Development of an RIA for salmon 41 kDa IGF-binding protein

M Shimizu1, A Hara2 and W W Dickhoff1

Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA
1School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
2Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1, Minato, Hakodate, Hokkaido 041-8611, Japan

Abstract

Salmon plasma contains at least three IGF-binding proteins (IGFBPs) with molecular masses of 41, 28 and 22 kDa. The 41 kDa IGFBP is similar to mammalian IGFBP-3 in size, type of glycosylation and physiological responses. In this study, we developed an RIA for the 41 kDa IGFBP. The 41 kDa IGFBP purified from serum was used for antibody production and as an assay standard. Binding of three different preparations of tracer were examined: 125I-41 kDa IGFBP, 125I-41 kDa IGFBP cross-linked with IGF-I and 41 kDa IGFBP cross-linked with 125I-IGF-I (41 kDa IGFBP/125I-IGF-I). Only binding of 41 kDa IGFBP/125I-IGF-I was not affected by added IGFs, and therefore it was chosen for the tracer in the RIA. Plasma 41 kDa IGFBP levels measured by RIA were increased by GH treatment (178·9 ± 4·9 ng/ml) and decreased after fasting (95·0 ± 7·0 ng/ml). The molarities of plasma 41 kDa IGFBP and total IGF-I were comparable, and they were positively correlated, suggesting that salmon 41 kDa IGFBP is a main carrier of circulating IGF-I in salmon, as is mammalian IGFBP-3 in mammals. During the parr–smolt transformation (smoltification) of coho salmon, plasma 41 kDa IGFBP levels showed a transient peak (182·5 ± 10·3 ng/ml) in March and stayed relatively constant thereafter, whereas IGF-I showed peak levels in March and April. Differences in the molar ratio between 41 kDa IGFBP and IGF-I possibly influence availability of IGF-I in the circulation during smoltification.

Introduction

Insulin-like growth factor (IGF)-binding proteins (IGFBPs) are important modulators of IGF actions, controlling IGF availability to IGF receptors in the target tissues. In mammals, six IGFBPs have been identified, and their regulation and functions have been extensively studied (for reviews see Shimasaki & Ling 1991, Rechler 1993, Jones & Clemmons 1995, Rajaram et al. 1997). Recent findings also indicate IGF-independent actions of IGFBPs on cell growth in many mammalian cell types (for review see Mohan & Baylink 2002). IGF and IGFBP are evolutionary ancient proteins, since both molecules are found in lamprey (Geotria australis; Upton et al. 1993). In fish, IGFBPs corresponding to mammalian IGFBP-1 and -2 have been cloned in zebrafish (Danio rerio; Duan et al. 1999, Maures & Duan 2002) and gilthead sea bream (Sparus aurata; Funkenstein et al. 2002), and an almost complete sequence has been reported for tilapia (Oreochromis mossambicus) IGFBP-3 (Cheng et al. 2002). Multiple IGFBPs have been detected in fish plasma/serum by Western ligand blotting using labeled IGF-I and have been shown to be controlled by hormones, nutritional status and stress (Kelley et al. 1992, 2001, Niu & Le Bail 1993, Siharath et al. 1995, 1996, Shimizu et al. 1999, Park et al. 2000). Duan and co-workers showed that fish IGFBPs expressed in animal cells or purified from culture medium inhibit IGF-stimulated DNA synthesis in vitro (Duan et al. 1999, Bauchat et al. 2001). These findings indicate that fish IGFBPs are conserved functionally as well as structurally.

