Increased lactotrophs despite decreased somatotrophs in the dwarf (dw/dw) rat: a defect in the regulation of lactotroph/somatotroph cell fate?

T Tierney and I C A F Robinson

Department of Molecular Neuroendocrinology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK

(Requests for offprints should be addressed to T Tierney who is now at Department of Neuroendocrinology, Faculty of Medicine, Imperial College London, Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Email: t.tierney@ic.ac.uk)

Abstract

The dwarf (dw/dw) rat differs from all other rodent models of GH deficiency in that its pituitary prolactin (PRL) content is normal or even increased. We have now studied this throughout postnatal development, using a combination of immunocytochemistry, RIA and fluorescence-activated cell sorting (FACS) and analysis. Compared with normal Albino Swiss (AS) rats, adult dw/dw rats showed a profound reduction in pituitary GH content accompanied by increased PRL content, significantly so in females (AS vs dw/dw; P<0.01). Somatotroph hypoplasia was evident in the adult dw/dw rats, with most GH+ve cells showing weak immunostaining, whereas many more strongly stained PRL cells were evident in pituitary sections from dw/dw rats. FACS analysis confirmed both somatotroph hypoplasia and relative lactotroph hyperplasia in dw/dw rats at all ages studied (9–144 days); the difference in somatotrophs increased with age whereas the difference in lactotrophs declined with age. At 9 days, the percentage of lactotrophs was 10-fold higher in dw/dw rats than in AS rats. Young dw/dw rats also had a higher proportion of mammosomatotrophs than AS rats, although this difference disappeared as the mammosomatotroph proportions increased with age in both strains. GHRH released GH from both dw/dw and AS cells maintained in culture for 5 days. The sensitivity to GHRH and the amount of GH released was lower in the dw/dw cultures, mostly explained by their fewer GH cells and lower initial GH content. GHRH increased cAMP in AS but not in dw/dw cultures, even when these were greatly enriched for dw/dw somatotrophs by FACS sorting prior to culture. These results suggest that GHRH-induced cAMP stimulation is required for trophic effects on GH synthesis and somatotroph proliferation, but is not required for GHRH-stimulated GH release. The inverse changes in somatotroph and lactotroph numbers suggest that the dw/dw mutation disturbs the mechanism that specifies and retains appropriate numbers of somatotrophs in their differentiated state, and results in a higher proportion of the remaining cells progressing to lactotrophs. The dw/dw phenotype is thus not confined to somatotrophs.

Introduction

Much information on the physiology and pathophysiology of growth hormone (GH) has come from the study of dwarfism in mice, and has led to the discovery of genes involved in the prenatal development of somatotrophs (Li et al. 1990, Sornson et al. 1996), or the postnatal regulation of GH synthesis and release (Lin et al. 1993), all of which have subsequently been recognised to underlie equivalent human pituitary pathologies (Haugen & Ridgeway 1995, Cohen et al. 1996, Wu et al. 1998, Salvatori et al. 2001). Two genetic models of dwarfism have also been described in the rat. One, the spontaneous dwarf (dr/dr) rat, carries a mutation in its GH gene and cannot produce an active GH protein (Takeuchi et al. 1990). The other is the dwarf (dw/dw) rat, first identified by us in 1988 (Charlton et al. 1988).

Although the genetic basis of the dw/dw mutation has not yet been identified, it is an autosomal recessive disorder, causing a severe but sub-total GH deficiency. These dw/dw rats secrete GH in the typical sexually dimorphic rodent pulsatile pattern, albeit with much lower peak amplitudes (Legraverend et al. 1992), and respond acutely to GH secretagogues such as GH-releasing hormone (GHRH) or growth hormone releasing peptide-6 (GHRP-6) with a GH secretory response, reduced in proportion to their pituitary content (Charlton et al. 1988, Carmignac & Robinson 1990).

GHRP-6 also induces prolactin (PRL) release, but when this was examined in dw/dw female rats,
unexpectedly large PRL responses to GHRP-6 were observed (Carmignac et al. 1998, Thomas et al. 1999). Subsequent measurements showed a significantly higher pituitary PRL content in adult \(dw/dw \) animals, although their basal plasma PRL levels were normal (Carmignac et al. 1998, Thomas et al. 1999). Previous studies had reported normal, or only mildly elevated, PRL content in \(dw/dw \) rats at different ages (Charlton et al. 1988, Bartlett et al. 1990). In most other GH-deficient rodent dwarf models, PRL content is reduced (for review see Phelps 1990). In most other GH-deficient rodent dwarf models, PRL content is reduced (for review see Phelps 1990). In most other GH-deficient rodent dwarf models, PRL content is reduced (for review see Phelps 1990). An increase in PRL accompanying GH deficiency in \(dw/dw \) rats is thus highly unusual, but the cellular basis of this is unknown.

