The CCN family: a new stimulus package

D R Brigstock

1Department of Surgery, The Ohio State University, Columbus, Ohio 43212, USA
2Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43212, USA
3Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio 43212, USA
4Center for Cell and Vascular Biology, Children’s Research Institute, Columbus, Ohio 43205, USA

(Requests for offprints should be addressed to D R Brigstock, Children’s Research Institute, 700 Children’s Drive, Columbus, Ohio 43205, USA; Email: brigstock@pediatrics.osu.edu)

Abstract

The CCN family comprises cysteine-rich 61 (CYR61/CCN1), connective tissue growth factor (CTGF/CCN2), nephroblastoma overexpressed (NOV/CCN3), and Wnt-induced secreted proteins-1 (WISP-1/CCN4), -2 (WISP-2/CCN5) and -3 (WISP-3/CCN6). These proteins stimulate mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Many of these activities probably occur through the ability of CCN proteins to bind and activate cell surface integrins. Accumulating evidence supports a role for these factors in endocrine pathways and endocrine-related processes. To illustrate the broad role played by the CCN family in basic and clinical endocrinology, this article highlights the relationship between CCN proteins and hormone action, skeletal growth, placental angiogenesis, IGF-binding proteins and diabetes-induced fibrosis.

Introduction

Over the last few years, articles on members of the new ‘CCN’ family – which includes cysteine-rich 61 (CYR61/CCN1), connective tissue growth factor (CTGF/CCN2), nephroblastoma overexpressed (NOV/CCN3), and Wnt-induced secreted proteins-1 (WISP-1/CCN4), -2 (WISP-2/CCN5) and -3 (WISP-3/CCN6) – have started to be published in this and other endocrinology journals. This trend reflects the finding that a variety of endocrine functions are impacted directly and indirectly by individual CCN proteins and that they probably are important modulators of hormonal pathways and hormonally regulated processes.

Originally discovered in the early to mid 1990s, members of the CCN family are 30–40 kDa proteins that are extremely cysteine-rich (10% by mass) (Brigstock 1999, Lau & Lam 1999, Perbal 2001). Collectively, these proteins stimulate mitosis, adhesion, apoptosis, extracellular matrix (ECM) production, growth arrest and migration, and regulate angiogenesis, tumor growth, placentaion, implantation, embryogenesis and endochondral ossification. Target cells include fibroblasts, epithelial cells, endothelial cells, smooth muscle cells and neuronal cells (Moussad & Brigstock 2000). One of the most important features of CCN proteins – yet one of the least understood – is that they are multi-modular mosaic proteins containing four conserved modules which are present in other unrelated extracellular proteins (Bork 1993, Brigstock 1999, Lau & Lam 1999, Perbal 2001). Module 1 is an insulin-like growth factor (IGF)-binding domain, module 2 is a von Willebrand type C domain, module 3 is a thrombospondin-1 domain, and module 4 is a C-terminal domain containing a putative cystine knot (Fig. 1). CCN proteins may exhibit biological activities that are consistent with the known properties of each constituent module, although data have started to emerge showing that certain modules can also act inter-dependently. The modular configuration may not only dictate direct actions of CCN proteins on target cells, but also their bioavailability, half-life, binding of other protein moieties, and regulation in time and space (Bork 1993, Brigstock 1999, Perbal 2001). Diversity in CCN functions may arise due to structural heterogeneity in the modular configuration. For example module 4 is absent in WISP-2/CCN5 (Pennica et al. 1998, Zhang et al. 1998) and modules 1–3 are absent in products of CTGF/CCN2 proteolysis (Brigstock et al. 1997, Ball et al. 1998).