To date, most studies on physiological regulation of fish IGFBPs have been conducted by use of Western ligand blotting. Although Western ligand blotting is a powerful tool to detect different types of IGFBPs and to compare their relative concentrations, this technique is semi-quantitative and not suitable for processing a large number of samples. Development of an RIA for fish IGFBPs would greatly facilitate study of the physiological regulation of fish IGFBPs by providing a precise, high capacity tool. In salmon, at least three IGFBPs with molecular masses of 41, 28 and 22 kDa exist in plasma. The 41 kDa IGFBP is most likely the salmon IGFBP-3, since it has a molecular mass similar to mammalian IGFBP-3 and its plasma levels are influenced by growth hormone (GH) treatment and fasting, as is mammalian IGFBP-3 (Shimizu et al. 1999).
We recently purified the salmon 41 kDa IGFBP from serum (Shimizu et al. 2003) and generated a specific antibody against it. Using this antibody and purified protein as assay components, we developed an RIA for salmon 41 kDa IGFBP.

Materials and Methods

Fish
Spawning male chinook salmon (Oncorhynchus tshawytscha) were sampled for blood in the adult return pond on the University of Washington campus, Seattle, WA, USA in October and November 1999–2001. Fish were anesthetized in 0.05% tricaine methanesulfonate (MS-222; Argent Chemical Laboratories, Redmond, WA, USA). Blood was withdrawn by syringe from the caudal veins, allowed to clot overnight at 4°C and then centrifuged at 1350 g for 30 min. Serum was collected and stored at −80°C until use.

Two-year-old coho salmon (Oncorhynchus kisutch) were reared in fresh water at the Northwest Fisheries Science Center in Seattle, WA, USA. They were maintained in recirculated fresh water in circular fiberglass tanks under natural photoperiod; flow rate was 25 l/min; temperature ranged from 10.5 to 13.0°C. Fish were fed standard rations (0.6–1.0% body weight/day) of a commercial diet (Biodiet Grower; Bioproducts Inc., Warrenton, OR, USA). Some of the 2-year-old coho salmon were injected twice with salmon GH at a dose of 0.1 µg/g body weight or saline, and sampled 24 h after the second injection (48 h after first injection) as described in Shimizu et al. (1999). Other groups were fasted or fed freely for 1 month (Shimizu et al. 1999). Blood was withdrawn by cutting the caudal peduncle and letting blood flow into a heparinized glass tube. Plasma was collected after centrifugation at 700 g for 15 min and stored at −80°C until use.

One-year-old coho salmon were reared under the same conditions as described above. From 2 March to 6 July 2000, 12 fish were sampled for blood every 2 weeks. Fork length and body weight of the fish at the beginning of the sampling were 12.3 ± 0.2 cm (mean ± s.e.m.) and 21.7 ± 0.9 g respectively, and those at the end of the sampling were 15.8 ± 0.2 cm and 47.2 ± 2.8 g respectively. Condition factor was calculated as: (body weight)/(fork length)^3. All experiments were carried out in accordance with the guidelines of the University of Washington Institutional Animal Care and Use Committee.

Purification of IGFBP

The 41 kDa IGFBP was purified from serum of spawning male chinook salmon as described in Shimizu et al. (2003). Briefly, salmon serum was acidified with 2 M acetic acid, 0.75 mM NaCl and mixed with SP-Sephadex C-25 (Pharmacia, Uppsala, Sweden). The gel was settled out after incubating for 1 h and the supernatant was collected. The supernatant was neutralized with 7 M NaOH and a heavy precipitate was removed by centrifugation. Clarified supernatant was loaded onto an IGF-I affinity column and IGFBPs were eluted from the column with 0.5 M acetic acid. IGFBPs were further purified by reversed-phase HPLC using a Vydac C-4 column (Separation Group, Hesperia, CA, USA).

Preparation of antiserum

Polyclonal antiserum against purified 41 kDa IGFBP (anti-41 kDa IGFBP) was raised in a rabbit. Immunization of the rabbit was conducted in accordance with the guidelines of the animal care committee of Hokkaido University. A total of 145 µg purified protein in 1 ml were emulsified in an equal volume of Freund’s complete adjuvant (Iatoron, Tokyo, Japan). The rabbit was first immunized with 25 µg antigen by lymph node injection and boosted twice with 60 µg antigen at multiple subcutaneous sites on the back, 3 and 5 weeks after the first injection. Blood was withdrawn from the ear vein and antiserum was collected after centrifugation. The antiserum was stored at −30°C until use.

