Gonadotropin-inhibitory hormone in Gambel’s white-crowned sparrow (Zonotrichia leucophrys gambelii): cDNA identification, transcript localization and functional effects in laboratory and field experiments

T Osugi1,2, K Ukena1,2, G E Bentley3, S O’Brien3, I T Moore3, J C Wingfield1 and K Tsutsui1,2

1Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
2Core Research of Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Tokyo 150-0002, Japan
3Department of Biology, University of Washington, Seattle, Washington 98195, USA

(Requests for offprints should be addressed to K Tsutsui, Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan; Email: tsutsui@hiroshima-u.ac.jp)

Abstract

The neuropeptide control of gonadotropin secretion is primarily through the stimulatory action of the hypothalamic decapptide, GnRH. We recently identified a novel hypothalamic dodecapeptide containing a C-terminal Leu-Pro-Leu-Arg-Phe-NH2 sequence in the domestic bird, Japanese quail (Coturnix japonica). This novel peptide inhibited gonadotropin release in vitro from the quail anterior pituitary; thus it was named gonadotropin-inhibitory hormone (GnIH). GnIH may be an important factor regulating reproductive activity not only in domesticated birds but also in wild, seasonally breeding birds. Thus, we tested synthetic quail GnIH in seasonally breeding wild bird species. In an in vivo experiment, chicken gonadotropin-releasing hormone-I (cGnRH-I) alone or a cGnRH-I/quail GnIH cocktail was injected i.v. into non-breeding song sparrows (Melospiza melodia). Quail GnIH rapidly (within 2 min) attenuated the GnRH-induced rise in plasma LH. Furthermore, we tested the effects of quail GnIH in castrated, photostimulated Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii), using quail GnIH or saline for injection. Again, quail GnIH rapidly reduced plasma LH (within 3 min) compared with controls. To characterize fully the action of GnIH in wild birds, the identification of their endogenous GnIH is essential. Therefore, in the present study a cDNA encoding GnIH in the brain of Gambel’s white-crowned sparrow was cloned by a combination of 3’ and 5’ rapid amplification of cDNA ends and compared with the quail GnIH cDNA previously identified. The deduced sparrow GnIH precursor consisted of 173 amino acid residues, encoding one sparrow GnIH and two sparrow GnIH-related peptides (sparrow GnIH-RP-1 and GnIH-RP-2) that included Leu-Pro-Xaa-Arg-Phe-NH2 (Xaa = Leu or Gln) at their C-termini. All these peptide sequences were flanked by a glycine C-terminal amidation signal and a single basic amino acid on each end as an endoproteolytic site. Although the homology of sparrow and quail GnIH precursors was approximately 66%, the C-terminal structures of GnIH, GnIH-RP-1 and GnIH-RP-2 were all identical in two species. In situ hybridization revealed the cellular localization of sparrow GnIH mRNA in the paraventricular nucleus (PVN) of the hypothalamus. Immunohistochemical analysis also showed that sparrow GnIH-like immunoreactive cell bodies and terminals were localized in the PVN and median eminence respectively. Thus, only the sparrow PVN expresses GnIH, which appears to be a hypothalamic inhibitory factor for LH release, as evident from our field injections of GnIH into free-living breeding white-crowned sparrows. Sparrow GnIH rapidly (within 2 min) reduced plasma LH when injected into free-living Gambel’s white-crowned sparrows on their breeding grounds in northern Alaska. Taken together, our results indicate that, despite amino acid sequence differences, quail GnIH and sparrow GnIH have similar inhibitory effects on the reproductive axis in wild sparrow species. Thus, GnIH appears to be a modulator of gonadotropin release.

Introduction

In vertebrates, the neuropeptide control of gonadotropin secretion is primarily through the stimulatory action of the hypothalamic decapptide, gonadotropin-releasing hormone (GnRH). Although gonadal steroids are known to be a negative factor for the regulation of gonadotropin secretion, until recently an inhibitory neuropeptide...
of gonadotropin secretion had not been identified in vertebrates.