To address this, we have now characterised the somatotroph, lactotroph and mammosomatotroph populations in this \(dw/dw \) strain, using a combination of immunocytochemistry, fluorescence-activated cell sorting (FACS) and \textit{in vitro} cell culture. We show that, in parallel with somatotroph hypoplasia, the \(dw/dw \) mutation causes an early and sustained increase in lactotroph numbers and PRL storage, but no overall change in the mammosomatotroph population. We confirm that the cAMP response to GHRH is undetectable, not only in mixed pituitary cell cultures from \(dw/dw \) rats (Downs & Frohman 1991), but even in cultures of \(dw/dw \) somatotrophs highly enriched by FACs sorting, and that the GH release continues in the absence of a CAMP response to GHRH.

Some of these data have been reported in preliminary form (Gilbert & Robinson 1998).

Materials and Methods

\section*{Animals}

The \(dw/dw \) rats were from the colony originally described by us (Charlton et al. 1988) and maintained on an Albino Swiss (AS) background at the National Institute for Medical Research ever since. Normal AS rats were used as controls. All rats were housed in plastic cages with up to six animals per cage in a dedicated animal facility. Animals were allowed free access to water and standard laboratory rat chow, under a 12 h light:12 h darkness regime, at constant temperature, and maintained under UK Home Office guidelines.

\section*{Immunocytochemistry}

Whole pituitaries from 10-week-old male and female AS and \(dw/dw \) rats \((n=3) \) were fixed overnight in 4% paraformaldehyde after which paraffin-embedded 4\(\mu m \) sections were mounted on poly-L-lysine-coated slides. Cells grown on cover slips in tissue culture were fixed for 30 min in 4% paraformaldehyde. Cells and de-waxed sections were incubated in 0·9% \(\mathrm{H}_2\mathrm{O}_2 \) in methanol for 30 min, washed and incubated in 0·1% trypsin (15 min, 37 °C), washed in 0·05% Triton, and then in Tris-buffered saline (TBS: 0·05 M Tris–HCl pH 7·6, 137 mM NaCl). After blocking in NS/BSA/TBS (5% BSA + 20% normal serum (NS) of the same species as the secondary antibody, in TBS) for 30 min, they were incubated with primary antibody overnight at 4 °C or for 1 h at room temperature. They were washed and then incubated for 30 min in secondary antibody in NS/BSA/TBS at room temperature. The antibody systems were (i) monkey anti-rat \(\alpha \) GH (1:2000; National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), Bethesda, MD, USA) followed by biotinylated goat anti-human-IgG (1:200; Vector Laboratories, Burlingame, CA, USA) or (ii) rabbit anti-rPRL (1:8000; NIDDK) followed by biotinylated swine anti-rabbit-IgG (1:200; Dako, Ely, Cambs, UK). GH+ve cells were stained using diaminobenzidine tetrahydrochloride (Sigma) after incubation with peroxidase-conjugated avidin–biotin complex (Dako). PRL+ve cells were stained with Fast Red (Dako) after incubation with peroxidase-conjugated avidin–biotin complex (Dako). Sections were counterstained with haematoxylin (BDH, Lutterworth, Leics, UK). The staining specificity of these reagents has been previously established (Flavell et al. 1996).

Cells immunostained for GH and PRL were counted by direct microscopy. For each animal, 1000–2000 cells were counted over three different areas, using an eyepiece graticule at a magnification of \(\times 40 \), to estimate the proportion of the total cell number in each animal \((n=3 \text{ per group}) \). The results for each cell type were then expressed as a percentage (mean ± s.e.m.).

