Parathyroid hormone-related peptide (38–94) amide stimulates ATP-dependent calcium transport in the basal plasma membrane of the human syncytiotrophoblast

H Strid, A Care1, T Jansson and T Powell

Perinatal Center, Department of Physiology and Pharmacology, Göteborg University, Box 412, S-405 30 Göteborg, Sweden

1Institute of Biological Sciences, University of Wales, Aberystwyth, UK

(Requests for offprints should be addressed to T Jansson; Email: thomas.jansson@fysiologi.gu.se)

Abstract

The final step in the maternal–fetal transfer of calcium in the placenta involves transport against a concentration gradient across the syncytiotrophoblast basal plasma membrane (BM). Based on animal studies, it has been proposed that parathyroid hormone-related peptide (PTHrP) plays a major role in maintaining the maternal–fetal concentration gradient of calcium. In this study, we tested the hypothesis that a highly conserved mid-region fragment (38–94) of PTHrP directly affects the ATP-dependent calcium transport across BM isolated from full-term human placentas. PTHrP (38–94) stimulated ATP-dependent calcium transport at a concentration within the physiological range (5 pg/ml) and the effect (10–38% increase) was concentration dependent over the range 5 pg/ml to 5 ng/ml (n=8; P<0.05). In contrast, PTH, PTHrP (1–34), PTHrP (67–86) and calcitonin increased BM calcium transport only at concentrations much higher than physiological. The increased calcium uptake was inhibited by the protein kinase C (PKC) inhibitor chelerythrine (n=6; P<0.05). In addition, PTHrP (38–94) increased inositol trisphosphate (IP3) production and PKC phosphorylation in human placental BM (n=12; P<0.05). Our data indicate that PTHrP (38–94) stimulates Ca2+ATPase in the human syncytiotrophoblast BM vesicles by activating the IP3–DAG–PKC pathway. We suggest that PTHrP (38–94) is important in maintaining the calcium concentration gradient across the placental barrier in the human.

Introduction

Parathyroid hormone-related peptide (PTHrP) was originally discovered in tumour cells through its structural and functional homology with parathyroid hormone (PTH) and was found to interact with PTH 1 receptors in bone and kidney to cause hypercalcaemia of malignancy (Stewart et al. 1980, Strewler et al. 1987). Subsequently, it has been demonstrated that PTHrP plays an important physiological role and is involved in embryonic development, cellular differentiation and proliferation, regulation of smooth muscle contraction and in transepithelial transport (Philbrick et al. 1996). PTHrP is produced in various tissues and may act in autocrine, paracrine and endocrine fashions. The molecule is produced as a 141 amino acid long pro-hormone which is cleaved into different active fragments with distinct functions. In addition to PTHrP (1–141), the human gene encodes (1–173) and (1–139) species (Wysolmerski & Stewart 1998). The most studied segment of the pro-hormone is PTHrP (1–34), which shows considerable sequence homology to PTH and activates the common PTH/PTHrP receptor (Gardella et al. 1995). In contrast, the mid-molecule segment of PTHrP has no homology to PTH and has been shown to interact with a unique receptor; however, it has not yet been identified (Kovacs et al. 1996).

The expression of the PTHrP mid-molecule in reproductive tissue has not been studied, whereas mRNA expression of PTHrP pro-hormone as well as protein expression of PTHrP (1–34) and PTHrP (1–86) have been investigated in some detail. During normal human pregnancy, PTHrP is produced in the placenta, umbilical cord, amnion, chorion, decidua and myometrium (Ferguson et al. 1992, Germain et al. 1992, Bowden et al. 1994, Bruns et al. 1995, Curtis et al. 1997) as well as in fetal parathyroid glands, bone, skin, gut and lung (Moniz et al. 1990, Williams et al. 1994). PTHrP receptor mRNA has been identified in most of these tissues, compatible with autocrine and paracrine actions of PTHrP (Ferguson et al. 1992, Germain et al. 1992, Wlodek et al. 1995). Furthermore, PTHrP expression is more abundant in the amnion than in other intrauterine tissues and the high PTHrP concentrations in amniotic fluid may affect the placenta and fetus in a paracrine fashion (Wlodek et al. 1995).
Indeed, PTHrP levels in human amniotic fluid increase in late pregnancy coinciding with rapid fetal growth and calcium accretion in the third trimester (Curtis et al. 1997). In addition, PTHrP can be detected in fetal blood in concentrations higher than those in the maternal circulation, suggesting an endocrine function of the hormone in the fetus (Seki et al. 1994, Bucht et al. 1995). In mice with homozygous deletion of the PTHrP gene, placental transport of calcium is decreased and the normal concentration gradient for calcium across the placental barrier fails to develop. In these studies, transplacental calcium transport was increased in homozygous fetuses by administration of PTHrP (1–86) or PTHrP (67–86), but not by PTHrP (1–34) or intact PTH (Kovacs et al. 1996).