We recently identified a novel hypothalamic neuropeptide inhibiting gonadotropin release in the Japanese quail (Coturnix japonica), a domestic bird, and termed it gonadotropin-inhibitory hormone (GnIH) (Tsutsui et al. 2000). This is the first hypothalamic neuropeptide inhibiting gonadotropin release in a vertebrate. This neuropeptide is a dodecapeptide containing a C-terminal Leu-Pro-Leu-Arg-Phe-NH$_2$ sequence, SIKPSAYLPLRF-NH$_2$ (Tsutsui et al. 2000) and cell bodies and terminals containing this neuropeptide were localized in the paraventricular nucleus (PVN) and median eminence (ME) respectively (Tsutsui et al. 2000, Ubuka et al. 2003, Ukena et al. 2003). More recently, we further cloned a cDNA encoding the GnIH precursor polypeptide in the quail brain (Satake et al. 2000). Interestingly, the GnIH precursor polypeptide encoded only in the PVN (Satake et al. 2001, Ukena et al. 2003).

Based upon our previous studies (Tsutsui et al. 2000, Satake et al. 2001, Ubuka et al. 2003, Ukena et al. 2003), GnIH may be an important factor for the regulation of avian reproduction. To understand the physiological role of GnIH in avian reproduction, wild avian species may serve as excellent animal models. Gambel’s white-crowned sparrow (Zonotrichia leucophrys gambelii) is one of the most obligately photoperiodic species of seasonally breeding wild birds (Farner & Mewaldt 1955, Farner 1964, 1975, King et al. 1966, Wingfield & Farner 1978, 1993). Seasonal changes and photoperiodic control of the secretion of gonadotropins have been well established in this bird (King et al. 1966, Farner 1975, Wingfield & Farner 1993, Wingfield & Silverin 2002). In the present study, we therefore identified and characterized a cDNA encoding GnIH in the brain of the white-crowned sparrow to elucidate the presence of sparrow GnIH. Here we describe the white-crowned sparrow GnIH cDNA sequence and the localization of sparrow GnIH mRNA in the hypothalamus via in situ hybridization. In addition, we describe the in vivo anti-gonadotropic effect of synthetic white-crowned sparrow GnIH when injected into free-living Gambel’s white-crowned sparrows on their breeding grounds in northern Alaska. We compare this effect with the effects of injections of quail GnIH into laboratory-housed white-crowned sparrows and song sparrows (Melospiza melodia), another photoperiodic wild bird species.

Materials and Methods

The experimental protocol of all experiments (Experiments 1–4) was approved in accordance with the NIH Guide for the Care and Use of Laboratory Animals, and with the approval of the Animal Care and Use Committee of University of Washington (USA) and Hiroshima University (Japan).

Experiment 1: in vivo demonstration of rapid inhibition of luteinizing hormone (LH) release by exogenous quail GnIH in song sparrows

Photorefractory male song sparrows (n=7 per group) were used for this experiment. Photorefractory birds were used so that we could control the amount of GnRH given to each bird (eliminating any confounding effects of endogenous GnRH). The pituitary gland of photorefractory birds remains responsive to exogenous GnRH even though little or no endogenous GnRH is released in this reproductive condition (Wingfield et al. 1979, Nicholls et al. 1988, Dawson et al. 2001). Group I (control) was given an i.v. injection (into the right jugular vein) of 10 ng chicken gonadotropin-releasing hormone-I (cGnRH-I) in 20 µl physiological (0·9%) saline. Group II (experimental) was given an i.v. injection of a mixture of 10 ng GnRH plus 1000 ng GnIH in 20 µl physiological saline. Blood samples were taken from the alar vein at 2, 5 and 10 min after injection. This protocol has been used previously to demonstrate rapid gonadotropin-releasing activity of GnRH in songbirds (e.g. Wingfield et al. 1979, Wingfield & Farner 1993).