\section*{Primary culture of anterior pituitary cells}

Anterior pituitaries from 10–week-old AS and \(dw/dw \) rats were enzymically dispersed using modifications of previously described methods (Weiner et al. 1983, Ceda et al. 1987). Briefly, pituitaries were chopped into small pieces and dispersed in Hanks’ Balanced Salts Solution (HBSS) (Sigma) containing 0·3 mg/ml collagenase type 1A (Sigma) and 0·25% trypsin (Sigma) at 37 °C. After 30 min, DNase 1 (Sigma) was added (final concentration 0·05 mg/ml), the cells were tritutrated occasionally for 2–3 h and then passed through a 40 \(\mu \)m cell strainer. Dispersed cells were >98% viable as assessed by Trypan Blue exclusion. The suspension was centrifuged at 130 \(g \) for 10 min, the pellet washed in HBSS, and resuspended in growth medium (D-MEM, 15% horse serum, 2·5% fetal calf serum, 2 mM glutamine and penicillin/streptomycin/ampicillin/penicillin/gentamicin; Sigma). The yield was typically 3–4 \(\times 10^6 \) cells per AS pituitary, 2–2·5 \(\times 10^6 \) cells per \(dw/dw \) pituitary. Cells were cultured in 24-well plates at a density of one quarter pituitary equivalent/1 ml well, except when AS and \(dw/dw \) cells were combined in different proportions, in which case each mixture was seeded at
5 × 10^5 cells per well. For immunocytochemistry, cells were cultured in wells containing poly-L-lysine-coated coverslips. The culture medium was changed on day 2 or 3 and cells examined on day 5. In some experiments, the medium was aspirated on day 5, the cells washed twice and incubated with warmed D-MEM with or without GHRH (human GHRH Nleu-27(1–29)NH₂, Ferring AB) for 30–180 min, after which the supernatants and cells were saved for analyses.

FACS

Analysis Anterior pituitaries were enzymically dispersed individually as described above except that trypsin was omitted. Dispersal volumes were 0.5 ml for 9- to 23-day pituitaries and 1.5 ml for 45- to 144-day pituitaries. After washing, the cells were resuspended in 1 ml FACS buffer (10 g/l NaCl, 0.25 g/l KCl, 1.37 g/l Na₂HPO₄, 0.25 g/l KH₂PO₄, 1 g/l BSA) + 0.1% sodium azide, centrifuged at 300 g and fixed in 50 µl 4% paraformaldehyde for 5 min on ice. After washing in FACS buffer+azide, cells were permeabilised by the addition 0.2% saponin (Sigma), centrifuged (130 g for 5 min) and resuspended on ice in 50 µl FACS buffer+saponin, containing primary antibody (monkey anti-rGH (1:2000) and/or rabbit anti-rPRL (1:8000) or a non-immune serum control). After 30 min, the cells were washed and 50 µl secondary antibody diluted in FACS buffer+saponin were added. These were (i) fluorescein isothiocyanate (FITC)-conjugated swine anti-rabbit IgG (1:20; Dako) for single PRL staining; (ii) phycoerythrin (PE)-conjugated goat anti-human IgG (1:20; Sigma) for single GH staining; and (iii) FITC-conjugated swine anti-rabbit IgG and biotinylated goat anti-human-IgG (1:20; Vector Laboratories), followed by 50 µl PE-streptavidin (1:1000; Vector Laboratories) for double staining. After 30 min, the cells were washed once in FACS buffer+saponin, and twice more in FACS buffer+azide.

Cells were analysed on a FACS Vantage or FACS Star Plus (Becton-Dickinson, Mountain View, CA, USA) and data from 1–2 × 10^4 cells collected for each sample. For each age group, negative controls and single-stained controls were run in parallel to correct for crossover between channels and determine quadrant boundaries. Data were analysed using WinMDI software. The population of cells was electronically gated to exclude cell debris and red blood cells, and the data plotted with FITC fluorescence (PRL) on the x-axis and PE fluorescence (GH) on the y-axis.

Cell sorting Under sterile conditions, cells dispersed from 18 anterior pituitaries were centrifuged at 300 g for 5 min, resuspended in 1 ml FACS buffer, layered onto 15 ml 4% BSA in FACS buffer and centrifuged for 5 min at 100 g to remove blood cells and debris. Most of the cell population was incubated on ice for 30 min in monkey anti-rat GH (1:2000) in FACS buffer while an aliquot of 10^6 cells was incubated in non-immune monkey serum (1:2000) as a negative control. After 30 min, the cells were washed in FACS buffer, centrifuged (300 g for 5 min) and resuspended in PE-conjugated goat anti-human IgG (1:20). After 30 min, they were washed and resuspended in sterile culture medium (10% BSA). Another aliquot of cells was removed (unsorted population), and the remainder sorted to collect GH-enriched and GH-depleted cell populations gated by comparison with the negative control. The three populations of cells were then placed in tissue culture as described above.

