Localization of estrogen receptors-α and -β and androgen receptor in the human growth plate at different pubertal stages

Ola Nilsson1,2, Dionisios Chrysis1, Olli Pajulo3, Anders Boman4, Mikael Holst1, Joanna Rubinstein5, E Martin Ritzén1 and Lars Sävendahl1

1Pediatric Endocrinology Unit, Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden
2Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
3Department of Pediatric Surgery, Tampere University Hospital, Tampere, Finland
4Department of Surgical Sciences, Karolinska Institutet, Stockholm, Sweden
5Columbia University, New York, New York, USA

(Received for publication 16 October 2002. Revised version received 13 March 2003. Accepted 18 March 2003. Published online 7 August 2003)

Abstract

Sex steroids are required for a normal pubertal growth spurt and fusion of the human epiphyseal growth plate. However, the localization of sex steroid receptors in the human pubertal growth plate remains controversial. We have investigated the expression of estrogen receptor (ER) α, ERβ and androgen receptor (AR) in biopsies of proximal tibial growth plates obtained during epiphyseal surgery in 16 boys and eight girls. All pubertal stages were represented (Tanner stages 1–5). ERα, ERβ and AR were visualized with immunohistochemistry and the number of receptor-positive cells was counted using an image analysis system. Percent receptor-positive chondrocytes were assessed in the resting, proliferative and hypertrophic zones and evaluated for sex differences and pubertal trends. Both ERα- and ERβ-positive cells were detected at a greater frequency in the resting and proliferative zones than in the hypertrophic zone (64 ± 2%, 64 ± 2% compared with 38 ± 3% for ERα, and 63 ± 3%, 66 ± 3% compared with 53 ± 3% for ERβ), whereas AR was more abundant in the resting (65 ± 3%) and hypertrophic zones (58 ± 3%) than in the proliferative zone (41 ± 3%). No sex difference in the patterns of expression was detected. For ERα and AR, the percentage of receptor-positive cells was similar at all Tanner pubertal stages, whereas ERβ showed a slight decrease in the proliferative zone during pubertal development (P<0.05). In summary, our findings suggest that ERα, ERβ and AR are expressed in the human growth plate throughout pubertal development, with no difference between the sexes.

Journal of Endocrinology (2003) 177, 319–326

Introduction

Longitudinal bone growth occurs at the growth plate, a thin cartilage structure found at the ends of long bones, by a process called endochondral ossification, in which cartilage is first formed and then remodeled into bone tissue. The growth plate consists of three histologically and functionally discrete layers: the resting zone, containing cells capable of differentiating into proliferative chondrocytes (Abad et al. 2002); the proliferative zone, where chondrocytes actively proliferate (Kember & Walker 1971) and line up in columns (Abad et al. 2002), thereby directing growth primarily in one dimension; and the hypertrophic zone, where the terminally differentiated chondrocytes calcify their matrix and attract the invading bone and endothelial cells, a crucial step in endochondral bone formation (Baron et al. 1994, Gerber et al. 1999).

During puberty, sex steroids from the developing gonads induce a pubertal growth spurt, which occurs during early puberty in girls and mid-puberty in boys. Sex steroids, specifically estrogen, also cause the cessation of growth and epiphyseal fusion (Goldzieher 1956).

The pivotal role of estrogen in epiphyseal fusion in both boys and girls was confirmed by the recognition of two rare genetic disorders: estrogen deficiency resulting from mutations in the aromatase gene (Morishima et al. 1994), and estrogen resistance resulting from a mutation in the estrogen receptor (ER) α gene (Smith et al. 1994). In both these conditions, longitudinal bone growth continues well into adulthood. In contrast, patients with complete androgen insensitivity syndrome have a nearly normal pubertal growth spurt (the amplitude of the spurt is intermediate between male and female) and undergo epiphyseal fusion during pubertal development (Zachmann et al. 1986).
Androgens are thus not necessary for the pubertal growth acceleration or for the cessation of linear growth that occurs in late puberty. However, in vitro (Carrascosa et al. 1990, Schwartz et al. 1994) and in vivo (Jansson et al. 1983, Ren et al. 1989) studies suggest that androgens do stimulate longitudinal bone growth, through a direct effect on the growth plate, and this is further supported by the observation that both dihydrotestosterone and oxandrolone, both non-aromatizable androgens, accelerate growth velocity without an increase in growth hormone secretion (Stanhope et al. 1988, Keenan et al. 1993, Nilsson et al. 1996).