Experiment 2: in vivo demonstration of rapid inhibition of LH release by exogenous quail GnIH in castrated Gambel’s white-crowned sparrows

Twelve adult male white-crowned sparrows were captured in Central Washington during their fall migration. Thus, they were in non-breeding condition (photorefractory) with small testes, facilitating castration. To remove feedback effects of gonadal steroids on LH release, birds were bilaterally castrated under isofluorane anesthesia (4%) using curved forceps inserted through an incision below the last pair of ribs. The birds were then transferred to short, winter-like photoperiods of 8 h light and 16 h darkness (8 L:16 D) for 132 days to induce full photoperiodic condition (Wingfield & Farner 1993). At this point, the birds were transferred to a long, spring-like photoperiod (16 L:8 D) for 7 days to induce high plasma LH. Half of the birds were then injected i.v. with 500 ng quail GnIH in 20 µl physiological saline, and the other half with saline alone. Blood was collected from the alar vein at 1, 3 and 10 min post-injection. In this experiment we sampled blood 1 min earlier than in Experiment 1, as we saw an effect of quail GnIH injection at 2 min in that experiment (see Results section). Thus we were able to determine if i.v. quail GnIH effects on plasma LH were evident sooner than 2 min.
Experiment 3: identification of a cDNA encoding white-crowned sparrow GnIH

Adult Gambel’s white-crowned sparrows were used for the identification of a cDNA encoding sparrow GnIH. In situ hybridization of sparrow GnIH mRNA and immunohistochemical analysis of GnIH were carried out in the brains of adult females, because there was no sex difference in the distribution of GnIH in the quail brain (Tsutsui et al. 2000, Ubuka et al. 2003, Ukena et al. 2001). Birds were housed in outdoor aviaries exposed to naturally changing photoperiod, and tissues were harvested in mid-October. At this time of year, this species becomes photosensitive, a condition which allows the reproductive axis to respond to increasing day lengths in the spring. In this way, full reproductive maturity is attained at the appropriate time of year.

RNA preparation and amplification of the partial sparrow GnIH cDNA fragments

Total RNA of the diencephalon was extracted with Sepazol-RNA I Super (Nacalai Tesque, Kyoto, Japan) in accordance with the manufacturer’s instructions. All PCR amplifications were performed in a reaction mixture containing Taq polymerase (Takara Shuzo, Kyoto, Japan) or gene Taq polymerase (Nippon Gene, Tokyo, Japan) and 0.2 mM dNTP on a thermal cycler (Program Temp Control System PC-700; ASTEC, Shuzo, Kyoto, Japan) or gene Taq polymerase (Nippon Gene, Tokyo, Japan). First-strand cDNA was synthesized as described above and amplified by PCR with universal M13 primers. Determination of the 3′/5′ rapid amplification of cDNA ends (RACE) kit (Roche Diagnostics, Basel, Switzerland) and amplified with the anchor primer (Roche Diagnostics) and the first degenerate primers 5′-CGIAM(T/C)/TIIC(T/C)/ITI(C/A)GITT(T/C)/GG-3′ (I represents inosine), corresponding to the quail GnIH-RP-1 sequence Ala Asn7-Leu9-Pro9-Leu10-Arg11-Phe12-Gly13 (Satake et al. 2001). First-round PCR products were reamplified with the second degenerate primers 5′-AT(A/T/C)/AA(A/G)/CCIA(T/C)/GGA(T/C)/GCIT(T/C)/ITICC-3′, corresponding to the quail GnIH sequence Ile-Lys3-Pro4-Ser5-Ala6-Tyr7-Leu8-Pro9 and 5′-(T/C)/TTICC(A/G)/AIC(G/T)(T/C)/TACGGGIA-3′, complementary to the quail GnIH-RP-2 sequence Leu9-Pro10-Gln11-Arg12-Phe13-Gly14-Lys15 (Tsutsui et al. 2000, Satake et al. 2001). Both first-round and second-round PCRs consisted of 30 cycles of 30 s at 94 °C, 30 s at 45 °C, and 1 min at 72 °C (10 min for the last cycle). The second-round PCR products were subcloned into a pGEM-T Easy vector in accordance with the manufacturer’s instructions (Promega, Madison, WI, USA). The DNA inserts of the positive clones were amplified by PCR with universal M13 primers.

Determination of the 3′-end sequence of sparrow GnIH cDNA

First-strand cDNA was synthesized as described above and amplified with the anchor primer and gene-specific primer 1 (5′-CCATTTTCAATTTGCCCT-3′, corresponding to nt 359–378); this was followed by further amplification of the first-round PCR products with the anchor primer and gene-specific primer 2 (5′-GGATAGCTTTGAGAGAA-3′, corresponding to nt 386–405). Both first-round and second-round PCRs were performed for 30 cycles consisting of 1 min at 94 °C, 1 min at 55 °C, and 1 min at 72 °C (10 min for the last cycle). The second-round PCR products were subcloned and the inserts were amplified as described above.