In addition, Care et al. (1990) have previously shown that a synthetic PTHrP mid-molecule fragment (67–86) maintains the calcium gradient across the placenta in sheep. This work was later extended by Wu et al. (1996), who demonstrated a similar effect with the highly conserved mid-region secretory fragment of PTHrP (PTHrP (38–94) amide).

However, none of these studies addressed the mechanism of action of the mid-region of PTHrP. In studies in the rat, PTHrP (1–34) and PTHrP (75–86) had no significant effect on transplacental calcium transport (Shaw et al. 1991). Likewise, the findings in the sheep could not be reproduced in the pig following removal of the fetal parathyroid glands (Care et al. 1990, Abbas et al. 1994). These experimental studies suggest that the mid-molecular region of PTHrP might play a critical role in some species in stimulating placental transport of calcium and raises the possibility that PTHrP mid molecule may have a similar function in the human.

The final step in maternal–fetal transfer of calcium in the human involves transport against a steep concentration gradient across the basal membrane (BM), the fetal-facing plasma membrane of the syncytiotrophoblast. BM vesicles exhibit a high ATP-dependent Ca\(^{2+}\) transport activity, which, at a larger extent, can be attributed to plasma membrane Ca\(^{2+}\) ATPase (PMCA) (Fisher et al. 1987, Lafond et al. 1991, Strid & Powell 2000). Two isoforms of PMCA have been identified at the protein level in BM and in the syncytiotrophoblast cell at the mRNA level (Howard et al. 1992, Strid & Powell 2000). In late gestation, calcium transport across the human placenta must increase in response to the demands of the accelerating bone mineralization of the fetus (Shaw 1976, Ziegler et al. 1976, Minton et al. 1983, Ryan et al. 1988). We have demonstrated previously that the ATP-dependent calcium uptake into BM vesicles increased linearly during the third trimester, whereas PMCA protein expression remained unaltered (Strid & Powell 2000). However, the factor that might stimulate the activity of BM PMCA in late gestation is unknown. In this study, we test the hypothesis that PTHrP (38–94) amide stimulates the ATP-dependent calcium transport into BM isolated from term human placentas.

Materials and Methods

Materials

General chemicals and PTH were bought from Sigma-Aldrich, Stockholm, Sweden. The protein kinase A (PKA) inhibitor amide 5–24 and chelerythrine chloride were obtained from Calbiochem, Darmstadt, Germany. An inositol trisphosphate ([IP3]) \(^{[3H]}\) assay system and \(^{45}\)CaCl\(_2\) were purchased from Amersham Pharmacia Biotech AB, Uppsala, Sweden. Synthetic PTHrP (38–94) amide and PTHrP (37–74) were generous gifts from Professor A F Stewart, University of Pittsburgh. PTHrP (38–94) amide used throughout this study will be referred to as PTHrP (38–94). The source of human PTHrP (1–34) and human calcitonin (hCT) was Bachem Ltd, Saffron Walden, Essex, UK.

Vesicle preparation

Human placentas were obtained from uncomplicated term pregnancies. Tissue was processed within 30 min of vaginal or Caesarean delivery. The collection of placental tissue was approved by the Committee for Research Ethics at Göteborg University. The basal (BM) and the microvillous membrane (MVM) of the syncytiotrophoblast were isolated simultaneously by the method of Illsley et al. (1990) with some modifications. Briefly, the chorionic plate and decidua were removed and the tissue was cut into small pieces. The tissue was homogenized in buffer D (250 mmol/l sucrose, 10 mmol/l Heps/Tris, 1·6 µmol/l antipain, 0·7 µmol/l pepstatin A, 0·5 µmol/l aprotinin and 1 mmol/l EDTA) followed by centrifugation of the homogenate at 10 000 g at 4 °C for 15 min. The separation of the two membranes was performed by adding magnesium chloride (12 mmol/l) to the supernatant, which was stirred on ice for 20 min. The mixture was then centrifuged at 2500 g for 10 min at 4 °C. The pellet contained the BM and the supernatant MVM. The BM was further purified by sucrose gradient centrifugation (Illsley et al. 1990). BM vesicles were snap frozen in liquid nitrogen and stored at −80 °C.

