MECHANISMS OF STEROID ACTION AND RESISTANCE IN INFLAMMATION

Resistance to glucocorticoid-induced apoptosis in lymphoblastic leukemia

R Kofler1,2, S Schmidt1, A Kofler1 and M J Ausserlechner2

1Tyrolean Cancer Research Institute at the University of Innsbruck; Innrain 66; A-6020 Innsbruck, Austria
2Institute of Pathophysiology, Division of Molecular Pathophysiology, University of Innsbruck Medical School; Fritz-Pregl-Str. 3; A-6020 Innsbruck, Austria
(Requests for offprints should be addressed to R Kofler, Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria; Email: reinhard.kofler@uibk.ac.at)

Abstract

Glucocorticoid (GC) resistance is a phenomenon of major significance in a number of clinical situations, including the therapy of lymphoid malignancies. Resistance may concern all, or just selected, GC effects, it may be absolute or just reflect a state of reduced sensitivity and, clinically relevant, be reversible or irreversible. Numerous molecular mechanisms can be envisaged acting either ‘upstream’ in the GC-triggered signaling pathway, i.e. at the level of the GC receptor (GR), or ‘downstream’ at the level of the GC-regulated genes responsible for individual GC effects.

In lymphoid malignancies, GCs have anti-leukemic effects through the induction of apoptosis and/or cell cycle arrest. In this condition evidence for only a small number of mechanisms for GC resistance has been provided, mostly at the level of the GR. Herein, we review reports and hypotheses regarding ‘upstream’ and ‘downstream’ mechanisms for GC resistance in lymphoblastic leukemia and present an in vitro GC resistance model that might allow identification of resistance mechanisms.

Introduction

Because of their pleiotropic effects, glucocorticoids (GCs) are among the most frequently prescribed drugs. In lymphoid malignancies, these hormones and their analogs have anti-leukemic actions leading to the induction of apoptosis and/or cell cycle arrest (for recent reviews see King & Cidlowski 1998, Thompson 1998, Kofler 2000, Planey & Litwack 2000, Distelhorst 2002, Greenstein et al. 2002). However, some tumors do not respond to these physiological drugs a priori (primary resistance) and those which do almost always develop resistance during therapy (secondary resistance) (Kaspers et al. 1994, Moalli & Rosen 1994). In spite of its clinical significance (Klumper et al. 1995), the molecular basis of GC resistance is still poorly understood. The term ‘GC resistance’, both in general and in lymphoid malignancies in particular, is used with quite different meanings. Resistance can occur on the level of the entire organism, as in primary cortisol resistance, or affect the descendants of a particular cell clone, as in lymphoblastic leukemia. GC resistance can concern all, a few, or just single effects. It may be reversible, as during lymphocyte differentiation where sensitivity to GC-induced apoptosis varies dramatically (Ashwell et al. 2000, Winoto & Littman 2002), or irreversible as in the case of GC receptor (GR) mutations. It can be absolute, i.e. GC concentration-independent, or relative, i.e. reflecting reduced sensitivity, and apply to some but not other GC analogs. Such distinctions are clinically relevant as higher-dose GC treatment abrogated the effect of relative drug insensitivity and low GR levels in childhood acute lymphoblastic leukemia (ALL) (Schwartz et al. 2001).

Regarding possible molecular mechanisms, an almost endless number can be envisaged along the signal transduction pathways triggered by GC (Fig. 1). Conceptually, they may be grouped into ‘upstream’ and ‘downstream’ mechanisms. The former concern the GR, its ligand and GR-associated proteins that control its function, and have the potential to affect most, if not all, GC effects. The latter interfere with individual GC responses, such as induction of apoptosis. Below, we discuss up- and downstream mechanisms for resistance to GC-induced apoptosis with particular emphasis on human lymphoid malignancies and conclude by presenting an in vitro model for GC resistance in childhood ALL and first evidence for possible resistance mechanisms derived therefrom.
GC resistance in lymphoid malignancies – ‘upstream mechanisms’

At present, convincing evidence for a causative role in resistance to GC-induced apoptosis has mostly been provided for ‘upstream mechanisms’. Since GC resistance results from a selection process for both survival and proliferation, this might be taken as evidence that the GR constitutes the only common, and hence most sensitive, step in the respective pathways. Alternatively, it may simply reflect experimental biases and/or our ignorance concerning critical downstream components.