Template cDNA was synthesized with an oligonucleotide primer complementary to nt 452–471 (5′-CTGGAA CCTTTAACAAGTGG-3′); this synthesis was followed by dA-tailing of the cDNA with dATP and terminal transferase (Roche Diagnostics). The tagged cDNA was amplified with the oligo(dt)-anchor primer and gene-specific primer 3 (5′-TTAACAAGTGGAGATCTCTC-3′, complementary to nt 443–462); this was followed by further amplification of the first-round PCR products with the anchor primer and gene-specific primer 4 (5′-CAAGCCTGTGTGATACCCCTT-3′, complementary to nt 424–443). Both first-round and second-round PCRs were performed for 30 cycles consisting of 1 min at 94 °C, 1 min at 55 °C, and 1 min at 72 °C (10 min for the last cycle). The second-round PCR products were subcloned and the inserts were amplified as described above.

DNA sequencing

All nucleotide sequences were determined with a Thermo Sequenase cycle sequencing kit (Amersham Pharmacia Biotech, Aylesbury, Bucks, UK), IRDye 800 termination mixes version 2 (NEN Life Science Products, Boston, MA, USA), and a model 4200–1 G DNA sequencing system and analysis system (LI-COR, Lincoln, NE, USA), then analyzed with DNASIS-MAC software (Hitachi Software Engineering, Kanagawa, Japan). Universal M13 primers or gene-specific primers were used to sequence both strands.

In situ hybridization of sparrow GnIH mRNA

The site of sparrow GnIH mRNA expression in the brain was localized via in situ hybridization. In brief, adult female sparrows were deeply anesthetized before transcardial perfusion with PBS (pH 7.3) followed by fixative solution (4% paraformaldehyde in PBS). After dissection from the skull, the brains were soaked in a refrigerated sucrose solution (30% sucrose in PBS) until they sank. The brains were embedded in OCT compound (Miles Inc., Elkhart, IN, USA) and frozen-sectioned frontally at 10 µm thickness on a cryostat at −20 °C. The sections were placed onto 3-aminopropyltriethoxysilane-coated slides. In situ
hybridization was carried out according to our previous method (Ukena et al. 1999, 2003, Sawada et al. 2002a,b) using the digoxigenin (DIG)-labeled antisense RNA probe. The DIG-labeled antisense RNA probe was produced with RNA labeling kit (Roche Diagnostics) from a part of the peptide precursor cDNA (complementary to nt 313–525). Control for specificity of the in situ hybridization of the peptide mRNA was performed using the DIG-labeled sense RNA probe, which is complementary to the antisense probe sequence.

Immunohistochemistry

Immunohistochemical analysis was performed using the antiserum against quail GnIH raised in a rabbit as described previously (Tsutsui et al. 2000, Ukena & Tsutsui 2001, Koda et al. 2002, Ukena et al. 2003). In brief, anesthetized adult female sparrows were perfused with PBS (pH 7.3) followed by fixative solution (4% paraformaldehyde in PBS). The frontal sections (10 µm thickness) were cut on a cryostat at −20 °C and placed onto 3-aminopropyltriethoxysilane-coated slides. After nonspecific binding components had been blocked, the sections were immersed with the anti-quail GnIH serum at a dilution of 1:1000 overnight at 4 °C and subsequently with rhodamine-conjugated goat anti-rabbit IgG. The specificity of the staining was assessed by a substitution of the control serum for the antiserum; in this control serum, the antiserum (1:1000 dilution) was pre-absorbed by incubation with the antigen in a saturating concentration (10 µg GnIH/ml) overnight at 4 °C before use. Immunoreactive cell bodies and fibers in the sparrow brain were studied using a Nikon fluorescence microscope.

