetate is associated with increased epithelial proliferation in the normal postmenopausal breast. Journal of Clinical Endocrinology and Metabolism 84 4559–4565.

Pike MC, Spicer DV, Dahmoush L & Press MF 1993 Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk.
Epidemiologic Reviews **15** 17–35.

Rafat AM, Hofoth LJ & Haklan SZ 2001 Proliferative effects of combination estrogen and progesterone replacement therapy on the normal postmenopausal mammary gland in a murine model.

Shay H, Aegerter EA, Gruenstein M & Komariv SA 1949 Development of adenocarcinoma of the breast in the Wistar rat following the gastric instillation of methylcholanthrene. *Journal of the National Cancer Institute* **10** 255–266.

Received in final form 27 June 2002

Accepted 4 July 2002