GH is a positive regulator of tumor necrosis factor α-induced adipose related protein in 3T3-L1 adipocytes

M Fasshauer, J Klein, S Krahlish, U Lössner, M Klier, M Blüher and R Paschke

Department of Internal Medicine I, University of Lübeck, 23538 Lübeck, Germany
1Department of Internal Medicine III, University of Leipzig, 04103 Leipzig, Germany
(Requests for offprints should be addressed to R Paschke, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany; Email: pasr@medizin.uni-leipzig.de)

Abstract

Tumor necrosis factor (TNF) α-induced adipose-related protein (TIARP) has recently been cloned as a TNFα-stimulated protein expressed in adipocytes. Its expression is differentiation-dependent and potentially involved in mediating TNFα-induced insulin resistance. To further characterize regulation of TIARP gene expression, 3T3-L1 adipocytes were treated with key hormones modulating insulin sensitivity and influencing adipocyte metabolism, and TIARP gene expression was determined by quantitative real-time RT-PCR. Interestingly, TIARP mRNA expression was stimulated almost 9-fold after 500 ng/ml GH were added for 16 h whereas addition of 10 µM isoproterenol, 100 nM insulin and 100 nM dexamethasone for 16 h significantly decreased TIARP gene expression to between 35 and 50% of control levels. In contrast, angiotensin 2 (10 µM) and triiodothyronine (1 µM) did not have any effect. The stimulatory effect of GH was time- and dose-dependent with stimulation occurring as early as 1 h after effector addition and at concentrations as low as 5 ng/ml GH. Moreover, pharmacological inhibition of Janus kinase 2 and p42/44 mitogen-activated protein kinase reversed the stimulatory effect of GH, suggesting that both signaling molecules are involved in activation of TIARP gene expression by GH. Furthermore, an increase of TIARP mRNA could be completely reversed to control levels by withdrawal of GH for 24 h. Taken together, these results show that TIARP is not only responsive to TNFα but also to important other hormones influencing glucose homeostasis and adipocyte metabolism. Thus, this factor may play an integrative role in the pathogenesis of insulin resistance and its link to obesity.

Journal of Endocrinology (2003) 178, 523–531

Introduction

Insulin resistance is an important risk factor in the development of atherosclerosis, hypertension and type 2 diabetes. Insulin resistance is frequently associated with obesity. Moreover, various factors linking increased adiposity and reduced sensitivity of target tissues to insulin have been described recently (Kahn et al. 2000). Thus, it has been shown that adipocytes secrete biologically active molecules such as tumor necrosis factor (TNF) α (Hotamisligil 1999), resistin (Steppan et al. 2001) and adiponectin (Yamauchi et al. 2001), which profoundly influence insulin sensitivity. However, downstream targets of these adipokines are not completely clear. Recently, a novel TNFα-responsive gene was cloned from fat cells by differential display technique and named TNFα-induced adipose-related protein (TIARP) (Moldes et al. 2001). It could be demonstrated convincingly that TIARP is induced dose- and time-dependently by TNFα and during adipogenic con-
present evidence that the stimulatory effect of GH is mediated via Janus kinase (JAK) 2- and p44/42 mitogen-activated protein (MAP) kinase-dependent pathways. These results indicate that TIARP is highly regulated by a number of insulin resistance-inducing hormones besides TNFα. Thus, our data may indicate a potential role of this novel adipose-expressed molecule in the control of adipocyte metabolism and glucose homeostasis.

Materials and Methods

Materials

TNFα, PD98059, SB203580, LY294002, AG490, isoproterenol, GH, dexamethasone, T3 and AT2 were purchased from Sigma Chemical Co. (St Louis, MO, USA). Insulin was from Roche Molecular Biochemicals (Mannheim, Germany). Oligonucleotides were obtained from MWG-Biotech (Ebersberg, Germany), cell culture reagents from Life Technologies, Inc. (Grand Island, NY, USA).