Characterization of BM preparation

Membrane enrichment was assessed using standard activity assays for adenylyl cyclase (Schultz 1984) and alkaline phosphatase (Bowers & McComb 1966). The production of cAMP by adenylyl cyclase was measured by radioimmunoassay (RIA) (New England Nuclear, Boston, MA, USA). The enrichment values were calculated as the ratio of the enzyme activity in the purified membrane preparation and the activity in the homogenate (alkaline phosphatase) or post-nuclear membrane fraction (adenylyl cyclase). The results are presented in Table 1. The enrichment in adenylyl cyclase (BM marker) activity was

Journal of Endocrinology (2002) 175, 517–524
Calcium uptake

The uptake of $^{45}\text{Ca}^{2+}$ by BM vesicles was measured by standard rapid filtration techniques (Fisher et al. 1987) and the calcium uptake was measured at an initial rate after 10 min of incubation (Strid & Powell 2000). The vesicles were resuspended in vesicle buffer (10 mmol/l Hepes/Tris and 250 mmol/l sucrose, pH 7·4 at 37°C) and centrifuged at 50 000 g at 4°C for 30 min. After centrifugation, the vesicles were resuspended in vesicle buffer containing 0·1% bovine serum albumin (BSA) in the presence or absence of 5 mmol/l ATP–MgCl$_2$. BM vesicles were loaded with effectors (PTHrP (38–94), PTHrP (67–86), PTHrP (1–34), PTH, hCT or forskolin) by a gentle freeze–thaw technique (Donowitz et al. 1987). Briefly, the effector was added to the vesicle suspension at desired concentrations and mixed. The tubes were then placed in liquid nitrogen for 5 min and subsequently on ice for 90–120 min. After the freeze–thaw procedure, the tubes were preincubated for 30 min in a 37°C water bath. Subsequently, calcium uptake measurements were started by the addition of 20 µl vesicles (100–200 µg total membrane protein) into 500 µl calcium transport buffer (240 mmol/l sucrose, 5 mmol/l MgCl$_2$, 0·2 mmol/l EGTA, 0·2 mmol/l CaCl$_2$, 1 µCi $^{45}\text{Ca}^{2+}$ and 10 mmol/l Hepes/Tris, pH 7·4) in the presence or absence of 5 mmol/l ATP–MgCl$_2$. Effectors in the appropriate concentration were also added to the reaction mixture. Calcium uptake was allowed to proceed for 10 min at 37°C and stopped by the addition of an ice-cold wash solution (10 mmol/l Hepes/Tris, 250 mmol/l sucrose and 4 mmol/l EGTA, pH 7·4 at 4°C). Subsequently, the reaction mixture was filtered under vacuum on 0·45 µm filters (HAWPO2500; Millipore, Bedford, MA, USA) that had been prewashed with 10 mmol/l Hepes/Tris, 250 mmol/l sucrose and 5 mmol/l CaCl$_2$ (pH 7·4 at 4°C). The filter was washed three times with 2 ml 10 mmol/l Hepes/Tris and 250 mmol/l sucrose (pH 7·4 at 4°C). The radioactivity retained on the filter was measured by liquid scintillation. The ATP-dependent calcium uptake was calculated as the difference between Ca$^{2+}$ uptake in the presence and the absence of ATP. Calcium uptake is expressed as nmol Ca$^{2+}$/mg total membrane protein. In most experiments, the calcium uptake in the presence of effectors is given as a relative value in relation to controls, which are assigned an arbitrary value of one.

In some experiments, chelerythrine, an inhibitor of protein kinase C (PKC) or the PKA inhibitor amide 5–24 was added to the vesicle mixture just prior to the 30 min preincubation. Subsequently, calcium uptake was measured as described above.

cAMP measurement

BM vesicles (100–200 µg) were incubated in 500 µl calcium transport buffer containing 5 mmol/l ATP–MgCl$_2$ and in the presence or absence of effectors (PTH, 250 ng/ml; hCT, 1 ng/ml; PTHrP (1–34), 250 ng/ml; PTHrP (38–94), 0·5 ng/ml; forskolin, 30 µM). Experiments carried out in the absence of ATP–MgCl$_2$ served as blanks. After 10 min of incubation, 400 µl ZnCl$_2$ and 500 µl Na$_2$CO$_3$ were added to 100 µl reaction solution. The tubes were then centrifuged at 10 000 g for 5 min at room temperature. cAMP was measured by RIA (New England Nuclear, Boston, MA, USA).