Analysis of pituitary extracts

Anterior pituitaries from 10-week-old male and female AS and dw/dw rats (n=5–7) were homogenised on ice in PBS containing peptidase inhibitors (Complete Peptidase Inhibitor Cocktail; Roche Products), frozen and thawed, centrifuged (5 min at 13 000 g), and the supernatant stored at −20 °C. Protein contents were determined by a modification of the method of Lowry et al. (1951) using BSA as standard. Rat GH and PRL were assayed by RIA using reagents supplied by NIDDK as previously described (Clark et al. 1987, Carnignac & Robinson 1990).

For measurement of cAMP, cells were extracted in 500 µl 95% ethanol/0.1 M HCl (Marley et al. 1991) at −20 °C overnight. They were then transferred to a microfuge tube, together with a 500 µl acid/alcohol rinse. After centrifugation (13 000 g for 5 min), 500 µl supernatant were evaporated to dryness under vacuum, and resuspended in PBS. Samples and standards (0.1–800 fmol/100 µl cAMP; Sigma) were acetylated by addition of 2% v/v triethylamine (Sigma) and 1% v/v acetic anhydride (Sigma) and subjected to RIA following the NIDDK protocol for antibody CV-27. Antibody (1:400 000) and tracer (125I-labelled 2-O-monosuccinyl cAMP methyl ester; Sigma) were added in a final volume of 250 µl buffer (50 mM sodium acetate + 0.5% BSA, pH 6.2) and incubated overnight at 4 °C. Bound and free fractions were separated by adding 500 µl polyethylene glycol, the tubes centrifuged and the radioactivity in the pellets counted.

Statistical analysis

Results are presented as means ± s.e.m. unless otherwise stated. Statistical analysis was carried out using Instat 2-01. Where two groups were compared, Student’s t-test or the Alternate Welch t-test was used. Where multiple groups were compared, the data were subjected to ANOVA and tested using Bonferroni’s comparison of selected pairs. Dose–response curves were post-tested for linear trend and compared using Dunnett’s test.
Results

In vivo experiments

Pituitary GH and PRL contents in adult *dw/dw* and normal animals were compared by RIA (Fig. 1A and B). The profound reduction in GH in *dw/dw* rats was accompanied by an increase in PRL content, significantly so in females. As expected, pituitary PRL content was higher in females than in males for both strains. Western blots of SDS-PAGE gels of 10 µg protein from AS male and *dw/dw* male anterior pituitary extracts confirmed the decrease in GH, and marked increase in PRL (data not shown).

Double immunocytochemistry and cell counting for GH and PRL on anterior pituitary sections from 10-week-old AS and *dw/dw* rats showed a lower proportion of GH+ve cells and a higher proportion of PRL+ve cells in both male and female *dw/dw* rats compared with AS rats (Fig. 1C and D). In both strains, females had a significantly higher percentage of PRL+ve cells than males, whereas the percentage of GH+ve cells did not differ significantly between the sexes.

To study PRL and GH cell differences more quantitatively, a two-colour FACS method was developed for pituitary cells isolated from *dw/dw* and AS rats. Figure 2 shows examples of scatter characteristics from male AS and *dw/dw* pituitaries at different ages. Forward scatter (x-axis) is a measure of cell size, while side scatter (y-axis) relates to the complexity or granularity of the cell. In both strains, side scatter increased with age as the cells became more granular, but no differences in scatter characteristics were observed between AS and *dw/dw* pituitary cell populations.

Figure 3 illustrates typical fluorescence profiles of cells from male AS and *dw/dw* pituitaries at different ages. The upper left quadrant shows ‘GH-only’ cells (note the marked reduction in somatotrophs in the *dw/dw* compared with AS rats) whilst the lower right quadrant shows ‘PRL-only’ cells (showing a higher proportion of lactotrophs in the *dw/dw* rats). The upper right quadrant shows cells staining for both GH and PRL (mammosomatotrophs).

Quantitative FACS analysis was performed on pituitaries from groups of *dw/dw* and AS male and female rats from 9 to 144 days. In the younger rats the GH+ve, PRL+ve and double+ve populations were more clearly separated into the quadrants (see Fig. 3), so the data could be obtained directly from two-colour analyses. In 45–144 day rats, where the heterogeneity of the scatter was greater.
(see Fig. 2) and the populations fell less easily into quadrants (see Fig. 3), the 1·5 ml cell dispersion was divided into three aliquots. Single-colour FACS runs were first performed to count the total numbers of GH$^+$ve or PRL$^+$ve cells. The double$^+$ve mammosomatotrophs (i.e. both GH$^+$ve and PRL$^+$ve cells) were then counted by performing a separate two-colour FACS run. The GH$^+$ly (i.e. somatotroph) and PRL$^+$ly (i.e. lactotroph) populations were then calculated by subtracting the number of double$^+$ve mammosomatotrophs from the total GH$^+$ve or total PRL$^+$ve cell counts.