The underlying mechanisms of action of CCN proteins have proven elusive, perhaps because the earlier (and
naive) view was that they acted in a similar fashion to classic growth factors. Attempts to identify unique specific high-affinity signal-transducing receptors have been fruitless. It is now felt that these molecules may act as matricellular proteins that bridge the functional and physical gap between ECM-associated proteins and cell surface molecules (Lau & Lam 1999). Recent data have shown that CYR61/CCN1, CTGF/CCN2 and NOV/CCN3 bind to cell surface integrins and thereby induce intracellular signaling events that include kinase activation and gene transcription (Lau & Lam 1999, C C Chen et al. 2000, 2001, N Chen et al. 2000, Grzeszkiewicz et al. 2001, 2002, Leu et al. 2002, Schober et al. 2002). Additionally, CCN proteins exhibit strong affinity for heparin and are localized on cell surfaces or in ECM in association with heparan sulfate proteoglycans (HSPGs). The diverse biological functions of CCN proteins may reside in the unique interactions of individual CCN proteins with specific integrin subtypes expressed by a given target cell, the utilization of cell surface HSPGs as co-receptors, and the cross talk of these binding moieties with other signaling molecules such as growth factor receptors.

Below, I briefly summarize five aspects of CCN biology that are of interest to endocrinologists. While this list is not exhaustive, it serves to highlight the broad and versatile endocrinological aspects of this new gene family. A conceptual framework is presented in Fig. 2.

Hormone action

CYR61/CCN1 and CTGF/CCN2 are both estrogen-inducible and overexpressed in steroid-dependent breast or uterine tumors (Tsai et al. 2000, 2002b, Sampath et al. 2001a,b, 2002, Xie et al. 2001a,b). CYR61/CCN1 promotes breast cancer progression and is associated with more advanced disease (Xie et al. 2001a, Tsai et al. 2002a). Proliferation of breast cancer cell lines in vitro is antagonized by anti-CYR61/CCN1 antibodies and the production of CYR61/CCN1 by these cells is antagonized by anti-estrogens (Sampath et al. 2001a, Tsai et al. 2002b). WISP-2/CCN5 is also induced by estrogen in breast cancer cells (Inadera et al. 2000, 2002). Anti-progestins are effective in antagonizing CYR61/CCN1
production by breast cancer cells (Sampath et al. 2002). Collectively, these data point to the CCN family members as important downstream mediators of estrogen- and progesterone-regulated cell growth. However, CCN proteins may also impact other growth regulatory pathways in breast cancer cells. WISP-3/CCN6, for example, is a tumor suppressor that exhibits reduced expression in inflammatory breast cancer (Kleer et al. 2002).

In addition to their roles in steroid-dependent tumor growth, CCN proteins are involved as downstream mediators of normal physiological hormone action in organs such as the uterus or ovary. Uterine CTGF/CCN2 is regulated by both estrogen and progesterone and appears to be important for maintenance or remodeling of stromal ECM (Rageh et al. 2001, Cheon et al. 2002). In the ovary, CTGF/CCN2 production is regulated by gonadotropins or transforming growth factor-beta (TGF-β) and is associated with thecal cell recruitment and mitosis, and maintenance of the corpus luteum (Wandji et al. 2000, Sleen et al. 2001, Harlow & Hillier 2002, Harlow et al. 2002, Liu et al. 2002).

Skeletal growth

CTGF/CCN2 has emerged as an important player in chondrogenesis and endochondral ossification as shown by its ability to promote proliferation, maturation and hypertrophy of cultured growth or articular cartilage cells (Takigawa et al. 2003). During embryogenesis, CTGF/CCN2 is expressed in zones containing hypertrophic chondrocytes or calcifying cartilage of long bones, ribs, vertebral column and phalanges. It is also produced by osteoblasts in primary spongiosa and ameloblasts or odontoblasts in incisal teeth (Takigawa et al. 2003). CTGF/CCN2 is expressed in hypertrophic chondrocytes, proliferating chondrocytes and proliferating periosteal cells during healing of fractured ribs (Nakata et al. 2002). During limb regeneration in newts, the expression of CTGF/CCN2 is consistent with a role in osteoclast production and endochondral ossification of the hypertrophied cartilaginous limb skeleton (Cash et al. 1998).