IP$_3$ measurement

The effect of PTHrP (38–94) on IP$_3$ production was measured in BM from full-term placentas by an assay system using μ-myo $[^3\text{H}]$inositol 1,4,5-trisphosphate as a tracer (Amersham Pharmacia Biotech AB, Uppsala, Sweden). BMs were subjected to a freeze–thaw procedure as described above (Donowitz et al. 1987) in the presence or absence of 500 pg/ml PTHrP (38–94) and in the presence of 5 mmol/l ATP–MgCl$_2$. The reaction was stopped by placing samples on ice and 100 µl aliquots of the sample were added to the assay buffer. Thereafter, the assay was performed according to the protocol provided by the manufacturer. The samples were counted in a liquid scintillation counter and the results were calculated from a standard curve performed at the same time as the experiment.

PKC phosphorylation

Phosphorylation of PKC was measured in BM from full-term placentas in the presence or absence of PTHrP

Table 1 Basal plasma membrane enzyme activities and enrichments. Enrichments values were calculated as the ratio of activity in the purified membrane compared with the activity in homogenate (Hom)* or post-nuclear membrane fraction (P2)**. Values are means ± S.E.M., n=6

<table>
<thead>
<tr>
<th>Assay</th>
<th>BM</th>
<th>Hom/P2</th>
<th>Enrichment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline phosphatase (nmol PO$_4$/s per mg protein)</td>
<td>6·9 ± 1·3</td>
<td>2·4 ± 0·8</td>
<td>2·9*</td>
</tr>
<tr>
<td>Adenylate cyclase (pmol/min per mg protein)</td>
<td>514 ± 67</td>
<td>26 ± 8</td>
<td>19·8**</td>
</tr>
</tbody>
</table>

19·8-fold while alkaline phosphatase (MVM marker) activity was 2·9-fold in our BM preparation. We have previously shown that the degree of contamination by endoplasmic reticulum and mitochondria is low in our BM preparation (Strid & Powell 2000).
(38–94) (500 pg/ml), by using a PKC enzyme assay system (Amersham Pharmacia Biotech AB). BM vesicles were subjected to a freeze–thaw procedure (Donowitz et al. 1987). Subsequently, 25 µl aliquots of the BM sample (75–150 µg protein) were added to the assay buffer followed by the addition of [32P]ATP buffer according to the protocol provided by the manufacturer. The samples were incubated in a 37 °C water bath for 15 min and the reaction was ended by a stop buffer provided in the assay system. The samples were counted in a liquid scintillation counter and the results were calculated from the specific activity of 1·2 mM Mg [32P]ATP.

Protein determination

All protein concentrations were determined according to the method of Bradford (Bradford 1976) using the Bio-Rad protein assay procedure (Bio-Rad, Hercules, CA, USA) and BSA as a standard.

Data analysis

Data are expressed as means ± S.E.M. unless otherwise specified. Statistical significance of differences between groups was determined by paired t-test or repeated measurement ANOVA and Dunnett’s test.

Results

ATP-dependent Ca2+ transport

Calcium transport into BM in the absence of Mg–ATP was 0·6 ± 0·06 nmol Ca2+/mg total membrane protein in 10 min, whereas the ATP-dependent transport of calcium was 21·2 ± 1·4 nmol Ca2+/mg total membrane protein in 10 min (n = 8). PTHrP (38–94) did not affect BM calcium transport in the absence of ATP (results not shown).

The ATP-dependent transport of calcium was increased (10–38%) with increasing concentrations of PTHrP (38–94) (5 pg/ml–5 ng/ml). Concentrations of hormone higher than 5 ng/ml did not stimulate ATP-dependent calcium transport further (Fig. 1; n = 8; P < 0·05; ANOVA). ATP-dependent calcium transport was unaltered by incubation with PTHrP (37–74) (250 ng/ml). We studied the effect of PTH, PTHrP (1–34) and PTHrP (38–94) on calcium transport in BM. These three hormones significantly increased the ATP-dependent transport but only at very high concentrations of PTHrP (1–34) (+ 19%; 50 ng/ml; n = 8; P < 0·05; Fig. 2A), PTH (+ 19%; 250 ng/ml; n = 8; P < 0·05; Fig. 2B) and PTHrP (67–84) (43%; 250 ng/ml; n = 6; P < 0·05). Similarly, both hCT (+ 32% at 5 ng/ml; n = 6; P < 0·05) and forskolin (+ 14%; 30 µmol/l, n = 4; P < 0·05) increased ATP-dependent calcium transport.