The FACS results are summarised in Fig. 4. They confirmed that the percentage of GH$^+$ve cells was significantly lower in both male and female dw/dw rats at all ages studied, compared with normal AS rats. There were also significantly fewer GH$^+$ve cells in females than in males at 16 and 45 days. FACS analysis also showed clearly that at all ages, both male and female dw/dw rats had a higher percentage of total PRL$^+$ve cells than their normal AS counterparts. At 9 days the percentage of total PRL$^+$ve cells was 5-fold higher, and that of PRL$^+$ly lactotrophs 8- to 10-fold higher in male and female dw/dw rats than in AS rats. This difference became less marked with age, being 3·5-fold at 23 days and <2-fold at 144 days. dw/dw males and females had a significantly higher percentage of total PRL$^+$ve cells than AS rats at 9 days, similar percentages at other ages, but a significantly lower percentage than AS rats by 144 days. At 70 days, females of both strains also had a significantly lower percentage of mammosomatotrophs than their respective males, although the mammosomatotroph percentage tended to increase with age in both strains. We can conclude that the increase in PRL$^+$ve cells in dw/dw rats is primarily due to lactotrophs, and not to an increased mammosomatotroph population.

Figure 5 shows the ratio of total GH$^+$ve/PRL$^+$ve cells (Fig. 5A), and GH$^+$ly and PRL$^+$ly cells (Fig. 5B) in dw/dw and AS rats at different ages, determined by FACS analysis. Allowing for a 40% reduction in total pituitary cell number in dw/dw rats, the increased percentage of total PRL$^+$ve cells represents a real increase in cell number.

Figure 2 Examples of scatter characteristics of dispersed pituitary cells from AS and dw/dw males at 9 and 70 days of age. Side scatter (SSC) is shown on the y-axis, while forward scatter (FSC) is shown on the x-axis.

Figure 3 Examples of FACS fluorescence plots of stained pituitary cells from AS and dw/dw males at 9 and 70 days of age. PE fluorescence (GH) is shown on the y-axis, while FITC fluorescence (PRL) is shown on the x-axis.
Figure 4 GH, PRL and double staining cells during development of AS and dw/dw rats. Dispersed anterior pituitary cells were stained for GH and PRL and analysed by FACS. Asterisks indicate result of Bonferroni’s post-hoc test (n=3–8; a: GH-only-AS vs dw/dw, b: GH-only-male vs female, c: double+ve-AS vs dw/dw, d: double+ve-male vs female, e: PRL-only-AS vs dw/dw, f: PRL-only-male vs female). *P<0.05; **P<0.01, ***P<0.001.
before 45 days (Fig. 5A), a difference even more marked when comparing PRL-only lactotrophs, especially in females (Fig. 5B). The number of GH⁺ve cells was already reduced by 9 days in dw/dw rats, and this somatotroph hypoplasia was maintained throughout the study.

In vitro experiments

Pituitary cells from male AS and dw/dw rats were dispersed and maintained in culture for 5 days and then immunostained for GH and PRL. There were markedly fewer GH⁺ve cells in cultures from dw/dw rats than from AS rats after 5 days in culture (AS: 24·16 ± 1·64% vs dw/dw: 8·39 ± 1·14%; P<0·001), but there was no significant difference between the PRL⁺ve cell populations (AS: 37·12 ± 2·56 vs dw/dw: 34·04 ± 4·00).

Similar cultures of AS or dw/dw cells were exposed to a wide range of GHRH concentrations for 3 h and the GH released into the medium measured by RIA (Fig. 6A and B). GHRH stimulated GH release from cells from both strains. The response amplitude and sensitivity to GHRH differed between strains (ED₅₀ 0·01–0·03 nM for AS cultures vs 0·3–1 nM for dw/dw; Fig. 6A), but this difference was less dramatic after taking into account the lower basal release and hormone contents in the dw/dw cells (Fig. 6B). A maximal concentration of 100 nM GHRH induced a 5-fold increase in GH release from AS cells, compared with a 3·5-fold increase from dw/dw cells.
PRL release from dw/dw cultures was similar to that of AS cultures (AS: 24·33 ± 2·29 vs dw/dw: 20·08 ± 1·41 ng/well at 3 h), and PRL content in both AS and dw/dw cultures was unaffected by GHRH exposure (data not shown).