Pre-receptor mechanisms

Overexpression of the mdr-1 gene-encoded P-glycoprotein, an A/B/C transporter that ‘pumps’ various GC analogs out of the cell, has been suggested to account for cross-resistance resulting after exposure to combination chemotherapy (Arceci 1993, Bourgeois et al. 1993, Gottesman et al. 2002). In addition to affecting apoptotic responses to other agents as well, this form of GC resistance is characterized by its sensitivity to P-glycoprotein inhibitors, like verapamil or cyclosporin A, and its differing efficiency towards various GC analogs (Karssen et al. 2001). A second pre-receptor mechanism is more theoretical at present and concerns expression of GC-metabolizing enzymes such as 11β-hydroxysteroid dehydrogenase that converts cortisol into inactive cortisone (Funder 1996, Seckl & Walker 2001).

GR gene mutations and polymorphisms

Numerous loss-of-function mutations in the GR gene have been observed in GC-resistant human ALL cell lines (Ashraf & Thompson 1993, Powers et al. 1993, Strasser-Wozak et al. 1995, Hala et al. 1996, Chen et al. 1997). Interestingly, these and the mutations observed in primary cortisol resistance (Chrousos et al. 1993, Werner & Brommegard 1996) and in mouse leukemia (see reviews in the Introduction), concern the DNA– and ligand-binding domains, whereas the large N-terminal region containing...
one of the transactivating domains is hardly ever affected, possibly reflecting the limited sequence requirements of transactivating domains. Whether GR gene mutations are the major GC resistance mechanism in vivo as well is still unresolved. From a theoretical standpoint, the combination of chemotherapy with its mutagenic potential with GC might indeed favor the development of, and selection for, GR mutations, as has been shown in vitro (Palmer et al. 1992). However, in one study, no evidence for mutations in the DNA- and ligand-binding domains was observed in 22 chronic lymphatic leukemia patients subjected to combination chemotherapy (Soufi et al. 1995). In childhood ALL, evidence for GR mutations has been provided in one case (Hillmann et al. 2000). Whether the two known GR polymorphisms, i.e. N363S and R23K, affect GC sensitivity is still controversial (Koper et al. 1997, Huizenga et al. 1998, De Lange et al. 1999).

GR variants

As outlined in Fig. 2, a number of GR variants resulting from alternative splicing, polyadenylation or translational initiation have been described. Two of them (GR-P/GR-δ and GR-A) were originally detected in a
GC-resistant myeloma cell line (Moalli et al. 1993). GR-P has subsequently been observed in a number of hematopoietic and other malignancies as well as in normal lymphocytes (Moalli & Rosen 1994, Krett et al. 1995, De Lange et al. 2001). How it might affect GC sensitivity has remained controversial with reports suggesting that it might contribute to a resistant phenotype (Gaitan et al. 1995, Krett et al. 1995) and others providing evidence that GR-P increased the activity of a concomitantly expressed wild type GR (De Lange et al. 2001). Another splice variant, termed GR-β and reportedly encoding a dominant negative GR protein (De Castro et al. 1996, Oakley et al. 1999), has been implicated in various forms of GC resistance (Leung et al. 1997, Shahidi et al. 1999, Strickland et al. 2001) including that induced by tumor necrosis factor-α (TNF-α) and interleukin (IL)-1 in CEM-C7 T-ALL cells (Webster et al. 2001). Whether expression of this isoform might account for GC resistance in patients with lymphoblastic malignancies is still unclear: Longui et al. (2000) concluded that the combination of low GR-α and normal-to-high GR-β expression in leukemic lymphoblasts might represent one of the mechanisms for reduced GC sensitivity in ALL, particularly T-ALL. De Lange et al. (2001) found little, if any, expression of GR-β in various hematopoietic tumors. In concert with reports that failed to discover dominant negative activity of GR-β (Hecht et al. 1997, De Lange et al. 1999), this argued against a critical role of the GR-β isoform in GC resistance in leukemia. Two further GR variants have been described: the splice variant GR-γ, with an additional arginine in position 450A and about 50% less transactivation ability than GR-α (Rivers et al. 1999), and GR-B that lacks the N-terminal 16 amino acids because of alternative translation initiation and which is nearly twice as effective as the longer GR-α species in gene transactivation, but not in transrepression (Yudt & Cidlowski 2001). Whether expression of these variants affects sensitivity to GC-induced apoptosis in lymphoid malignancies is unknown.