Cell culture and differentiation

3T3-L1 adipocytes (American Type Culture Collection, Rockville, MD, USA) were grown and differentiated under conditions previously described (Fasshauer et al. 2001a). Briefly, cells were grown to confluence in DMEM containing 25 mM glucose, 10% fetal bovine serum and antibiotics (culture medium) and confluent preadipocytes were induced for 3 days in culture medium further supplemented with 1 µM insulin, 0.5 mM isobutylmethylxanthine, and 1 µM dexamethasone before cells were maintained for another 3 days in culture medium with 1 µM insulin alone. After an additional 4–8 days in culture medium, more than 90% of cells showed adipocyte morphology.

Analysis of TIARP gene expression

TIARP mRNA expression was analyzed by real-time RT-PCR in a fluorescent temperature cycler (LightCycler; Roche Molecular Biochemicals) as previously described (Fasshauer et al. 2001b). Briefly, total RNA was isolated with TRIzol reagent (Life Technologies) and reverse transcribed in a 20 µl reaction using standard reagents (Life Technologies). Two microliters of each RT reaction were loaded into capillary tubes and amplified in a 20 µl PCR containing 3 mM MgCl₂, 0.5 µM each primer and 1 × LightCycler DNA Master SYBR Green I mix (Roche Molecular Biochemicals). Samples were incubated in the LightCycler for an initial denaturation at 94 °C for 30 s, followed by 40 PCR cycles, each consisting of 95 °C for 1 s, 61 °C for 7 s, and 72 °C for 11 s.

![Figure 1](image-url) Differentiation-dependent TIARP gene expression. Confluent 3T3-L1 cells (day 0) were differentiated as described in Materials and Methods. At the days indicated total RNA was subjected to quantitative real-time RT-PCR and TIARP mRNA levels were determined relative to cells on day 0 (=100%). Results are the means ± S.E. of four independent experiments. *P < 0.01 comparing confluent cells (day 0) with differentiated adipocytes (day 6, 9). Inset, agarose gel electrophoresis of the PCR product at cycle 25. d, day.
The following primers were used: TIARP (accession no. AJ319746) TAGGGTGTAGGCGAGCAGCAGT (sense) and TCAGTGACACGCGGGAAGATT (anti-sense); 36B4 (accession no. NM007475) AAGCGCGTCCTGGCATTGTCT (sense) and CCGCAGGGGCAGCAGTGGT (antisense). SYBR Green I fluorescence emission readings were monitored after each cycle and TIARP and 36B4 mRNA levels were quantified by the second derivative maximum method of the LightCycler Software (Roche Molecular Biochemicals). This method determines the crossing points of individual samples by an algorithm identifying the first turning point of the fluorescence curve. TIARP expression is given relative to 36B4, which has been frequently used as an internal control due to its resistance to hormonal regulation (Lin et al. 2002).

Melting curve profiles (cooling the sample to 68 °C and heating slowly to 95 °C with continuous measurement of fluorescence) were produced at the end of each PCR to confirm amplification of specific transcripts. The specificity of the PCR was further verified by subjecting the amplification products to agarose gel electrophoresis.

Western blotting

Detection of phosphorylated p44/42 MAP kinase by Western blotting was performed essentially as described previously (Klein et al. 1999). Briefly, after the stimulation period cells were harvested in lysis buffer (50 mM Heps, 137 mM NaCl, 1 mM MgCl₂, 1 mM CaCl₂, 10 mM Na₃P₂O₇, 10 mM NaF, 2 mM EDTA, 10% glycerol, 1% of the nonionic detergent Igepal CA-630, 2 mM vanadate, 10 µg/ml leupeptin, 10 µg/ml aprotinin, 2 mM phenylmethylsulfonyl fluoride, pH 7.4). Lysates were clarified and equal amounts of protein were solubilized directly in Laemmli sample buffer. Proteins were resolved by SDS-PAGE, transferred to nitrocellulose membranes, blocked for 1 h, and immunoblotted with a phospho-specific p44/42 MAP kinase antibody. Specifically bound primary antibodies were detected with peroxidase-coupled secondary antibody and enhanced chemiluminescence.