Western ligand blotting and Western blotting

SDS-PAGE with a 3% stacking gel and 12.5% separating gel was carried out according to Laemmli (1970). Purified salmon IGFBPs were treated with an equal volume of the sample buffer containing 2% SDS, 10% glycerol at 85°C for 5 min. Gels were run in a solution of 50 mM Tris, 400 mM glycine and 0.1% SDS at 50 V in the stacking gel and at 100 V in the separating gel until the bromophenol blue dye front reached the bottom of the gel.

Western ligand blotting using digoxigenin-labeled human IGF-I (DIG-hIGF-I) was carried out as described in Shimizu et al. (2000). After electrophoretic transfer, the nitrocellulose membrane was incubated with 9 ng/ml DIG-hIGF-I for 2 h at room temperature and then incubated with antibody against DIG conjugated to horseradish peroxidase (HRP) (Boehringer Mannheim, Indianapolis, IN, USA) at a dilution of 1:2500 for 1 h at room temperature. IGFBPs were visualized on X-ray film by use of ECL Western blotting reagents (Amersham Life Science Inc., Arlington Heights, IL, USA).

For immunoblotting, an electroblotted nitrocellulose membrane was incubated with anti–41 kDa IGFBP serum at a dilution of 1:1500 for 2 h at room temperature. The membrane was then incubated with goat anti-rabbit IgG-HRP conjugate (Bio-Rad, Hercules, CA, USA) for 1 h at room temperature. Immunoreactive bands were visualized on X-ray film by use of ECL Western blotting reagents.
Preparation of tracers

Purified 41 kDa IGFBP was iodinated with 0·5 mCi Na125I (Amersham Life Science Inc.) by the chloramine-T method as described in Moriyama et al. (1994). Five micrograms of the 41 kDa IGFBP in 36 µl were mixed with 64 µl 0·5 M phosphate buffer, pH 7·4. The mixture was reacted with 20 µl 0·4 mg/ml chloramine-T (Sigma, St Louis, MO, USA) for 90 s and 20 µl 0·6 mg/ml metabisulfite were added to stop the reaction. Iodinated 41 kDa IGFBP (IGFBP*) was separated from free Na125I using Biogel P-6 (1 × 18 cm; Bio–Rad). Specific activity of the tracer estimated by the self-displacement assay (Catt 1976) was 29·8 µCi/µg.

An aliquot of IGFBP* (1·8 µg) was incubated with 3·3 µg salmon IGF-I (GroPep Pty Ltd, Adelaide, Australia) for 2 h and they were cross-linked by disuccinimidyl suberate (Pierce, Rockford, IL, USA) according to manufacturer’s instruction. The IGFBP* cross-linked with salmon IGF-I (IGFBP*/IGF-I) was separated from non-reacted IGF-I by gel filtration using 1 × 18 cm column of Sephadex G-50 Superfine (Pharmacia). Specific activity of the tracer was 49·2 µCi/µg.

A tracer consisting of unlabeled 41 kDa IGFBP and 125I-salmon IGF-I was also prepared. Salmon IGF-I was iodinated by the chloramine-T method as described above and an aliquot of 125I-salmon IGF-I (1 µg) was incubated with 6·7 µg purified 41 kDa IGFBP for 2 h, and they were cross-linked by disuccinimidyl suberate. The 41 kDa IGFBP cross-linked with 125I-salmon IGF-I (IGFBP*/IGF-I*) was separated from non-reacted 125I-salmon IGF-I by gel filtration using Sephadex G-50. Specific activity of the tracer was 6·6 µCi/µg.