Several in vitro and in situ studies have suggested that the sex steroid responsiveness of growth plate cartilage is dependent on the sex (Carrascosa et al. 1990, Schwartz et al. 1991, 1994, Nasatzky et al. 1993, van der Eerden et al. 2002b) or the age, or both (Corvol et al. 1987, Blanchard et al. 1991, Pinus et al. 1993) of the individual. However, few studies have addressed this issue in human growth plate cartilage.

To gain insight into the mechanisms by which sex steroids cause the pubertal growth pattern, we examined the patterns of expression of ERα, ERβ and androgen receptor (AR) in tibial growth plates from girls and boys at different stages of puberty.

Materials and Methods
Patients and tissue preparation
Biopsies from human tibial growth plates were collected from 16 boys and eight girls, at different pubertal stages (Table 1), who were undergoing epiphyseal surgery to arrest longitudinal bone growth. Surgery was performed because of either leg-length inequality or expected extremely tall stature (Table 1). The local ethics committees at Karolinska Hospital, Stockholm, Sweden and at Turku University Hospital, Turku, Finland, gave approval for the study, informed assent was obtained from all the patients, and informed consent was obtained from a parent. All biopsies were of the same size and processed in the same way. The specimens were immediately fixed in 4% formaldehyde for 16 h (pH 7-4), dehydrated, and then embedded in paraffin. The specimens were immediately fixed in 4% formaldehyde for 16 h (pH 7-4), dehydrated, and then embedded in paraffin.

For immunohistochemistry, slides were treated with xylen to remove paraffin and rehydrated in graded alcohol baths. Antigen retrieval was performed in 0·01 M citrate buffer (pH 6·0) at 94–97 °C for 20 min. After one wash in Tris-buffered saline (TBS; 0·05 M Tris, 0·85% saline, pH 7·4), endogenous peroxidase activity was reduced by incubation in 3·0% hydrogen peroxide in TBS for 5 min at room temperature. To decrease non-specific binding, slides were incubated with 1·0% BSA (fraction V powder, Sigma, St Louis, MO, USA) in TBS at room temperature for 1 h. Primary antibodies were diluted in TBS with 0·1% BSA and sections were incubated overnight at +4°C. The same concentrations of primary antibodies were used to stain prostate (positive control) and growth plate tissue.

Control sections were incubated with preadsorbed antibodies, non-specific rabbit IgG or non-specific mouse IgG1, as described below. Sections were washed five times in TBS and incubated with biotinylated goat anti-rabbit IgG (1:200; Vector Laboratories, Burlingame, CA, USA) or goat anti-mouse IgG1 (1:200; Santa Cruz Biotechnology, CA, USA) for 45 min at room temperature. They were then washed five times in TBS, incubated with avidin-conjugated peroxidase (Vector Laboratories) for 30 min, and the resulting peroxidase activity was detected using a DAB-kit (Vector Laboratories). Growth plate sections were counterstained with methyl-green, whereas sections of ovary and liver were counterstained with hematoxylin.

Antibodies
Anti-ERα For ERα localization, we used a monoclonal mouse antibody (ER-6F11; Novocastra Lab. Ltd, Newcastle, UK). ER-6F11, raised in mouse against the complete human ERα protein, was diluted to 2 µg/ml before use. In all experiments, control sections incubated with non-immune mouse IgG1 were included. As an additional negative control, ER-6F11 (2·0 µg/ml) was incubated with recombinant ERα protein (2·0 µg/ml; catalog no. P2187, Panvera LLC, Madison, WI, USA) for 2 h at room temperature, before it was applied on the tissue. The antibody recognizes an epitope located within the first 184 amino acids of the human ERα (Novocastra Lab. Ltd, personal communication) and is therefore unlikely to recognize any isoform that is truncated from the N-terminal (Denger et al. 2001).