Statistical analysis

Results are expressed as means ± s.e. Comparisons between groups were carried out by unpaired Student’s t-test and in the case of multiple time points and treatments by one-way ANOVA. P values < 0.05 are considered significant, < 0.01 highly significant.

Results

TIARP is induced during adipogenesis

TIARP gene expression was analyzed during the course of differentiation. As shown in Fig. 1, TIARP mRNA
synthesis was strongly induced during differentiation with a rapid exponential increase in mRNA levels within the last 6 days of a 9 day differentiation course \((P < 0.01) \).

GH is a potent stimulator of TIARP gene expression

As TIARP has recently been shown to be upregulated by TNFα, we tested whether different hormones which also induce insulin resistance might influence TIARP gene expression in 3T3-L1 adipocytes in vitro. Consistent with previous findings, TIARP gene expression was stimulated more than 5-fold by treatment of adipocytes with 10 ng/ml TNFα \((P < 0.01) \) (Fig. 2). Interestingly, TIARP mRNA synthesis was stimulated almost 9-fold after 500 ng/ml GH were added for 16 h \((P < 0.01) \) (Fig. 2). In contrast, addition of 10 µM isoproterenol, 100 nM insulin and 100 nM dexamethasone for 16 h significantly decreased TIARP gene expression to between 35 and 50% of control levels \((P < 0.01) \) (Fig. 2). AT2 (10 µM) and T3 (1 µM) did not significantly influence expression of TIARP (Fig. 2).

Stimulation of TIARP gene expression by GH and TNFα is dose- and time-dependent

GH stimulated TIARP gene expression in a dose-dependent fashion. Thus, a significant 2.3-fold increase of TIARP mRNA was detectable at GH concentrations as low as 5 ng/ml \((P < 0.01) \) (Fig. 3A). A maximal more than 8-fold increase was found at 500 ng/ml GH \((P < 0.01) \) (Fig. 3A). TNFα increased TIARP gene expression dose-dependently with a significant 2-fold stimulation detectable already at 1 ng/ml effector \((P < 0.01) \) (Fig. 3B). Furthermore, GH induced TIARP synthesis time-dependently with significant activation detectable as early as 2 h after effector addition and a maximal effect after 8 h.
GH stimulates p44/42 MAP kinase at least partially via protein kinase C (PKC)

Since p44/42 MAP kinase appears to be involved in GH-induced upregulation of TIARP its regulation by GH was determined. As shown in Fig. 5A, GH (50 ng/ml) stimulated p44/42 MAP kinase as assessed with a phospho-specific antibody and with maximal effects seen at 15 min after effector addition. Furthermore, it was determined whether JAK2 and PKC might mediate stimulation of p44/42 MAP kinase by GH. Interestingly, pretreatment of 3T3-L1 adipocytes with the JAK2 inhibitor AG490 (10 µM) did not significantly influence GH-induced MAP kinase phosphorylation (Fig. 5B). In contrast, addition of the PKC inhibitor GF109203X (5 µM) significantly decreased p44/42 MAP kinase activation by 53% as compared with GH alone (P<0.01) (Fig. 5B). As expected, PD98059 completely blocked MAP kinase activation (P<0.01) (Fig. 5B).

The stimulatory effect of GH on TIARP gene expression is reversible

Finally, we determined whether the stimulatory effect of GH on TIARP gene expression was reversible. Fully differentiated 3T3-L1 adipocytes were treated with 500 ng/ml (Fig. 6A) or 50 ng/ml GH (Fig. 6B) for 16 h and the medium was then replaced by DMEM containing 25 mM glucose and 10% fetal bovine serum for an additional 24 h. Addition of GH again increased TIARP mRNA expression by about 8-fold (Fig. 6A, columns 1 and 2) and 3-fold (Fig. 6B, columns 1 and 2) respectively, as compared with untreated control cells. However, removal of GH from the medium for 24 h decreased TIARP mRNA expression to control levels (Fig. 6, columns 3 and 4). Interestingly, addition of serum-containing medium for an additional 24 h appeared to stimulate TIARP gene expression about 2-fold (Fig. 6, columns 1 and 3).