Experiment 4: in vivo field injection of synthetic sparrow GnIH into breeding white-crowned sparrows

Sparrow GnIH with the deduced amino acid sequence SKIPFSNLPLRF-NH2 (see Results section) was synthesized and used for i.v. injections. Based on results from Experiments 1 and 2, we chose to use sparrow GnIH at doses of 500 ng (low dose) and 1000 ng (high dose) per 20 µl total injection volume. The vehicle solution was 0.9% saline.

All injections took place between 15 and 18 June 2003 at the Toolik Field Station in the northern foothills of the Brooks Range in northern Alaska (68°37′N, 149°36′W). At this time, birds are arriving on their breeding grounds and establishing territories in preparation for breeding. Plasma LH is typically high during this period of the breeding life-history stage. Birds were captured in mist nets using conspecific song playback. Birds were removed from the nets and saline or GnIH of either dose was injected into the jugular vein within 3 min of capture. Blood (~100 µl) was subsequently drawn from the alar vein at 2 and 10 min post-injection, using a 26-gauge needle and heparinized capillary tubes. Plasma was then separated via centrifugation and stored at −20 °C until assayed for LH. We obtained samples from six saline-injected birds, five 1000 ng GnIH-injected birds, and two 500 ng GnIH–injected birds. The latter were not included in the statistical analysis because of the small sample size, but the LH data gathered from these individuals are included in the results graph (see Fig. 7).

RIA for LH

Plasma was assayed for LH using the homologous chicken LH RIA (Follett et al. 1972), and validated for songbirds (Dawson & Goldsmith 1982). Included in the RIA were samples of known LH concentration spiked with 1000 ng GnIH to check for cross-reactivity with the LH antiserum. No such cross-reactivity was detected in this assay (data not shown). All samples for each experiment were run in duplicate in a single assay.

Statistical analysis

Assay data were analyzed using repeated-measures ANOVA, with injection type as a between-subjects factor and time as a within-subjects factor, followed by Fisher’s protected least square differences (PLSD) test for post-hoc analysis.

Results

Experiment 1: antagonistic effect of exogenous quail GnIH on chicken gonadotropin-releasing hormone-I in photorefractory song sparrows

The LH data from Experiment 1 are shown in Fig. 1. ANOVA indicated a significant interaction of time and
Experiment 2: anti-gonadotropic effect of exogenous quail GnIH on plasma LH in castrated Gambel’s white-crowned sparrows

The LH data from Experiment 2 are shown in Fig. 2. ANOVA indicated a significant interaction of time and injection (ANOVA: F=7.293 (1, 11); P<0.006), allowing for post-hoc analysis to highlight at which time points injections had different effects. At 2 min post-injection, birds injected with GnRH alone had higher plasma LH at 2 min than at 10 min (Fisher’s PLSD; P<0.001). Birds injected with the GnRH/GnIH cocktail also had elevated plasma LH at 2 min post-injection (Fisher’s PLSD; P<0.05), but this increase in LH was much attenuated compared with the control group (Fisher’s PLSD; P<0.05). The difference in plasma LH concentration between the two groups was no longer present at 5 and 10 min post-injection, by which time plasma LH had returned to baseline values in both groups.

Experiment 2·1: characterization of a cDNA encoding quail GnIH by RT-PCR experiment with degenerate primers corresponding to the partial quail GnIH sequence: [Leu]²-Lys³-Pro⁴-Ser⁵-Ala⁶-Tyr⁷-Leu⁸-Pro⁹. We originally identified a cDNA encoding GnIH and GnIH-RPs in the brain of the white-crowned sparrow. In this study, we identified a cDNA encoding GnIH and GnIH-RPs in the brain of the white-crowned sparrow. We originally identified a cDNA encoding GnIH and GnIH-RPs in the quail brain (Satake et al. 2001). Subsequently, a cDNA encoding GnIH and GnIH-RPs was also reported in the chicken as a gene database (GenBank, accession numbers AB120325 and BAC87781). Therefore, we compared the structures of GnIH precursor polypeptide, GnIH and GnIH-RPs among the sparrow, quail and chicken. Figure 3 shows the comparison of the structure of GnIH precursor polypeptide among the sparrow, quail and chicken. Sparrow GnIH precursor polypeptide had approximately 66% identity with quail GnIH precursor polypeptide. On the other hand, chicken GnIH precursor polypeptide had approximately 95% identity with quail GnIH precursor polypeptide. Figure 4 further shows the comparison of the structures of GnIH and GnIH-RPs among three avian species. Identical residues in each peptide are printed white on black. As shown in Fig. 4, sparrow GnIH had 75% identity with quail GnIH and 67% identity with chicken GnIH. Sparrow GnIH-RP-1 had 73% identity with quail and chicken GnIH-RP-1. Sparrow GnIH-RP-2 had 61% identity with quail and chicken GnIH-RP-2.
GnIH and GnIH-RPs between the sparrow and quail were lower than those between the chicken and quail. However, all GnIH and GnIH-RPs in the sparrow, quail and chicken contained a C-terminal LPXRF (X=L or Q) motif (Fig. 4).