Anti-ERβ To localize ERβ, a polyclonal rabbit anti-rat ERβ (06–629; Upstate Biotechnology, Lake Placid, NY, USA), raised against a synthetic peptide corresponding to amino acids 99–116 of human ERβ (Genbank AF051427) was used. The optimal working concentration was found to be 2·5 µg/ml. Control sections incubated with non-immune rabbit IgG (2·5 µg/ml) were included in all experiments. In addition, 06–629 was incubated with a 10-fold molar excess of immunizing peptide (629P: Upstate Biotechnology) for 2 h at room temperature. The
Table 1 Patients, physical findings and expression of ERα, ERβ and AR in the resting, proliferative and hypertrophic zones

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Sex</th>
<th>Tanner pubertal stage</th>
<th>Age (yr:mth)</th>
<th>Bone age (yr:mth)</th>
<th>Diagnosis</th>
<th>ERα (%pos. cells)</th>
<th>ERβ (%pos. cells)</th>
<th>AR (%pos. cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RZ</td>
<td>PZ</td>
<td>HZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RZ</td>
<td>PZ</td>
<td>HZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RZ</td>
<td>PZ</td>
<td>HZ</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>B3/Ph4</td>
<td>13:8</td>
<td>12:4</td>
<td>Leg length difference</td>
<td>58</td>
<td>83</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>B2-3/Ph2</td>
<td>14:2</td>
<td>13:4</td>
<td>Leg length difference</td>
<td>61</td>
<td>66</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>B2/Ph2</td>
<td>12:8</td>
<td>11:2</td>
<td>Leg length difference</td>
<td>51</td>
<td>72</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>B2/Ph1</td>
<td>12:7</td>
<td>12:4</td>
<td>Leg length difference</td>
<td>58</td>
<td>76</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>B2/Ph4</td>
<td>13:7</td>
<td>13:0</td>
<td>Constitutional tall stature</td>
<td>61</td>
<td>60</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>B4/Ph4</td>
<td>13:3</td>
<td>13:6</td>
<td>Leg length difference</td>
<td>72</td>
<td>49</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>B1/Ph1</td>
<td>9:6</td>
<td>11:0</td>
<td>Leg length difference</td>
<td>75</td>
<td>67</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>B2/Ph2</td>
<td>12:6</td>
<td>12:0</td>
<td>Constitutional tall stature</td>
<td>50</td>
<td>67</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>G1/Ph1</td>
<td>12:3</td>
<td>12:4</td>
<td>Marfan syndrome</td>
<td>50</td>
<td>60</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>G4/Ph4</td>
<td>13:5</td>
<td>15:4</td>
<td>Leg length difference</td>
<td>54</td>
<td>76</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>G4-5/Ph4</td>
<td>14:0</td>
<td>14:8</td>
<td>Klinefelter’s syndrome</td>
<td>44</td>
<td>57</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>G3-4/Ph3-4</td>
<td>15:4</td>
<td>13:6</td>
<td>Leg length difference</td>
<td>90</td>
<td>75</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>G4/Ph4</td>
<td>16:2</td>
<td>14:6</td>
<td>Leg length difference</td>
<td>54</td>
<td>55</td>
<td>73</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>G4-5/Ph4</td>
<td>14:3</td>
<td>14:7</td>
<td>Leg length difference</td>
<td>61</td>
<td>76</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>G4/Ph4</td>
<td>14:1</td>
<td>12:4</td>
<td>Leg length difference</td>
<td>71</td>
<td>56</td>
<td>38</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>G4-5/Ph4</td>
<td>13:8</td>
<td>13:6</td>
<td>Leg length difference</td>
<td>64</td>
<td>76</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>G3/Ph3</td>
<td>14:3</td>
<td>13:10</td>
<td>Leg length difference</td>
<td>69</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>G3/Ph3</td>
<td>14:7</td>
<td>15:3</td>
<td>Leg length difference</td>
<td>59</td>
<td>62</td>
<td>39</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>G4/Ph4</td>
<td>16:0</td>
<td>14:6</td>
<td>Leg length difference</td>
<td>64</td>
<td>67</td>
<td>35</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>G4/Ph4</td>
<td>14:7</td>
<td>14:0</td>
<td>Leg length difference</td>
<td>61</td>
<td>49</td>
<td>28</td>
</tr>
<tr>
<td>20</td>
<td>M</td>
<td>G3/Ph3</td>
<td>12:3</td>
<td>14:0</td>
<td>Leg length difference</td>
<td>63</td>
<td>49</td>
<td>31</td>
</tr>
<tr>
<td>21</td>
<td>M</td>
<td>G3/Ph3</td>
<td>14:10</td>
<td>13:0</td>
<td>Constitutional tall stature</td>
<td>65</td>
<td>70</td>
<td>29</td>
</tr>
<tr>
<td>22</td>
<td>M</td>
<td>G4/Ph3</td>
<td>16:4</td>
<td>14:3</td>
<td>Constitutional tall stature</td>
<td>90</td>
<td>81</td>
<td>33</td>
</tr>
<tr>
<td>23</td>
<td>M</td>
<td>G4/Ph3</td>
<td>12:7</td>
<td>12:6</td>
<td>Constitutional tall stature</td>
<td>81</td>
<td>47</td>
<td>31</td>
</tr>
</tbody>
</table>