RIA for 41 kDa IGFBP

RIA was carried out in 12 × 75 mm polystyrene test tubes. Purified 41 kDa IGFBP was used for the standard. One hundred microliters of standard or plasma diluted in 20 mM phosphate, 150 mM NaCl containing 1·0% BSA and 0·05% Triton X-100 were incubated with 100 µl anti-41 kDa IGFBP at a dilution of 1:3000–5000 overnight at 4 °C. Approximately 7000 c.p.m. tracer in 100 µl were added to the tubes and incubated overnight at 4 °C. Free and antibody-bound tracers were separated by the addition of 0·5% Pansorbin (CalBiochem-Novabiochem Corp., La Jolla, CA, USA). After incubating overnight at 4 °C, tubes were centrifuged at 1350 g for 30 min and the supernatant was aspirated. Radioactivity in the pellets was measured by a gamma counter (Packard, Meriden, CT, USA).

RIA for IGF-I

IGF-I was extracted from plasma by acid–ethanol followed by cryoprecipitation according to the method of Breier et al. (1991). This extraction method has been validated for salmon plasma (Shimizu et al. 2000). IGF-I was measured by RIA as described in Shimizu et al. (2000).

Statistical analysis

Results of the experiments were analyzed using one-way ANOVA followed by the Fisher protected least-significant difference test (Dowdy & Weardon 1991) using the Statview 512+ program (Abacus Concepts, Inc., Berkeley, CA, USA). Differences between groups were considered to be significant at P < 0·05.

Results

Specificity of a polyclonal antiserum against salmon 41 kDa IGFBP was assessed by immunoblotting of purified and semi-purified salmon IGFBPs (Fig. 1). Anti-41 kDa IGFBP immunostained doublet bands at 43 and 41 kDa in the purified 41 kDa IGFBP fraction. Doublet bands at higher molecular mass, presumably aggregation of the 43–41 kDa doublet bands, were also recognized by the antiserum. Anti-41 kDa IGFBP cross-reacted with...
28 kDa IGFBP weakly but not with 22 kDa IGFBP. This antiserum was used for RIA of salmon 41 kDa IGFBP.

Three differently prepared tracers were examined for development of the RIA; purified 41 kDa IGFBP directly labeled with 125I (IGFBP*), labeled 41 kDa IGFBP cross-linked with unlabeled salmon IGF-I (IGFBP*/IGF-I), and unlabeled 41 kDa IGFBP cross-linked with labeled salmon IGF-I (IGFBP/IGF-I*). All three tracers bound specifically to the antiserum and were displaced with unlabeled 41 kDa IGFBP in a concentration-dependent manner, albeit that total binding differed among tracers (Fig. 2). The tracers were next compared for interaction with added salmon IGF-I with and without the addition of 10 ng/ml unlabeled 41 kDa IGFBP (Fig. 3). When the combination of unlabeled IGF-I and 41 kDa IGFBP was added to the tracers, the percent of tracer bound increased for IGFBP* and IGFBP*/IGF-I, but remained constant for IGFBP/IGF-I*. Thus, added IGF-I in excess of 2 ng/ml reduced the displacement of two of the tracers. Total binding of two of the tracers (IGFBP* and IGFBP/ IGF-I*) was not affected by added IGF-I, but the total binding of IGFBP*/IGF-I was increased slightly when IGF-I was added at 10 ng/ml or greater (Fig. 3). Therefore, IGFBP/IGF-I* was used as the tracer in the RIA.