Discussion

Recently, Moldes et al. (2001) described a novel interesting protein, TIARP, which is strongly induced by TNFα and adipose conversion and might mediate some effects of TNFα on insulin sensitivity and adipose metabolism. In the current study, we show for the first time that GH is another potent stimulator of TIARP gene expression in insulin-sensitive 3T3-L1 adipocytes. GH is produced primarily in the anterior pituitary gland as a 22 kDa polypeptide (Frank 2001). Interestingly, GH, like TNFα, potently antagonizes insulin action on insulin-sensitive tissues such as muscle, fat and liver in vivo and in vitro. Thus, it has been shown that GH with GH excess due to pituitary tumors are insulin-resistant (Rizza et al. 1982, Hansen et al. 1986). The role of GH in common insulin
resistance and obesity is less clear. On the one hand, it has been suggested that nocturnal GH secretion in diabetic patients may contribute to nocturnal hyperglycemia (Campbell et al. 1985). On the other hand, in obese insulin-resistant individuals basal and stimulated GH secretion have been shown to be low (Bjorntorp &

Figure 5 GH activates p44/42 MAP kinase via PKC. After serum-starvation for 16 h, (A) GH (50 ng/ml) or insulin (100 nM) was added for the indicated periods of time or (B) the cells were cultured in the presence or absence of AG490 (AG, 10 µM), GF109203X (GFX, 5 µM), and PD98059 (PD, 50 µM) for 1 h before addition of GH (50 ng/ml) for 15 min. After extraction of total protein, Western blotting with a phospho-specific p44/42 MAP kinase antibody was performed as described in Materials and Methods. In (A) a representative blot of two independent experiments is shown. In (B) the amount of phosphorylated p44/42 MAP kinase relative to GH-treated cells (=100%) is shown. Results are the means ± S.E. of three independent experiments. **P<0.01 comparing GH-treated with non-treated, GF109203X-and PD98059-pretreated cells. Furthermore, a representative blot is shown.
In vivo studies have consistently shown that insulin resistance in rats caused by chronic GH treatment is accompanied by a decrease in insulin-stimulated insulin receptor (IR) activity and IR substrate (IRS) protein phosphorylation (Smith et al. 1997, Thirone et al. 1997). However, signaling pathways and proteins mediating this effect are far from clear. Although little is known about TIARP function, its strong upregulation by both GH and TNFα indicates that it might participate in controlling insulin sensitivity and adipocyte metabolism.

Binding of GH to its receptor monomer results in receptor dimerization and activation of the cytosolic tyrosine kinase JAK2 (Frank 2001). Consistent with JAK2 being the major intracellular mediator of GH action, inhibition of this tyrosine kinase by AG490 abolishes GH-induced stimulation of TIARP gene expression in the current study. Various proteins have been implicated in the signaling downstream of JAK2. Thus, it has been demonstrated that signal transducer and activator of transcription 5b is tyrosine phosphorylated in the cytoplasm upon GH treatment, dimerizes via phosphotyrosine–SH2 interactions and translocates to the nucleus affecting target gene activation (Frank 2001). Furthermore, it was shown that GH potently induces PI 3-kinase activity and that inhibition of PI 3-kinase by wortmannin completely blocked the anti-lipolytic effect of GH in 3T3-L1 adipocytes (Yamauchi et al. 1998). Moreover, both p38 and p44/42 MAP kinases are stimulated by GH and have been implicated in GH-stimulated mitogenesis (Zhu & Lobie 2000). In the current study, we show that inhibition of p44/42 MAP kinase by PD98059 almost entirely abrogates GH-mediated stimulation of TIARP mRNA expression. However, we also demonstrate that p44/42 MAP kinase is not stimulated downstream of JAK2 since pharmacological inhibition of JAK2 does not influence its activation. In contrast, inhibition of PKC by GF109203X blunts p44/42 MAP kinase stimulation in accord with previous reports (MacKenzie et al. 1997). These findings point to the fact that both JAK2- and PKC-p44/42 MAP kinase-dependent pathways are necessary for activation of TIARP by GH. In contrast, inhibition of p38 MAP kinase by SB203580 or PI 3-kinase by LY294002 does not significantly alter induction of TIARP mRNA by GH indicating that these proteins do not play major roles in the regulation of TIARP gene expression. Furthermore, the effect of GH on TIARP gene expression is reversible as removal of the hormone for 24 h decreases TIARP mRNA to control levels.