yr:mth, years:months; %pos. cells, percentage of positive cells; RZ, resting zone; PZ, proliferative zone; HZ, hypertrophic zone.
antibody is likely to detect all isoforms of ERβ that have an intact A/B domain, for example hERβ1–3 (reviewed in Lewandowski et al. 2002).

Anti-AR AR was localized using a polyclonal rabbit anti-human AR (N-20; catalog no. sc-816, Santa Cruz Biotechnology, Santa Cruz, CA, USA), raised against a synthetic peptide mapping at the amino terminus of the human AR. The optimal working concentration was found to be 0.5 µg/ml. Control sections incubated with non-immune rabbit IgG (0.5 µg/ml) were included in all experiments. For further confirmation of the specificity, the anti-AR antibody (N-20) was incubated with a 10-fold molar excess of the blocking peptide (catalog no. sc-816P, Santa Cruz Biotechnology) for 2 h at room temperature.

Image analysis

Digital images of stained samples were transferred from a DMR-X microscope (Leica, Wetzlar, Germany) into a computerized image-analysis system (Quantimet 550IW; Leica, Cambridge, UK). To calculate the percentage of positive cells, three visual fields were assessed for positively stained cells and for the total number of cells. Methylgreen stains the nuclei to a faint green color; only those cells in which a visible nucleus could be detected were counted. The epiphyseal bone, the metaphyseal bone and areas where the tissue sections had detached from the slides were excluded. The positively stained cells in the resting, proliferative and hypertrophic zones were detected by the program and counted manually by one observer unaware of the pubertal stage of the patient. Chondrocytes distal to the epiphyseal bone and proximal to the proliferative columns were regarded as resting chondrocytes. Proliferative cells were defined as flat chondrocytes (cell height <10 µm) arranged in columns, whereas the hypertrophic chondrocytes were defined by a cell height of 10 µm or more. Results are given as the percentage of cells in the region that was stained. The sensitivity and specificity of the imaging system has been previously evaluated (Bjork et al. 1997).

Statistics

For each growth plate zone, the results from each antibody were evaluated independently. The overall effects of sex and growth plate zone on the percent positive cells in each growth plate zone were evaluated by two-way ANOVA. For evaluation of developmental trends, regression analysis was applied with pubertal stage and bone age as the independent variables and percent positive cells as the dependent variable. Patient no. 13 was excluded because of lack of pubertal staging.