Figure 7A compares cAMP levels in extracts from male AS and dw/dw pituitary cell cultures exposed to GHRH for 30 min. GHRH induced a dose-dependent cAMP response in cell cultures from AS rats, although this required higher GHRH concentrations than was necessary to induce GH release (see Fig. 6A). GHRH completely failed to increase cAMP in dw/dw rat cultures (Fig. 7A).

To ensure that this did not simply reflect the lower abundance of GH^ve cells in dw/dw cultures, further experiments were performed in which dw/dw cells were co-cultured with different percentages of AS cells and their responses to GHRH measured (Fig. 7B). The cAMP response to GHRH increased in proportion to the percentage of AS cells in the mixed cultures, but as little as 5% AS:95% dw/dw cell mixture (equivalent to 2% AS somatotrophs), was sufficient to exhibit a significant cAMP response to GHRH (Fig. 7B).

Finally, pituitary cell pools were prepared enriched or depleted in somatotrophs from dw/dw pituitaries by FACS sorting prior to culture. Figure 8A shows an experiment in which GH^ve cell populations were enriched to 45% (i.e. similar to an AS pituitary), or depleted to 1·3% compared with the unsorted starting population (10%; P<0·001), and then maintained in culture for 5 days. Note, however, that 60% of 70 day male dw/dw GH^ve cells also express PRL (see Fig. 4) so many of the GH-enriched population are PRL^ve. As expected, both basal and GHRH-stimulated GH release were higher in the GH-enriched population and lower in the GH-depleted populations compared with the unsorted population (Fig. 8B), but even with a dw/dw somatotroph population enriched to the same proportions as in an AS culture, GHRH failed to increase cAMP accumulation in dw/dw cells (Fig. 8C). This result shows that failure to increase cAMP accumulation by GHRH is an intrinsic deficit in dw/dw somatotrophs and is not due to a reduced representation of somatotrophs in such cultures.

Discussion

The dw/dw rat strain was initially characterised in 1988 (Charlton et al. 1988) and has proved useful as a model of specific GH deficiency (Carmignac et al. 1993, 1998, Butler et al. 1994, Pellegrini et al. 1997, Tei et al. 2000, Forwood et al. 2001). Although its profound GH deficiency is well established, its PRL status is less clear. Our initial study compared PRL content in a few dw/dw and heterozygous normal littermates, and showed no apparent PRL deficiency (Charlton et al. 1988). In a later study, pituitary PRL content, measured over a wider age range in male dw/dw animals, was similar to, or in a few cases higher than, heterozygous littermates (Bartlett et al. 1990). More recently, we noted that the PRL responses to the GH secretagogue GHRP-6 were surprisingly large in dw/dw females, were abolished by ovariectomy, and could be induced in males given oestrogen (Carmignac et al. 1998), all treatments known to affect lactotroph numbers. We confirmed an increased pituitary PRL storage in male dw/dw rats, but found that it was not associated with increased PRL secretion, since basal circulating PRL levels were normal in dw/dw rats, and no changes in dopamine (DA) fluorescence were seen in their hypothalamic tuberoinfundibular DA neurons (Thomas et al. 1999). We
therefore performed the current studies to investigate the cellular basis of the increased PRL reserves in dw/dw rats.

Kineman et al. (1989) had earlier observed an increased percentage of PRL secreting cells in dw/dw rats (52.4 ± 4.6% vs 33.7 ± 3.7% in controls) but attributed this, at least in part, to the paucity of GH cells. In the present study, we counted GH and PRL cells in pituitary sections from both male and female adult dw/dw rats. We confirmed an increase in the percentage of total PRL+ve cells but could not easily quantify the mammo- somatotrophs, since these were difficult to identify reliably in dw/dw rats, given their much fainter GH staining. To obtain more objective data we developed a two-colour FACS method for assessing PRL and GH cell numbers on dispersed cells. The data we obtained were similar to those from manual cell counts but the FACS method greatly facilitated the examination of much larger numbers of animals and cells and provided more quantitative information on cell populations over a wider range of staining intensities. It also allowed us to quantify and compare the mammosomatotroph populations in both dw/dw and normal animals throughout postnatal development.