Insufficient GR expression

GR expression levels have been correlated with GC sensitivity in numerous experimental systems (Bellingham et al. 1992, Pazirandeh et al. 2000, Reichardt et al. 2000). As long as 30 years ago, the possible importance of insufficient GR expression in GC resistance in late stage leukemia was suggested by E Brad Thompson and co-workers (Lippman et al. 1973). More recently, GR levels in childhood ALL correlated with the in vivo response to single-agent GC before combination induction chemotherapy (Pui et al. 1984), and with disease outcome in a large study including 546 children with ALL (Kato et al. 1993). However, such a correlation was not always seen (Csoka et al. 1997) and basal expression levels may be only part of the story. A number of reports suggest that GR auto-induction might be critical for sensitivity to GC-induced apoptosis: early studies have shown a correlation between GC-sensitivity and GR auto-induction in myeloma (Gomi et al. 1990) and lymphoblastic leukemia (Antakly et al. 1989, Denton et al. 1993, Barrett et al. 1996) cell lines. Functional requirement of GR upregulation for GC-induced apoptosis was further shown in elegant experiments in CCRF-CEM T-ALL cells (Ramdas et al. 1999). We observed that the GR was one of only eight genes that appeared co-regulated in a comparative expression profiling study with over 7000 genes in proliferating and cell cycle-arrested CEM cells both undergoing GC-induced apoptosis (Tonko et al. 2001). Together with the long-known observation, recently supported by expression profiling studies (Obexer et al. 2001, Tonko et al. 2001), that GC repress a number of metabolic enzymes, as well as general transcription and translation, we put forward the hypothesis that positive GR feed-back regulation maintains these GC effects to an extent not compatible with cellular survival (Kofler 2000). Further experimental evidence for the requirement of a positive GR feed-back loop is presented in the last Section.

GR-associated proteins causing impaired GR function

In the cytoplasm, GR associates with chaperones including various heat shock proteins and immunophilins, which ensure proper folding for ligand binding and may contribute to subsequent nuclear transport (Bohnen et al. 1995, Pratt et al. 1999). In the nucleus, the GR recruits a number of co-factors such as SRC-1, TIF2/GRIP1, CBP/p300, NcoR and SMRT required for its gene regulatory activities (Beato et al. 1995, Laudet & Gronemeyer 2002). Mutations in, or abnormal expression of, essential components of the different GR complexes might therefore compromise GR function. As examples, overexpression of the immunophilin RAP46/BAG-1 prevented GC-induced apoptosis in S49 mouse leukemia cells (Schneikert et al. 1999) and insufficient SRG3 (Swi-3 related gene) expression has been associated with reduced resistance to GC-induced apoptosis in peripheral mouse T cells (Han et al. 2001b). A particular situation concerns GR interactions with other sequence-specific transcription factors, in particular AP-1 (De Bosscher et al. 2001, Herrlich 2001) and NF-kB (Wissink et al. 1997, McKay & Cidlowski 1998). These interactions frequently lead to mutual antagonism and overexpression of such factors might therefore interfere with many, if not all, GR-mediated responses. In addition, most of these factors control survival pathways. Thus, the balance between the pro-apoptotic GR and these anti-apoptotic transcription factors may control life or death decisions. The above interactions might therefore lead to upstream as well as downstream interference with GC-induced cell death. Moreover, they might explain GC-apoptosis antagonizing
effects of some lymphokines (see Section on lymphokines below). In the clinical situation, activation of these transcription factors by multiple mechanisms might contribute to GC resistance; however, convincing evidence for such resistance mechanisms is still lacking.