Results

ERα, ERβ and AR immunoreactivity in prostate control tissue

In the human prostate tissue, glandular epithelium was mainly negative to ERα (Fig. 1A), whereas ERβ was detected in basal and some secretory cells of the epithelium (Fig. 1B). Most stromal cells were negative to both ERα and ERβ (Fig. 1A and B). Nuclear immunoreactivity to AR was detected in some stromal and most epithelial cells (Fig. 1C).
Figure 2 Immunohistochemical localization of ERα, ERβ and AR in human tibial growth plates at different pubertal stages. Sections of proximal tibial growth plates from one patient in early puberty (patient no. 7: A, C, D, F, and G) and two in late puberty (patient no. 11: B and E; patient no. 23: H and I) immunostained for ERα with the ER-6F11 antibody (A, B), for ERβ with the 06–629 antibody (D, E), and for AR with the N-20 antibody (G, H). Immunohistochemical staining produces a brown coloration. The sections were counterstained with methyl-green. Note that receptor-negative nuclei are stained in a light green color. When the primary antibodies, ER-6F11 (C), 06–629 (F) and N-20 (I) were preincubated with the corresponding antigen, no nuclear staining was detected. Original magnifications × 20; × 40 for insets. Bar represents 100 µm.
Chondrocytes distal to the epiphyseal bone and proliferative zones were regarded as resting zones of the growth plate, in all the specimens collected (Table 1). The percentage of receptor-positive cells decreased in all zones of the growth plate; thus, on the basis of our findings alone, the receptors could be assumed to have redundant roles in growth plate cartilage. However, lack of a functional ERα in humans (Smith et al. 1994) results in a phenotype similar to that of aromatase deficiency syndrome (Morishima et al. 1995), in which there is a complete lack of estrogen, suggesting that the two estrogen receptors are not redundant. In fact, studies on estrogen receptor-mediated transcription have suggested that ERβ acts as a negative regulator of ERα-mediated transcription at estrogen response elements (Hall & McDonnell 1999, Pettersson et al. 2000). It could thus be speculated that the observed decrease in ERβ during pubertal development could cause an enhanced ERα-mediated signaling in the growth plate during late puberty. Hypothetically, increased estrogen sensitivity in late puberty could contribute to the rapid decline in growth rate during this period.

The expression of ERα and ERβ in the resting and proliferative zones provides a possible explanation for the finding suggests that sex steroid receptors are expressed in human growth plate cartilage throughout pubertal development. This is in agreement with previous studies localizing ERα (Kusec et al. 1998), ERβ (Nilsson et al. 1999) and AR (Abu et al. 1997) to the human growth plate during puberty. It also supports the hypothesis that sex steroids modulate linear bone growth through direct effects on growth plate chondrocytes (Jansson et al. 1983, Corvol et al. 1987, Ren et al. 1989, Blanchard et al. 1991).

ERα- and ERβ-positive cells were detected in a similar frequency in all zones of the growth plate. Thus, on the basis of our findings alone, the receptors could be assumed to have redundant roles in growth plate cartilage. However, lack of a functional ERα in humans (Smith et al. 1994) results in a phenotype similar to that of aromatase deficiency syndrome (Morishima et al. 1995), in which there is a complete lack of estrogen, suggesting that the two estrogen receptors are not redundant. In fact, studies on estrogen receptor-mediated transcription have suggested that ERβ acts as a negative regulator of ERα-mediated transcription at estrogen response elements (Hall & McDonnell 1999, Pettersson et al. 2000). It could thus be speculated that the observed decrease in ERβ during pubertal development could cause an enhanced ERα-mediated signaling in the growth plate during late puberty. Hypothetically, increased estrogen sensitivity in late puberty could contribute to the rapid decline in growth rate during this period.

The expression of ERα and ERβ in the resting and proliferative zones provides a possible explanation for the
effects of estrogen on chondrocyte proliferation and thus also on the rate of longitudinal bone growth. This effect may be mediated through estrogen receptors in the proliferative zone or, as suggested by Weise et al. (2001), indirectly through an effect on the replicative senescence of the resting chondrocytes.