Besides GH and TNFα, various other hormones have been shown to induce insulin resistance and affect adipocyte metabolism profoundly. Thus, growing evidence suggests that increased activity of the sympathetic nervous system contributes to insulin resistance (Reaven et al. 1996). We have recently delineated molecular mechanisms potentially involved in crosstalk between adrenergic and insulin signaling (Klein et al. 1999, 2000). Furthermore, our group recently demonstrated that patients with pheochromocytoma show insulin resistance due to increased serum levels of catecholamines, which can be reduced by surgical removal of the tumors in most cases (Blüher et al. 2000). Furthermore, hyperinsulinemia caused by peripheral insulin resistance contributes to the development of type 2 diabetes (Gerich 1998). Moreover, glucocorticoids have long been known to cause insulin resistance.
resistance in vivo and our group recently suggested that downregulation of insulin-sensitizing adiponectin in adipocytes might be one mechanism by which they mediate their effect (Andrews & Walker 1999, Fasshauer et al. 2002b). In the present study, we show for the first time that isoproterenol, insulin and dexamethasone potently downregulate TIARP gene expression in 3T3-L1 adipocytes. Therefore, our data indicate that TIARP might also mediate some cellular effects of β-adrenoceptor agonists, insulin and glucocorticoids. Furthermore, the inhibitory effect of isoproterenol on TIARP gene expression is mediated via increased intracellular levels of cAMP (data not shown) pointing to the fact that a β-adrenergic receptor–G_q–protein-adenylyl cyclase pathway downregulates TIARP mRNA synthesis whereas JAK2– and p44/42 MAP kinase-dependent pathways activate TIARP expression.

T3 and AT2 also affect glucose tolerance at least partly via increased activity of insulin signaling molecules such as IRS proteins essential for insulin action (Fickova et al. 1997, Folli et al. 1997, Fasshauer et al. 2000, 2001)). However, both hormones do not appear to influence TIARP gene expression in our experimental system in vitro.

Taken together, we demonstrate for the first time significant upregulation of TIARP gene expression by GH in 3T3-L1 adipocytes whereas isoproterenol, insulin and dexamethasone potently downregulate TIARP mRNA. Furthermore, we present evidence that the positive effect of GH is mediated via JAK2– and p44/42 MAP kinase-dependent pathways whereas isoproterenol inhibits TIARP gene expression via a classical G_q–protein–coupled pathway. These data indicate that TIARP expression is a selectively regulated mechanism that might constitute an important element in the pathogenesis of insulin resistance and obesity. Further studies are needed to more clearly define TIARP function in insulin sensitivity and adipocyte metabolism.

Acknowledgements

This work was supported by a grant from the FORMEL1 program of the University of Leipzig and the DDG to M F.

References

Hotamisligil GS 1999 The role of TNFalpha and TNF receptors in obesity and insulin resistance. Journal of Internal Medicine 245 621–625.
Hormonal regulation of TIARP · M FASSHAUER and others

Received 10 April 2003
Accepted 12 June 2003
Made available online as an Accepted Preprint 12 June 2003