FACS analysis has previously been used (Hatfield & Hymer 1985, Shinkai et al. 1995) to purify and/or count pituitary cells, either after immunostaining or by using cell-specific green fluorescent protein expression in transgenic mice (Magoulas et al. 2000). Although more convenient and objective than manual cell counting, it has its own methodological concerns. The staining intensity varies between experiments, so the determination of cut-off limits is done empirically for each set of analyses. We also assume that the inevitable cell losses during dispersal, staining and analysis are similar for GH and PRL cells and between the strains.

FACS analysis confirmed that although dw/dw rats had a much lower proportion of GH+ve cells than AS rats at all ages studied, the overall percentage of GH+ve cells remained relatively stable despite the marked increases in pituitary size, total cell number and GH content which occur over this period (Hoeffer et al. 1985, Zeitler et al. 1994). The rise in pituitary GH content with age thus reflects an increase in GH cell number and/or GH content per cell, rather than an increased proportion of GH cells in the pituitary, and occurs normally in dw/dw and normal animals throughout postnatal development.

The FACS results also confirmed that both male and female dw/dw rats had a higher proportion of PRL+ve cells than did normal rats. This disproportion was greatest in early postnatal life and reduced in magnitude throughout adulthood, but remained significant in dw/dw rats even at 144 days. Whilst an increased percentage of PRL+ve cells in adult animals could simply reflect a reduction in GH cells and hence the total cell number, the increase in the younger dw/dw animals can only be explained by a true

Figure 8 Functional analysis of FACS sorted male dw/dw anterior pituitary cells. (A) Unsorted, GH-enriched and GH-depleted cells were plated on poly-L-lysine-coated coverslips and cultured overnight. Two coverslips of each cell population were immunostained for GH and PRL and counterstained with haematoxylin. GH+ve cells were counted from four areas of 1 mm² on each of the two coverslips per group. Asterisks indicate result of Bonferroni’s post-hoc test (see text for significance levels of *, **, ***)) (a: sorted vs unsorted, b: GH-enriched vs GH-depleted). (B) Unsorted, GH-enriched and GH-depleted cell populations were cultured for 5 days and then treated with 10 nM GHRH (or control) for 3 h in duplicate wells. The medium was assayed for GH and PRL content which occur over this period (Hoeffer et al. 1985, Zeitler et al. 1994). The rise in pituitary GH content with age thus reflects an increase in GH cell number and/or GH content per cell, rather than an increased proportion of GH cells in the pituitary, and occurs normally in dw/dw rats since their relative GH deficiency vs AS rats remains remarkably constant from birth to late adulthood (Carmignac et al. 1993, Zeitler et al. 1994).

The FACS results also confirmed that both male and female dw/dw rats had a higher proportion of PRL+ve cells than did normal rats. This disproportion was greatest in early postnatal life and reduced in magnitude throughout adulthood, but remained significant in dw/dw rats even at 144 days. Whilst an increased percentage of PRL+ve cells in adult animals could simply reflect a reduction in GH cells and hence the total cell number, the increase in the younger dw/dw animals can only be explained by a true
increase in lactotroph number. For example, since the total cell number in the 9 day \(dw/dw\) pituitary is about 60% that of AS rats (Zeitler et al., 1994), a 5-fold higher percentage of PRL\(^{+ve}\) cells represents a 3-fold increase in absolute terms.

The proportion of mammosomatotrophs was also higher in \(dw/dw\) than in AS pituitaries at 9 days, but fell gradually with age, reaching a lower percentage than AS rats in late adulthood. A high proportion of mammosomatotrophs at 9 days is in keeping with the data of Hoeffler et al. (1985), and Shinkai et al. (1995) also found an increase in mammosomatotrophs with age in normal females. At some ages in our study, the females had fewer mammosomatotrophs than males, but we interpret this cautiously since mammosomatotrophs vary with the oestrous cycle (Kineman et al. 1991) and this was not monitored in our study. Overall, our FACS data clearly suggest that the mammosomatotroph population is unaffected in \(dw/dw\) rats, and that it is an increase in lactotrophs that explains their higher pituitary PRL reserves.

It is noteworthy that, while the percentage of mammosomatotrophs did not differ consistently between AS and \(dw/dw\) pituitaries, the percentage of GH\(^{+ve}\) cells also expressing PRL was much higher in \(dw/dw\) rats, especially females of 45 days or older. For example, in 144 day female and \(dw/dw\) females of 45 days or older. For example, in 144 day female and AS rats, showing that the somatotroph increases.