We detected ERα and ERβ proteins in the hypertrophic zone in all growth plate samples from all our patients. The hypertrophic zone chondrocytes also produce Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) (van der Eerden et al. 2000, Kindblom et al. 2002), two polypeptides that have been identified as important mediators of a negative feedback loop for the control of chondrocyte differentiation (Kronenberg et al. 1998). Histological studies of growth plates near fusion suggest that hypertrophic differentiation of all cells in the growth plate precedes epiphyseal fusion (Weise et al. 2001). It may therefore be speculated that estrogen induces epiphyseal fusion through a modulation of the Ihh–PTHrP feedback loop. This hypothesis is supported by the observation that expression of Ihh and PTHrP in the human growth plate decreases during pubertal development (Kindblom et al. 2002).

In the present study, immunoreactivity to ERβ was detected in all zones of the growth plate. It was thus detected in a wider distribution than we, and others, previously have reported in human growth plate cartilage (Nilsson et al. 1999, Egerbacher et al. 2002). This difference in results is attributable to the use of antigen retrieval, a technique that greatly enhances the sensitivity of immunoassays aimed at detecting nuclear receptors in formalin- and paraffin-embedded tissues (Taylor 1996). The increased sensitivity of the immunoassay also allowed us to decrease the primary antibody concentration, thereby minimizing the non-specific cytoplasmatic staining frequently detected in the hypertrophic zone, especially when high concentrations of rabbit antibodies are used (unpublished data). Preadsorption of the primary antibodies with their respective immunizing peptide and control experiments in human prostate tissue confirmed that the immunohistochemical staining was specific for the respective ERα, ERβ and AR (Leav et al. 2001).

The expression of AR in the hypertrophic zone may indicate that androgens stimulate longitudinal bone growth by a modulation of the hypertrophic differentiation — that is, increased hypertrophic cell height (Breuer et al. 1991). This is consistent with the findings of in vitro studies suggesting that androgens stimulate chondrocyte differentiation (Corvol et al. 1987, Blanchard et al. 1991, Schwartz et al. 1994). However, it has also been suggested that androgens stimulate growth plate chondrocyte proliferation (Carrascosa et al. 1990). Thus androgen-stimulated growth may be mediated through an increased proliferation or an increased size of the hypertrophic cells, or by a combination of these two effects. In addition, the observation that the growth-promoting effect of oxandrolone is sustained after the cessation of treatment (Stanhope et al. 1988, Malhotra et al. 1993) may suggest an androgenic effect on the resting zone chondrocytes.

Sex steroid receptor-positive cells were detected at a similar frequency in girls and boys. This is in agreement with the findings of most previous immunohistochemical studies in human (Abu et al. 1997, Kusec et al. 1998, Bord et al. 2001), rat (van der Eerden et al. 2002a, Nilsson et al. 2002) and rabbit (Kusec et al. 1998, Nilsson et al. 2002) growth plate cartilage. Thus the sex-specific effects of sex steroids suggested by the findings of some in vitro studies (Corvol et al. 1987, Blanchard et al. 1991, Schwartz et al. 1991, 1994), do not appear to be caused by sex-specific receptor expression. However, immunohistochemistry is a semi-quantiative method, and real differences could have been overlooked by this technique.

In summary, our immunohistochemical studies suggest that ERα, ERβ and AR proteins are expressed in all zones of the growth plate, in both boys and girls, throughout pubertal development. The patterns of expression may explain the effects of sex steroids on growth-plate cartilage, including the effects on proliferation, growth rate and epiphyseal fusion.

Acknowledgements

This study was supported by the Swedish MRC (K2001–72X–13508–02B), the Swedish Society of Medicine, HKH Kronprinsessan Lovisas förening för Barnajukvård, Stiftelsen Sven Jerrings Fond, Stiftelsen Samariten, Stiftelsen Frimurare Barnhuset i Stockholm, Sällskapet Barnavård, and Wera Ekströms Stiftelse.

References

van der Eerden BC, van Til NP, Brinkmann AO, Lowik CW, Wit JM & Karperien M 2002b Gender differences in expression of androgen receptor in tibial growth plate and metaphyseal bone of the rat. Bone 30 891–896.

Hall JM & McDonnell DP 1999 The estrogen receptor beta-isofrom (ERβ) of the human estrogen receptor modulates ERα transcriotional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 140 5566–5578.

Received 4 November 2002
Accepted 7 February 2003