GC resistance in lymphoid malignancies – ‘downstream resistance mechanisms’

Resistance to a particular GC effect, like GC-induced apoptosis, might be caused by defects in downstream components of the specific response pathway or cross-talk from other signaling pathways that interfere with the given GC response.

Defects in GC target genes

Since the GC-regulated genes responsible for apoptosis induction in lymphoid malignancies are still enigmatic, corresponding resistance mechanisms have not been reported and are difficult to predict. A number of GC-regulated genes including c-myc (Thulasi et al. 1993, Medhi et al. 2001), IκB (Auphan et al. 1995, Ramdas & Harmon 1998), c-jun (Barrett et al. 1996, Zhou & Thompson 1996), and cyclin D3 and cdk4 (Rogatsky et al. 1997, M J Ausserlechner, P Obexer, S Geley & R Kofler, unpublished observations) have been implicated from studies employing human leukemia and osteosarcoma cell lines (these and many other genes have also been reported in rodent cells – see reviews in the Introduction). In some cases, like c-myc and cyclin D3 (Löffler et al. 1999, M J Ausserlechner, P Obexer, S Geley & R Kofler, unpublished observations), their functional role in leukemia apoptosis has, however, been questioned. Expression profiling studies with GC-treated ALL (Obexer et al. 2001, Tonko et al. 2001, Yoshida et al. 2002) or myeloma (Chauhan et al. 2002) cell lines have revealed a considerable number of additional candidate genes. However, unequivocal proof for a functional role in GC-induced apoptosis of human leukemia has not been provided for any one of them, nor is there a single example of GC resistance caused by mutation in, or deficient GC regulation of, any one of these genes in human lymphoid malignancies.

GC resistance as result of inhibitory cross-talk at the effector level

Resistance to GC-induced apoptosis might further result from interfering with the apoptotic effector machinery, e.g. by activation of survival pathways. This mechanism, however, might only work if GC triggers cell death by activating the apoptotic program without severely damaging the cell. If GC massively damaged the cells (which may be the case after GR auto-induction (Kofler 2000)), interference with the apoptotic machinery without preventing the primary damage to the cell may not restore long-term survival. In human lymphoid malignancies, two resistance situations have been investigated in detail that might correspond to inhibitory cross-talk mechanisms, i.e. overexpression of anti-apoptotic Bcl-2 family members and resistance mediated by lymphokines.

GC resistance and the Bcl-2 rheostat

Although it is unresolved whether components of the Bcl-2 rheostat (Olsvai & Korsmeyer 1994) are regulated by GC in human lymphoid malignancies (GCs repress Bcl-2 for instance in human osteosarcoma (Rogatsky et al. 1999) and induce the BH3-only molecule Puma/bbc3 in mouse thymocytes (Han et al. 2001a)), it is clear that anti-apoptotic Bcl-2 members exert inhibitory effects upon GC-induced cell death in such cells (Brunet et al. 1998, Hartmann et al. 1999). However, these effects are transient in the continuous presence of GC, and Bcl-2 does not prevent cell cycle arrest (Hartmann et al. 1999), altogether limiting its potential in a selection process that requires both proliferation and survival. In any case, expression of anti-apoptotic Bcl-2 members is frequent in leukemic cell lines and primary cells from patients prior to, and particularly after combination chemotherapy, and has been associated with resistance to chemotherapeutic drugs and GC (Smets & Van den Berg 1996, Salomons et al. 1997).

Resistance through lymphokines – activation of survival pathways?