Figure 1 Stimulation of ATP-dependent calcium transport into BM as a function of PTHrP (38–94) concentration. ATP-dependent Ca2+ transport in the absence of hormone (control) was 21·2 ± 1·4 nmol/mg protein in 10 min. Uptakes in the presence of hormone are given as relative values in comparison with control, which was assigned a value of 1. Error bars for uptakes at 5 and 50 pg/ml fall within the symbol (n = 8). * P < 0·05 compared with control (ANOVA).

Effect of PTHrP on cAMP production

Using the hormone concentrations shown to increase ATP-dependent calcium uptake, PTH, PTHrP (1–34) and PTHrP (38–94) stimulated cAMP production by approximately 80% (Fig. 3). Furthermore, forskolin (30 µmol/l) increased cAMP production by fivefold (Fig. 3), the same concentration as that which stimulated the ATP-dependent calcium transport by only 14%. hCT (5 ng/ml; n = 7; P < 0·05; Fig. 3).

Effect of PKA and PKC inhibitors on ATP-dependent calcium transport

ATP-dependent calcium transport was not altered by the PKA inhibitor 5–24 (1 µmol/l–250 µmol/l; data not shown) whereas the presence of the PKC inhibitor, chelerythrine (1 µmol/l–250 µmol/l), significantly reduced ATP-dependent calcium transport in a concentration-dependent manner (Fig. 4). In addition, 50 µmol/l chelerythrine reduced total ATP-dependent transport.
calcium transport in BM by 84%. The addition of 500 pg/ml PTHrP (38–94) did not result in increased calcium transport in the presence of chelerythrine ($n=6$; $P<0.05$; Fig. 5).

Effect of PTHrP on IP$_3$ production and PKC phosphorylation

The PKC inhibition study suggested that PTHrP (38–94) might activate the ATP-dependent calcium transport through the IP$_3$–diacylglycerol(DAG)–PKC pathway in BM vesicles prepared from full-term placentas. We therefore incubated BM with PTHrP (38–94) and measured IP$_3$ production. At 500 pg/ml, PTHrP (38–94) stimulated IP$_3$ production by 33% ($n=12$; $P<0.05$; Fig. 6A). Furthermore, PTHrP (38–94) (500 pg/ml) also increased PKC phosphorylation by 25% in BM ($n=12$; $P<0.05$; Fig. 6B).

Figure 2 Effect of (A) PTHrP (1–34) and (B) PTH on the ATP-dependent calcium transport into BM. Results are expressed as relative values in comparison with control ($n=8$). *$P<0.05$ compared with control (ANOVA).

Figure 3 The effect of various effectors on cAMP production in isolated BM in the presence of 5 mmol/l ATP–MgCl$_2$. In control experiments no effector was added. Error bars for control uptake fall within the symbol ($n=7$). *$P<0.05$ compared with control (ANOVA).

Figure 4 The effect of the PKC inhibitor, chelerythrine, on ATP-dependent Ca$^{2+}$ uptake into BM vesicles, relative to control. For uptakes at chelerythrine concentrations ≥ 10 µM, the error bars fall within the symbol ($n=6$). *$P<0.05$ compared with control (ANOVA).
The main finding of this study is that ATP-dependent calcium transport by human syncytiotrophoblast BM vesicles was stimulated by PTHrP (38–94). Furthermore, we have provided evidence that PTHrP (38–94) activates the Ca\(^{2+}\)ATPase in the human syncytiotrophoblast BM through the IP\(_3\)–DAG–PKC second messenger pathway.