In vitro, CTGF/CCN2 promotes chondrocyte cell growth and hypertrophy, as well as increased expression of...
proteoglycans, aggrecan and collagens (Nakanishi et al. 2000, Nishida et al. 2000, 2002). CTGF/CCN2 levels in skeletal cells are stimulated by TGF-β and bone morphogenetic protein-2, consistent with the known role of these proteins in skeletal growth as well as the observation that CTGF/CCN2 is an immediate early gene for TGF-β (Nakanishi et al. 1998). Recently, CTGF/CCN2-null mice demonstrate multiple skeletal defects including expanded hypertrophic zones of long bones, possibly due to decreases in growth plate angiogenesis, chondrocyte proliferation and matrix-degrading enzymes. (Ivkovic et al. 2003).

CYR61/CCN1 promotes collagen and cartilage production in limb bud micromass cultures and stimulates chondrogenesis, mitogenesis and adhesion in limb mesenchymal cells (O’Brien & Lau 1992, Wong et al. 1997). CYR61/CCN1 production in fetal osteoblasts is regulated by vitamin D3 (Schutze et al. 1998) while NOV/CCN3 is involved in calcium signaling (Li et al. 2002), which may pertain to a role in bone metabolism. Mutations in the WISP-3/CCN6 gene are associated with progressive pseudohemiatopic dysplasia, an autosomal recessive skeletal disorder characterized by continued cartilage loss and bone destruction (Hurvitz et al. 1999). WISP-3/CCN6-null mice have more mature vertebral endplates, a phenomenon that may be due to accelerated endochondral ossification (see Perbal et al. 2003).

Placental angiogenesis

Production of CTGF/CCN2 by mouse uterine stromal cells increases dramatically as the cells differentiate into decidual cells following implantation (Surveyor et al. 1998). At later stages, CYR61/CCN1 and CTGF/CCN2 are present in trophoblast giant cells (Kireeva et al. 1997). In the non-invasive placenta of the pig, CTGF/CCN2 production by uterine epithelium is markedly reduced during the attachment phase and may facilitate sub-epithelial matrix reorganization and angiogenesis (Moussad et al. 2002). Thereafter many cells in the uterus–placental unit produce high levels of CTGF/CCN2, which may promote matrix stabilization and angiogenesis within it. An essential role for CYR61/CCN1 during embryogenesis has recently been shown in knockout mice, which failed to develop in utero due to vascular defects in the placenta (Mo et al. 2002). The defect appeared to be related to the inability of new capillaries to bifurcate, suggesting that CYR61/CCN1 facilitates the development of a branching capillary network. Indeed, the ability of CYR61/CCN1 and CTGF/CCN2 to regulate endothelial cell proliferation and angiogenesis is well established (Brigstock 2002). Recently, NOV/CCN3 was shown to be angiogenic (Lin et al. 2003), although WISP-3/CCN6 appears to be anti-angiogenic (Perbal et al. 2003).

IGF binding

Module 1 exhibits similarity to IGF-binding proteins (IGFBPs) and speculation has arisen regarding a role for CCN proteins in IGF transport and delivery (Bork et al. 1997, Kim et al. 1997, Burden et al. 1999). However, rather than exhibiting the high-affinity IGF binding (Kd = 10^-10 - 10^-11 M) that is characteristic of IGFBP-1 to -6, the binding affinity of CCN proteins for IGFs is 2 or 3 orders of magnitude less. While IGF binding in vitro has been reported for CTGF/CCN2, NOV/CCN3 and WISP-3/CCN6 (Kim et al. 1997, Burden et al. 1999, Kleer et al. 2003), this interaction has not been definitively attributed to sequences in module 1 and classic IGF ligand blots with NOV/CCN3 proved unsuccessful (Chevalier et al. 1998). Although investigators have proposed that the CCN family is part of an IGFBP superfamily (Kim et al. 1997, Baxter et al. 1998, Rosenfeld 2001), the physiological importance of CCN–IGF interactions will remain controversial until the appropriate experiments are performed (Collet & Candy 1998, Grotendorst et al. 2000). It is noteworthy that some CTGF/CCN2 isoforms are active in the complete absence of module 1 (Brigstock et al. 1997, Ball et al. 1998), although a regulatory role of module 1 on these actions cannot be formally excluded. Interestingly, the IGF-binding property of WISP-3/CCN6 has been linked to IGF signaling in inflammatory breast cancer (Kleer et al. 2003).