Experiment 3-3: cellular localization of sparrow GnIH mRNA in the brain

In situ hybridization of sparrow GnIH mRNA was examined in the brain of the white-crowned sparrow by using an RNA probe with a sequence complementary to that of the sparrow GnIH precursor mRNA. An intense expression of sparrow GnIH mRNA was detected only in the PVN in the hypothalamus (Fig. 5a and c). The control study using the sense RNA probe resulted in the complete absence of the sparrow GnIH mRNA expression in the PVN (Fig. 5b and d), suggesting that the reaction was specific for sparrow GnIH mRNA. Cellular localization of GnIH was further analyzed in the serial section by immunohistochemistry using the anti-quail GnIH serum. As shown in Fig. 6a, immunoreactive cell bodies were also restricted to the PVN. In addition, immunoreactive fibers were emanating from immunoreactive PVN cells (Fig. 6a) and terminated in the ME and other brain regions (see Bentley et al. 2003). A complete absence of such an immune reaction in the PVN cells was observed by pre-incubation of the antiserum with synthetic GnIH (Fig. 6b).

Experiment 4: anti-gonadotropic effects of synthetic sparrow GnIH on LH in field-injected white-crowned sparrows

Repeated-measures ANOVA indicated a significant effect of treatment upon plasma LH (F=13.63 (1, 10); P=0.005). Birds that were injected with 1000 ng GnIH had significantly lower plasma LH at 2 min than the saline-injected group (Fisher’s PLSD; P<0.01). At 2 min post-injection, the same pattern was seen in the birds injected with 500 ng GnIH, but the sample size in this group was too small for statistical analysis. In contrast, saline-injected birds had high plasma LH (~5 ng/ml) 2 min post-injection. At 10 min, plasma LH in the saline group showed no significant change from the 2 min values. These results are summarized in Fig. 7.

Discussion

Experiment 1 confirms previous data that GnRH rapidly elicits LH release from song sparrow pituitary in vivo (Wingfield et al. 1979, Wingfield & Farner 1993). More pertinent to the present study is that the data clearly
demonstrate rapid (within 2 min) reduction by quail GnIH of this GnRH-elicited LH release. Experiment 2 demonstrates a rapid effect of quail GnIH on plasma LH in castrated, photostimulated white-crowned sparrows. The results from the injection experiments confirm that GnIH has in vivo anti-gonadotropic activity in the laboratory and in a field setting. Furthermore, these experiments demonstrate that quail GnIH, SIKPSAYLPLRF-NH₂, has heterospecific anti-gonadotropic effects, reducing plasma LH in song sparrows and white-crowned sparrows. As this paper describes the identification of white-crowned sparrow GnIH cDNA, its transcript and peptide, it was thus important to determine a functional role for this peptide. Putative white-crowned sparrow GnIH, SIKPFSNLPLRF-NH₂, also reduced plasma LH in wild birds captured on their breeding grounds. An additional feature of this experiment was that GnIH has not previously been used in a field environment. The field environment may be an important feature of this experiment if endogenous GnIH is affected by captivity or stress. Indeed, plasma LH is typically lower in captive wild bird species than in the wild, hence our need for castration or GnRH treatment to elevate plasma LH for the laboratory studies described in this paper. Taken together, it seems that exogenous GnIH acts within a small window of time, somewhere between 1 min and 5 min of administration. It is as yet unclear how GnIH exerts its effects in terms of receptor binding and downstream processing, or competition with GnRH for binding sites; nor is it known exactly where GnIH is acting. It may be that GnIH only acts at the level of the anterior pituitary gland (Tsutsui et al. 2000). Alternatively, GnIH could act by inhibiting GnRH release from GnRH fiber terminals in the ME, in addition to acting at the level of the pituitary. The most parsimonious explanation for the rapid attenuation by GnIH of a GnRH injection-elicited LH rise is its action upon the pituitary gland, as the pituitary of photorefractory birds is also responsive to exogenous GnRH, but this does not negate the possibility of inhibitory action at multiple levels and over different time-frames. Overall, the data from this series of experiments confirm the previous in vitro demonstration of gonadotropin-inhibitory activity by GnIH (Tsutsui et al. 2000), extending those findings to in vivo activity.