All the effectors used in this study stimulated the ATP-dependent calcium transport in BM. However, only PTHrP (38–94) increased calcium transport at a concentration that was within the physiological range. PTHrP (38–94) significantly stimulated PMCA activity at 5 pg/ml, which is similar to the concentration in umbilical cord blood (Bucht et al. 1995, Hirota et al. 1997). In addition, since PTHrP is synthesized locally, e.g. in the placenta (Deftos et al. 1994), PTHrP may have autocrine/paracrine effects and the hormone concentrations in the vicinity of the placental barrier may be substantially higher than indicated by the levels found in the fetal circulation. In contrast, PTH modestly stimulated ATP-dependent calcium transport in BM at a concentration of 250 ng/ml, which is 1000-fold higher than the concentrations found in the umbilical circulation (Saxe et al. 1997). Similarly, PTHrP (1–34) and calcitonin affected calcium transport activity in BM at concentrations that are higher than physiological (Pitkin et al. 1980, Hirota et al. 1997). Furthermore, PTHrP (67–86), one of the most studied mid-molecular fragments of PTHrP, did not affect PMCA activity at physiological concentrations. Our finding is consistent with earlier studies by Wu et al. (1996) demonstrating that PTHrP (38–94) is the fragment of PTHrP that plays a role in calcium transport across the sheep placenta. Furthermore, PTHrP (37–74) failed to stimulate calcium transport across the sheep placenta in vivo (Wu et al. 1996) and did not affect BM PMCA activity in our in vitro system. Indeed, the lack of effect of PTHrP (37–74) strongly suggests that the observed stimulatory effect of PTHrP (38–94) on BM PMCA is specific and indicates that the (75–94) region of PTHrP is important in eliciting the response.

In order to identify possible cellular signalling mechanisms mediating the stimulatory effect of PTHrP (38–94) on BM calcium transport, we studied the effect of inhibition of PKA and PKC. Whereas PKA inhibition did not affect basal or PTHrP (38–94)-stimulated PMCA activity, inhibition of PKC markedly reduced the basal ATP-dependent Ca\(^{2+}\) uptake in BM vesicles, suggesting that PMCA in BM in vitro is basally stimulated by PKC. In addition, PKC inhibition abolished the stimulatory effect

Figure 5 The effect of the PKC inhibitor, chelerythrine (50 μM), on basal and PTHrP (38–94)-stimulated ATP-dependent Ca\(^{2+}\) transport into BM. Error bars for uptakes in the presence of PTHrP (38–94) fall within the symbol (n=6). *P<0.05 compared with control (ANOVA).

Figure 6 Production of (A) IP\(_3\) and (B) phosphorylation of PKC in placental BM in the absence and presence of PTHrP (38–94) (500 pg/ml; n=12). P, phosphate. *P<0.05 compared with control (paired t-test).
of PTHrP (38–94) on ATP-dependent calcium uptake. These data suggest that BM PMCA is not maximally activated by PKC under basal conditions in term placenta and that PKC is involved in the second messenger pathway mediating the stimulatory effect of PTHrP (38–94) on PMCA activity. Our data demonstrating increased production of IP₃ in placental BM as well as PKC phosphorylation in response to PTHrP (38–94) give additional support to the conclusion that binding of PTHrP mid-molecule to receptors in human placenta activates the IP₃–DAG–PKC pathway. These findings raise the possibility that PTHrP (38–94) may stimulate calcium transport in vivo also by IP₃-mediated mobilization of calcium stores in endoplasmatic reticulum.

Production of cAMP is involved in the signaling following hormone binding to receptors for PTH, CT and PTHrP (1–34) (Rebut-Bonneton et al. 1992, Philbrick et al. 1996). In order to assess whether cAMP production could account for the stimulatory effect of PTHrP (38–94) on BM calcium transport, we measured cAMP production in BM in response to forskolin and PTHrP (38–94). Forskolin (30 µmol/l) increased cAMP production in BM vesicles fivefold, whereas PTHrP (38–94) (500 pg/ml) enhanced cAMP production by 80%. Using the same concentrations of these effectors we found that PTHrP (38–94) was twice as effective as forskolin in stimulating ATP-dependent calcium transport. These findings, together with the lack of effect of PKA inhibition on ATP-dependent calcium transport suggest that the stimulatory effect of PTHrP (38–94) on PMCA activity is not primarily mediated by cAMP. Consistent with this conclusion, Wu et al. (1996) showed, in three different cell lines, that PTHrP (38–94) did not significantly stimulate adenylate cyclase but did induce a brisk cytosolic calcium transient. Furthermore, the increased cAMP production after incubation with PTHrP (38–94) may be due to PKC activation since ‘cross-talk’ between these second messenger systems is well established (Jacobowitz et al. 1993, Yoshimura & Cooper 1993).