Diabetes-induced fibrosis

Diabetes mellitus type 1 leads to fibrotic pathology in multiple organs including the kidney, arteries and heart. In early stages of diabetic nephropathy, high glucose levels are associated with mesangial cell hypertrophy and matrix production and this effect is mimicked by exogenous stimulation with CTGF/CCN2 (Riser et al. 2000, Wahab et al. 2002). In addition, high glucose conditions, TGF-β, mechanical strain or CTGF/CCN2 itself promote CTGF/CCN2 expression by mesangial cells (Wahab et al. 1996, Murphy et al. 1999, Riser et al. 2000). As in other fibrotic diseases, CTGF/CCN2 acts downstream of TGF-β and has been linked to chronic tubulointerstitial fibrosis (Wang et al. 2001, Yokoi et al. 2001, 2002) suggesting that CTGF/CCN2 may be a novel therapeutic target in renal fibrosis (Cren et al. 2001). CTGF/CCN2 expression is inhibited in the diabetic kidney by aminoguanidine, an inhibitor of advanced glycosylation end products (AGEs), which are pro-fibrotic and cause induction of CTGF/CCN2 and fibronectin (Twigg et al. 2001, 2002a,b). CTGF/CCN2 levels are also elevated in diabetes-induced cardiac fibrosis and atherosclerosis and these can be inhibited by, respectively, inhibitors of either AGE or angiotensin-converting enzyme (Candido et al. 2002, 2003, Way et al. 2002).
Concluding comments

Although this article has focused on endocrinological aspects, research into all areas of the CCN family continues to gain pace. In the next few years, we can expect to learn much more about aspects of CCN structure–function as well as more detailed studies of the production, regulation and action of CCN molecules in normal and diseased tissues. There is guarded optimism that at least some of these factors will have useful prognostic or diagnostic applications and that some may even be viable therapeutic targets. In the current era of gene-array technology, we can anticipate that CCN proteins will be implicated in additional endocrine-related processes and that new functions for CCN proteins will be unraveled.

Acknowledgements

D R B is funded by NIH grant AA12817–02.

References

Brigstock DR 2003 Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). *Angiogenesis* **5** 153–165.

Grotendorst GR, Lau LF & Perbal B 2000 CCN proteins are distinct from and should not be considered members of the insulin-like growth factor-binding protein superfamily. *Endocrinology* **141** 2254–2256.

Mo FE, Muntean AG, Chen CC, Stoek DB, Watkins SC & Lau LF 2002 CYR61 (CCN1) is essential for placental development and vascular integrity. Molecular and Cellular Biology 22 8709–8720.

Moussad EE, Ragh MA, Wilson AK, Geisert RD & Brigstock DR 2000 Temporal and spatial expression of connective tissue growth factor (CCN2; CTGF) and transforming growth factor beta type 1 (TGF-beta1) at the utero-placental interface during early pregnancy in the pig. Molecular Pathology 55 186–192.

Perbal B 2001 NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Molecular Pathology 54 57–79.

Sampath D, Winneker RC & Zhang Z 2002 The angiogenic factor Cyr61 is induced by the progestrin R5020 and is necessary for mammary adenocarcinoma cell growth. Endocrine 18 147–159.

Schober JM, Chen N, Grzeszkiewicz TM, Jovanovic I, Emeson EE, Ugarova TP, Ye RD, Lau LF & Lam SC 2002 Identification of integrin alpha(m)beta(2) as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2); immediate-early gene products expressed in atherosclerotic lesions. Blood 99 4457–4465.

Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes 51 2709–2718.

Received 28 April 2003
Accepted 22 May 2003