Using the IGFBP/IGF-I* as tracer, specific and non-specific binding to the antiserum (1:3000 dilution) under the assay conditions were 20·83 ± 0·78% (mean ± S.E.M.; $n=8$) and 0·81 ± 0·04% ($n=8$) respectively. The half-maximal displacement (ED$_{50}$) occurred at 10·01 ± 0·23 ng/ml ($n=8$). The ED$_{90}$ and ED$_{20}$ were 3·43 ± 0·13 and 27·13 ± 0·96 ng/ml ($n=8$) respectively. The minimal detection limits of the assay, defined as the mean of the zero standard minus two standard deviations, was 0·44 ± 0·07 ng/ml ($n=8$). The precision profile (Ekins 1983) of the standard curve indicates that the functional sensitivity, defined as the concentration at which the inter-assay coefficients of variation is <20% (Spencer et al. 1995), was 1·56 ng/ml ($n=10$). The intra- and inter-assay coefficients of variation estimated at 8·85 ng/ml using a control serum were 3·6% ($n=10$) and 11·3% ($n=5$) respectively. Recovery of purified 41 kDa IGFBP added to chinook salmon serum was 91·9 ± 4·5% ($n=3$).

In order to further assess possible interference by IGFs in the RIA, the slopes of the IGFBP standards with or without adding IGFs were compared (Fig. 4). Addition of unlabeled salmon IGF-I up to a 1:100 molar ratio did not affect the slope of the standard, and it was parallel to that of salmon serum. Similar results were obtained with human IGF-I and IGF-II (data not shown). Next, the effect of addition of IGFs to plasma on measured 41 kDa IGFBP was examined (Table 1). There was no statistical difference in measured plasma 41 kDa IGFBP with or without IGFs.

Coho salmon plasma from fish in different physiological states showed parallel displacement with the standard (Fig. 5). There was no difference in slope and binding of displacement curve between plasma and serum from coho.
salmon (data not shown). No displacement was observed with a partially purified salmon 28 kDa IGFBP containing 22 kDa IGFBP as a minor component.

Plasma levels of 41 kDa IGFBP in coho salmon from GH injection and fasting experiments were measured by RIA. GH treatment caused a significant increase of plasma 41 kDa IGFBP levels, whereas fasting reduced plasma 41 kDa IGFBP levels (Fig. 6). There was a strong positive relationship between total IGF-I and 41 kDa IGFBP levels in individual samples (Fig. 7a). The correlation coefficient was higher with an exponential regression ($r^2=0.85$) than with a linear regression ($r^2=0.78$). A weaker, but significant, relationship was found between free IGF-I and 41 kDa IGFBP (Fig. 7b). The relationship was best represented by a polynomial regression ($r^2=0.61$).

Changes in plasma IGF-I and 41 kDa IGFBP levels during smoltification of coho salmon were measured by RIAs (Fig. 8). The condition factor, a morphological index of smoltification, declined from mid March to its lowest point in early May indicating the completion of smoltification (data not shown). Plasma IGF-I exhibited peaks in mid March and late April (Fig. 8). Plasma 41 kDa IGFBP, on the other hand, showed a transient peak in late March, corresponding to the first peak of IGF-I, and stayed relatively constant thereafter (Fig. 8).

Discussion

In this study, an RIA for salmon 41 kDa IGFBP, a candidate for fish IGFBP-3, has been established and validated for the first time. In RIAs for mammalian IGFBP-3, the preparation of radiotracer is one of the more critical aspects. Baxter & Martin (1986) reported that when purified human IGFBP-3 was labeled directly with iodine, an unacceptably high non-specific binding ($>15\%$ of total radioactivity) was observed. In order to overcome this problem, IGFBP-3 is indirectly labeled by cross-linking with 125I-IGF-I (Baxter & Martin 1986), or labeled IGFBP-3 is purified by gel filtration (Blum et al. 1990). In the present study, three different tracers were prepared: 125I-41 kDa IGFBP (IGFBP*), IGFBP* cross-linked with unlabeled salmon IGF-I (IGFBP*/IGF-I) and

![Figure 4](image1.png)

Figure 4 Effect of salmon IGF-I on the standard curve. Approximately 7000 c.p.m. 41 kDa IGFBP/125I-IGF-I were incubated with anti-41 kDa IGFBP (1:3000 dilution) and 41 kDa IGFBP standard (0.8 to 100 ng/ml). Salmon IGF-I (sIGF-I) was added to the standard at a molar ratio of 1:1, 1:10 or 1:100. Serial dilution (1:32 to 1:512) of serum from spawning chinook salmon is shown for comparison. Binding (B/Bo) is expressed as a percentage of specific binding. All values are means of duplicate determinations.