Recently, Farrugia et al. (2000) reported effects of PTH, PTHrP (1–34) and PTHrP (67–94) on ATP-independent calcium transport in human syncytiotrophoblast MVM and BM. PTH (1–34) (200 ng/ml) and PTHrP (1–34) (50 ng/ml) increased ATP-independent calcium transport in both plasma membranes, whereas PTHrP (67–94) had no effect. In vivo, calcium is transported across BM against a formidable concentration gradient, between the syncytiotrophoblast and the fetal circulation, and is, by definition, an active (ATP-dependent) transport process, primarily mediated by PMCA. Consequently, the implications of the findings of Farrugia et al. (2000) for calcium transport across BM in the fetal direction remain unclear.

In sheep and mice, it has been shown that PTHrP (38–94), but not PTH or PTHrP (1–34), is necessary for the establishment and maintenance of the concentration gradient for calcium across the placental barrier (Rodda et al. 1988, Kovacs et al. 1996). In the present study, we have provided evidence to suggest that PTHrP (38–94) may play a similar role in human pregnancy. Such a role is indirectly supported by the findings that PTHrP mRNA expression in amnion and PTHrP concentrations in amniotic fluid increase in late pregnancy (Ferguson et al. 1992, Wlodek et al. 1995), a period during which fetal demands for calcium (Minton et al. 1983, Ryan et al. 1988) as well as BM PMCA activity increase rapidly (Strid & Powell 2000).

Acknowledgements

We are greatly indebted to Professor A F Stewart, University of Pittsburgh for providing PTHrP (38–94) amide. The authors thank Elisabet Pollak for her assistance with the plasma membrane isolation. This work was supported by the Swedish Medical Research Council (10838), Frimurare–Barnhus–direktionen, the Åhls Foundation, the Magnus Bergvall Foundation, the Swedish Diabetes Association, the Torsten and Ragnar Söderbergs Foundation, the General Maternity Hospital Foundation, the Wilhelm & Martina Lundgreens Foundation and the Sven Jerring Foundation.

References

Curtis NE, Ho PW, King RG, Farrugia W, Moses EK, Gillespie MT, Moseley JM, Rice GE & Wlodek ME 1997 The expression of parathyroid hormone-related protein mRNA and immunoreactive protein in human amnion and chorio decidua is increased at term compared with preterm gestation. Journal of Endocrinology 154 103–112.
Defos LJ, Burton DW, Brandt DW, Pinar H & Rubin LP 1994
Neoplastic hormone–producing cells of the placenta produce and secrete parathyroid hormone–related protein. Studies by immunohistochemistry, immunomassay, and polymerase chain reaction. Laboratory Investigation 71: 847–852.

Farrugia W, de Gooyer T, Rice GE, Moseley JM & Wlodke ME 2000
Parathyroid hormone (1–34) and parathyroid hormone–related protein (1–34) stimulate calcium release from human syncytiotrophoblast basal membranes via a common receptor. Journal of Endocrinology 166: 689–695.

Ferguson JED, Gorman JV, Bruns DE, Weir EC, Burris WJ, Martin TJ & Bruns ME 1992

Fisher GJ, Kelley IJ & Smith CH 1983

Germain AM, Attaroglu H, MacDonald PC & Casey ML 1992

Hirot S, Kiyat T, Miyakawa I 1997

Howard A, Legon S & Walters JR 1992

Jabowicz O, Chen J, Premont RT & Iyengar R 1993

Kronenberg HM 1996
Parathyroid hormone–related peptide (PTHrP) regulates fetal–placental calcium transport through a common receptor. The physiology of parathyroid hormone-related peptide in normal human fetal development. Journal of Molecular Endocrinology 15: 1521–1523.

Potts JT Jr & Kronenberg HM 1995

Rebut-Bonneton C, Segond N, Demignon J, Porquet D & Evein-Brot D 1992

Wlodke ME, Ho PW, Rice GE, Moseley JM, Martin TJ & Brenneck PS 1995
Parathyroid hormone–related protein (PTHrP) concentrations in human amniotic fluid during gestation and at the time of labour. Reproduction, Fertility and Development 7: 1509–1513.

Wu TL, Vasavada RC, Yang K, Massfelder T, Ganz M, Abbas SK, Care AD & Stewart AF 1996

Yoshinuma M & Cooper DM 1993

Ziegler EE, O'Donnell AM, Nelson SE & Fomon SJ 1976

Received 5 June 2002
Accepted 23 July 2002