In this study, molecular cloning of cDNA encoding the precursor polypeptide of GnIH was attempted in the brain of the white-crowned sparrow, a seasonally breeding wild bird. Interestingly, analysis of the resulting cDNA revealed that the sparrow GnIH precursor encoded one putative sparrow GnIH and two putative gene-related peptide sequences (sparrow GnIH-RP-1 and GnIH-RP-2) that were invariably equipped with LPXRF (X=L or Q) at their C-termini. The structure of sparrow GnIH precursor cDNA was similar to that of the Japanese quail, a domesticated bird, which also encoded one quail GnIH and two gene-related peptide sequences, i.e. quail GnIH-RP-1 and GnIH-RP-2 (Satake et al. 2001). We previously identified endogenous GnIH and GnIH-RP-2 encoded...
in the quail GnIH precursor polypeptide (Tsutsui et al. 2000, Satake et al. 2001). Although quail endogenous GnIH-RP-1 remains to be identified, the mammalian counterpart of GnIH-RP-1 has been identified as bovine endogenous RFamide-related peptide-1 (RFRP-1), SLTFEEVKDWAPKIKMNKPVVNKMPPSAANLPLRF-NH₂ (Fukusumi et al. 2001). Based on these present and previous findings, we predicted sparrow endogenous GnIH and GnIH-RPs boxed in Fig. 3. Because the C-terminal Gly residue of each peptide is known to be a typical amidation signal, the C-terminal cleavage site of sparrow GnIH and GnIH-RPs may be the same as that of quail GnIH and GnIH-RPs (Fig. 3, Tsutsui et al. 2000, Satake et al. 2001). On the other hand, sparrow GnIH may be cleaved by the same N-terminal processing of quail GnIH; consequently sparrow and quail GnIHs include the same N-terminal structure (Fig. 3). Based on the N-terminal structure of bovine RFRP-1 (Fukusumi et al. 2001), the N-terminal cleavage of sparrow GnIH-RP-1 may occur at a single basic amino acid Arg by the same processing mechanism of RFRP-1. Sparrow GnIH-RP-2 may be cleaved at a single basic amino acid Arg by the same processing mechanism of quail GnIH-RP-2 (Satake et al. 2001), although the length of sparrow

Figure 5 Cellular localization of sparrow GnIH mRNA in the brain. The expression of sparrow GnIH mRNA was localized by in situ hybridization. Distribution of sparrow GnIH mRNA in the PVN as observed in a frontal brain section of the sparrow brain (a, c). Lack of hybridization of sparrow GnIH mRNA by the sense probe (control) is evident (b, d). The square boxes in (a) and (b) are enlarged in (c) and (d) respectively. Scale bars represent 100 μm.
GnIH-RP-2 is longer than that of quail GnIH-RP-2 (Fig. 3). Figure 3 shows the comparison of the GnIH precursor polypeptide structure among the sparrow, quail and chicken. The homology of the structure of GnIH precursor polypeptide was low (approximately 66%) between the sparrow and quail and high (approximately 95%) between the quail and chicken. In these three birds, however, the C-terminal structures of GnIH, GnIH-RP-1 and GnIH-RP-2 were identical respectively. As summarized in Fig. 4, all GnIH and GnIH-RPs included an LPXRF-NH$_2$ sequence (X=L or Q) at their C-termini in the sparrow, quail and chicken. On the other hand, the homology of each peptide was low (GnIH: 75%; GnIH-RP-1: 73%; GnIH-RP-2: 61%) between the sparrow and quail and high (GnIH: 92%; GnIH-RP-1: 97%; GnIH-RP-2: 100%) between the quail and chicken. This difference may be due to phylogeny of galliformes and passeriformes. Notwithstanding such a difference in sequence homology, the presence of GnIH and GnIH-RPs in the brain may be an evolutionarily conserved property in birds. Identification of mature endogenous sparrow GnIH and GnIH-RPs is now in progress.