![Figure 5](image2.png)

Figure 5 Displacement curves of purified salmon IGFBPs and salmon plasma. Approximately 7000 c.p.m. 41 kDa IGFBP/125I-IGF-I were incubated with anti-41 kDa IGFBP (1:3000 dilution) and serial dilution (1:8 to 1:512) of plasma from coho salmon under different physiological states. Displacement curves of plasma are compared with that of the standard. Binding (B/Bo) is expressed as a percentage of specific binding. All values are means of duplicate determinations.

<table>
<thead>
<tr>
<th>Added to plasma</th>
<th>Concentration (ng/ml)</th>
<th>IGFBP (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma only</td>
<td></td>
<td>107.9 ± 12.3</td>
</tr>
<tr>
<td>Salmon IGF-I</td>
<td>1</td>
<td>109.8 ± 13.3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>106.9 ± 11.8</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>108.6 ± 12.6</td>
</tr>
<tr>
<td>Human IGF-I</td>
<td>1</td>
<td>103.5 ± 11.1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>102.0 ± 9.7</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>108.7 ± 11.7</td>
</tr>
<tr>
<td>Human IGF-II</td>
<td>1</td>
<td>110.9 ± 13.5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>107.6 ± 11.7</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>104.0 ± 11.0</td>
</tr>
</tbody>
</table>
IGFBP/IGF-I*. Unlike mammalian IGFBP-3, none of the tracers showed high non-specific binding in the RIA. There were, however, differences in the total binding among tracers. This may be partly because of the different specific activities of the tracers. It is also possible that unlabeled IGFBP in IGFBP/IGF-I*, which was not cross-linked with IGF-I*, influenced the total binding of the tracer. Despite the difference in the total binding, all three tracers were specifically displaced by adding unlabeled IGFBPs. In most RIAs for IGFs, IGFBPs interfere with the accurate measurement of IGFs and therefore IGF must be separated from IGFBPs prior to RIA (Bang et al. 1994). On the other hand, IGFs generally do not affect the RIAs for IGFBPs, with one exception: the RIA for IGFBP-6 (Baxter & Saunders 1992). We thus examined the effect of IGF on the standard curve in our salmon RIA. Total binding was not influenced by addition of salmon IGF-I except for IGFBP*/IGF-I. However, when the tracers were competed with unlabeled 41 kDa IGFBP in the presence or absence of exogenous IGF-I, displacement of IGFBP*/IGFBP*/IGF-I with unlabeled IGFBP was diminished by the presence of IGF-I. An explanation for the interference by IGF-I may be that immunoreactivity of IGF-bound 41 kDa IGFBP is lower than that of unoccupied 41 kDa IGFBP. Although the exact mechanism of the interference by IGF is not clear, IGFBP/IGF-I is practically the only tracer which is not affected by IGF-I under the assay conditions, and was therefore chosen for the tracer.

In order to further assess the influence of IGF in the RIA using IGFBP/IGF-I*, various amounts of IGFs (salmon IGF-I, and human IGF-I and IGF-II) were added to the standard and plasma. Neither the slope of the standard curve nor measured plasma IGFBP levels were affected by addition of IGFs. These results confirm that RIA using IGFBP/IGF-I* is not influenced by varying levels of IGF. This implies that plasma can be directly assayed by the RIA without extraction to separate IGF and its binding proteins. No cross-reactivity was detected with other salmon IGFBPs (i.e. 28 and 22 kDa IGFBPs) in the RIA for 41 kDa IGFBP, despite the fact that anti-41 kDa IGFBP weakly recognized the 28 kDa IGFBP in Western blotting. These data demonstrate validity of the RIA for measuring 41 kDa IGFBP. Parallel displacement of coho

Figure 6 Plasma 41 kDa IGFBP levels measured by RIA. Plasma from coho salmon injected twice with saline (Cont; n=10) or 0.1 μg/g GH (n=9), and coho salmon fed (n=10) or fasted (n=10) for 1 month were measured for 41 kDa IGFBP by RIA. Vertical bars represent S.E.M. Asterisks indicate significant difference between treatments for each experiment (P<0.05).