In general, GH and PRL in \(dw/dw\) rats, especially adults, express a functional GHRH receptor, but at a lower abundance (Kamnagc & Robinson 1990, Camignac et al. 1996, Bennett et al. 1997, Zeitler et al. 1998), which could explain the lower sensitivity to GHRH. However, in normal somatotrophs, an increase in lactotroph number. For example, since the total cell number in the 9 day \(dw/dw\) pituitary is about 60% that of AS rats (Zeitler et al., 1994), a 5-fold higher percentage of PRL\(^{+ve}\) cells represents a 3-fold increase in absolute terms.

Furthermore, the marked difference in sensitivity of GH release (significant at 0.01 nM GHRH) and cAMP accumulation (significant at 10 nM GHRH) also suggests that alternative pathways might be involved in triggering GH release, even in the normal rat pituitary (Carmignac & Robinson 1990). We suggest that the cAMP response to GHRH plays little or no role in GH release, but is essential for stimulation of pituitary transcription factor-1(Pit-1)-dependent GH synthesis and somatotroph proliferation, the processes which are most compromised in the \(dw/dw\) rat.

How would this explain the increased lactotroph number and PRL stores in the \(dw/dw\) rat? As discussed above, almost all other genetic rodent models of GH deficiency show reduced pituitary PRL, usually because the mutation affects a gene coding for transcription factors involved in specifying pituitary cell lineages common to GH and PRL, or necessary for PRL production (Nelson et al. 1988, Andersen & Rosenfeld 1994, Sornson et al. 1996). A possible exception is the \(lit/lit\) mouse (Eicher & Beamer 1976), which also lacks a cAMP response to GHRH (Jansson et al. 1986). There is surprisingly little direct information on pituitary PRL levels in \(lit/lit\) mice. Lactotroph morphology (Wilson & Wyatt 1986) and cell density (Lin et al. 1993) appear normal, although PRL mRNA abundance is reduced (Wojtkiewicz et al. 2002). However, the \(lit/lit\) mouse has an inactivating mutation in the GHRH receptor, no GH secretory response, a normal GH cell population at birth, and a failure in postnatal somatotroph proliferation (Lin et al. 1993). This differs in all respects from the \(dw/dw\) rat, which has a normal GHRH receptor sequence, a clear GH secretory response to GHRH, a defect in somatotrophs manifest as early as embryonic day 18 (Zeitler et al. 1994) but a postnatal
increase in GH cells and GH content which runs parallel with that in normal rats (Carmignac & Robinson 1990 and the present study).

Experimentally induced somatotroph hypoplasia also reduces lactotroph numbers and PRL content, suggesting that there is a close lineage dependence of lactotrophs with somatotrophs and/or their common precursor (Behringer et al. 1988, Borrelli et al. 1988). Furthermore, GH deficiency secondary to GHRH lack is also accompanied by significant PRL deficiency (Li et al. 1996). To the best of our knowledge, the dw/dw rat remains the only model in which a profound somatotroph hypoplasia is accompanied by a significant increase in PRL cell number and PRL content.

It is generally assumed that the dw/dw defect is restricted to the somatotroph (Charlton et al. 1988, Zeitler et al. 1994). Our re-evaluation of PRL+ve cells during postnatal development shows that the lactotroph lineage is also clearly affected but whether directly or indirectly remains unclear. Since PRL and GH cell numbers vary inversely in the dw/dw animals, and this is manifest already in embryonic life, we suggest that the defect primarily affects a common precursor cell, and has a quantitative, not qualitative, impact in reducing the numbers of somatotrophs produced or retained in their differentiated state, resulting in a higher proportion of cells progressing to lactotrophs. Despite our increasing understanding of the origin of pituitary endocrine cell lineages (Theill & Karin 1993, Andersen & Rosenfeld 1994), we still know little about the mechanisms regulating the numbers of differentiated pituitary endocrine cells. Identification of the mutation in dw/dw rats could shed new light on the mechanisms by which the relative proportions of GH and PRL cells are initially specified and subsequently maintained throughout adult life.

Acknowledgements

We are grateful to C Atkins for excellent technical assistance with FACS analysis and sorting. The reagents for GH, PRL and cAMP RIA, as well as GH and PRL primary antibodies for immunocytochemistry and FACS, were generously provided by Dr A F Parlow (NIDDK, Bethesda, MD, USA).

References

Received 16 July 2002

Accepted 19 July 2002