Identification of the cells expressing sparrow GnIH mRNA in the brain must be taken into account when studying the action of neuropeptides. In this study, we therefore characterized the site showing the expression of sparrow GnIH mRNA by in situ hybridization. The sparrow GnIH mRNA expression was localized only in the PVN in the hypothalamus of the white-crowned sparrow. The control study using a sense RNA probe resulted in a complete absence of the sparrow GnIH mRNA expression, suggesting the validity of the in situ hybridization technique. The GnIH-like immunoreactive cells were also observed in the PVN and their fibers were distributed in the hypothalamus including the PVN. No positive signals were observed by immunohistochemistry in this study following pre-absorption experiments with an excess amount of synthetic GnIH. These results are in accord with the expressions of GnIH mRNA and GnIH in the quail (Tsutsui et al. 2000, Satake et al. 2001, Ubuka et al. 2003, Ukena et al. 2003). In our previous study (Bentley et al. 2003), the terminals of PVN neurons containing sparrow GnIH were localized in the ME and other brain regions in the sparrow brain. In addition,

![Figure 6](image1.png)

Figure 6 Cellular localization of sparrow GnIH in the brain. Immunohistochemical staining in a frontal brain section was carried out with antiserum against quail GnIH. Immunoreactive cell bodies and fibers were observed in the PVN (a). Preincubation of the antiserum with a saturating concentration of synthetic GnIH was carried out as the control (b). Scale bars represent 100 μm.

![Figure 7](image2.png)

Figure 7 The effects of putative sparrow GnIH on plasma LH in field-injected, breeding Gambel’s white-crowned sparrows. Plasma LH was lower in the GnIH-injected group at 2 min but at no other time. **P<0.01 GnIH high vs vehicle by ANOVA, followed by Fisher’s PLSD for post-hoc analysis.**
Bentley et al. (2003) reported that GnIH-containing PVN neurons were larger in the sparrow at the termination of the breeding season than at other times.

In summary, we have revealed the structure of GnIH precursor cDNA and the localization of its transcript in the white-crowned sparrow, one of the most intensively studied seasonally breeding birds. The identified sparrow GnIH precursor cDNA encoded putative sparrow GnIH and GnIH-RPs including the L/PXR/F (X-L or Q) motif at their C-termini. The expressions of sparrow GnIH mRNA and GnIH were localized in the PVN. Injection of the synthetic peptide caused a rapid decrease in plasma LH in free-living, breeding white-crowned sparrows, thus confirming its biological relevance. Further study is required to establish the exact physiological role of GnIH in this seasonally breeding bird, although it is clear that treatment with synthetic GnIH rapidly and transiently suppresses LH in field-injected white-crowned sparrows. Taken together, our series of injection experiments implies that sparrow GnIH may play an important role in the regulation of reproductive activity by inhibiting gonadotropin release in the white-crowned sparrow, a wild avian species. The present findings provide a basis for future study of the action of GnIH and its physiological significance in the seasonally breeding bird.

Funding

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (1240233, 12894021, 13210101 and 15207004 to K T, and 15770040 to K U); Science and Culture, Japan (1240233, 12894021, and 15210101 and 15207007 to K T, and 15770040 to K U); NIH, USA (R01 MH065974 to J C W); and NSF, USA (OPP-9911333 to J C W) This work was an international joint project. There is no conflict of interest that would prejudice the impartiality of the research described in this article.

References

Dawson A & Goldsmith AR 1982 Proactin and gonadotrophin secretion in wild starlings (Sturnus vulgaris) during the annual cycle and in relation to nesting, incubation, and rearing young. *General and Comparative Endocrinology* 48 213–221.

Received 19 March 2004

Accepted 5 April 2004