Figure 7 Relationship between plasma 41 kDa IGFBP and total IGF-I levels (a), and plasma 41 kDa IGFBP and free IGF-I levels (b). Data on plasma total and free IGF-I levels are from Shimizu et al. (1999).
salmon plasma with standard suggests that this RIA is applicable to other salmonid species.

Plasma IGFBP-3 levels are primarily influenced by GH and nutritional status: GH stimulates hepatic synthesis of IGFBP-3, probably indirectly through IGF-I (Villafuerte et al. 1994), and fasting or malnutrition causes a decrease in circulating IGFBP-3 (Clemmons & Underwood 1991). In fish, candidates for IGFBP-3 have been detected based on molecular size and responses to GH injection and fasting on Western ligand blotting (Kelley et al. 1992, Siharath et al. 1995, Shimizu et al. 1999, Park et al. 2000). Recently, the cDNA sequence of most of a tilapia IGFBP-3 has been determined (Cheng et al. 2002). As determined by RNAse protection assay, the tilapia IGFBP-3 mRNA increased in response to GH treatment. Consistent with the observation by Western ligand blotting and RNAse protection assay, GH treatment increased measured 41 kDa IGFBP levels about 1.8-fold, and fasting decreased its levels by one-third compared with the fed control. These findings suggest that the 41 kDa IGFBP is functionally IGFBP-3.

Mammalian IGFBP-3 carries most of the circulating IGF-I. In general, there is a positive relationship between IGFBP-3 and IGF-I levels (Baxter & Martin 1986, Frystyk et al. 1998). In the present study, plasma 41 kDa IGFBP levels correlated positively with total IGF-I levels and molarity of the 41 kDa IGFBP was comparable with that of total IGF-I. These comparisons indicate that the 41 kDa IGFBP is a main carrier of circulating IGF-I, as is IGFBP-3 in mammals. Free IGF-I levels also correlated positively with 41 kDa IGFBP levels, but the regression coefficient was not as high as for total IGF-I. This might be due to other IGFBP regulation of free IGF-I levels (Frystyk et al. 1997).

In conclusion, we have established an RIA for salmon 41 kDa IGFBP. Quantification of 41 kDa IGFBP in plasma from fish in different physiological states suggests that the 41 kDa IGFBP is salmon IGFBP-3 and it acts as a main carrier of circulating IGF-I. Differences in the molar ratio between IGF-I and 41 kDa IGFBP possibly influence availability of IGF-I from the circulation to the target tissues during smoltification.

Acknowledgements

We thank Brad Gadberry and Paul Parkins, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, WA, USA, for maintenance of the experimental fish and their help in blood collection. This work was supported by grants from the US Department of Agriculture, NRICGP, Animal Growth and Nutrient Utilization Program (Project 2001–03320) and Bonneville Power Administration (Projects 92–022–00 and 93–056–00). This publication is also funded by the Joint Institute for the Study of the Atmosphere and Ocean
References

Larsen DA, Beckman BR & Dickhoff WW 2001 The effect of low temperature and fasting during the winter on metabolic stores and endocrine physiology (insulin, insulin-like growth factor-I, and thyroxine) of coho salmon, Oncorhynchus kisutch. General and Comparative Endocrinology 123 308–323.

Received 16 April 2003
Accepted 13 May 2003
Made available online as an Accepted Preprint 21 May 2003