Autocrine or paracrine secretion of lymphokines with subsequent activation of survival pathways has been implicated in GC resistance in numerous systems. In multiple myeloma, activation of the focal adhesion tyrosine kinase RAFTK/Pyk2 was reported to be required for GC-induced apoptosis (Chauhan et al. 1999), and IL-6, a known autocrine growth and survival factor for such cells (Frassanito et al. 2001), blocked both RAFTK activation (via the protein tyrosine phosphatase 2, SHP2) and GC-induced apoptosis (Chauhan et al. 2000). IL-6 has further been suggested to prevent apoptosis in this system by activating PK-B/Akt, a potent survival kinase (Hideshima et al. 2001). IL-2 and IL-4 have been reported to activate the survival transcription factor NF-kB by repressing its inhibitor IκB (Xie et al. 1997), thereby counteracting the proposed apoptosis-inducing induction of IκB by GC (Auphan et al. 1995, Ramdas & Harmon 1998). In addition, NF-kB may act as ‘upstream’ inhibitor of GC responses by binding to and inhibiting the GR (McKay & Cidlowski 1998). Similarly, activation of STAT6 with subsequent inhibition of the GR has been shown to be responsible for GC resistance after IL-4 exposure (Biola et al. 2000). Since TNF-α and IL-1 seem to interfere with GC-induced apoptosis by changing the GR-α/β ratio (Webster et al. 2001), lymphokines may, in addition to activating survival pathways, frequently induce ‘upstream’ GC resistance.
An in vitro model for GC resistance in ALL

To address the potential of developing resistance mechanisms in ALL cells, we generated panels of GC-resistant and -sensitive subclones of the CCRF-CEM-C7H2 cell line by limiting dilution cloning in the presence and absence of 10^{-7} M dexamethasone. DNA fingerprinting with 16 short tandem repeat (STR) markers showed that many of these lines can be distinguished by one or two altered STRs documenting their independent subclone nature. Although intended to be used for extensive comparative expression profiling, we first determined the expression of GR mRNA in these cell lines prior to, and 6–8 h and 24 h after exposure to 10^{-7} M dexamethasone using quantitative ‘real time’ RT-PCR. We further quantified expression levels of GILZ, a GC-induced leucine zipper protein implicated in the antagonistic effect of GC on T-cell receptor-induced apoptosis in thymocytes (D’Adamio et al. 1997, Riccardi et al. 1999). As depicted in Fig. 3, all GC-sensitive lines, like parental C7H2 cells, markedly induced both GR and GILZ mRNAs after 6–8 h and 24 h. In sharp contrast, 37 of 41 resistant lines failed to regulate GR and GILZ to the same extent as the sensitive lines. Since all but five resistant cell lines showed detectable induction of GR and/or GILZ (albeit to lower levels than the GC-sensitive lines), we concluded that these lines expressed functional GR. Hence, at least in this model system, GC resistance was most frequently associated with a failure to auto-upregulate GR expression. The significance of impaired GILZ induction, which was also closely associated with GC resistance, is currently being investigated.

Acknowledgements

We thank Drs S Geley and A Helmberg for stimulating discussions, C Riccardi (Perugia, Italy) for GILZ antisera and plasmids, and R Kirchebner for technical help. Supported by grants from the Austrian Science Fund (SFB-F002, P14482-MOB), the European Community (QLG1-CT-2001–01574 and QLRI-CT-1999–00762) and the Austrian Ministry for Education, Science and Culture (GENAU-Program). The Tyrolean Cancer Research Institute is supported by the Tiroler Landeskanzleranstalten Ges.m.b.H. (TILAK), the Tyrolean Cancer Society, various businesses, financial institutions and the People of Tyrol.

References

Glucocorticoid resistance in lymphoblastic leukemia

Breslin MB, Geng CD & Vedeckis WV 2001 Multiple promoters exist in the human GR gene, one of which is activated by glucocorticoids. Molecular Endocrinology 15 1381–1395.

Karsen AM, Meijer OC, van der Santt IC, Lucassen PJ, de Lange EC, de Boer AG & De Kloet ER 2001 Multidrug resistance P-glycoprotein hapers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology 142 2686–2694.

Kato GJ, Quidinn FF, Shuster JJ, Boyett J, Pullen JD, Borowitz MJ, Whitehead VM, Cris WM & Leventhal BG 1993 High
glucocorticoid receptor content of leukemic blasts is a favorable prognostic factor in childhood acute lymphoblastic leukemia. *Blood* **82** 2304–2309.

Received 20 December 2002
Accepted 7 April 2003