Redox up-regulated expression of rat liver manganese superoxide dismutase and Bcl-2 by thyroid hormone is associated with inhibitor of κB-α phosphorylation and nuclear factor-κB activation

Virginia Fernández, Gladys Tapia, Patricia Varela, Iván Castillo, Catalina Mora, Francisco Moya, Myriam Orellana and Luis A Videla

Molecular and Clinical Pharmacology Program and 1Cellular and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70000, Santiago-7, Chile

(Requests for offprints should be addressed to V Fernández; Email: vfernandez@med.uchile.cl)

Abstract

Recently, we demonstrated that 3,3',5-triiodothyronine (T3) induces oxidative stress in rat liver, with enhancement in the DNA binding of nuclear factor-κB (NF-κB) and the NF-κB-dependent expression of tumor necrosis factor-α (TNF-α). In this study, we show that T3 administration (daily doses of 0·1 mg/kg i.p. for three consecutive days) elicited a calorigenic response and higher liver O2 consumption rates, with increased serum levels of TNF-α (ELISA), liver inhibitor of κB (κB-α) phosphorylation (Western blot analysis), and hepatic NF-κB DNA binding (EMSA) at 56–72 h after treatment. Within this time interval, liver manganese superoxide dismutase (MnSOD) activity and the protein expression of MnSOD and Bcl-2 are enhanced. These changes are abrogated by the administration of α-tocopherol (100 mg/kg i.p.) prior to T3. It is concluded that T3 treatment leads to the redox upregulation of MnSOD and Bcl-2 in rat liver, in association with TNF-α release and activation of the κB-α kinase/NF-κB cascade, which may constitute a protective mechanism against free radical toxicity involving cell death signaling.

Journal of Endocrinology (2005) 186, 539–547

Introduction

Superoxide radical (O2•−) and hydrogen peroxide (H2O2) are primary reactive oxygen species (ROS) generated as by-products in electron transfer processes, particularly mitochondrial respiration and microsomal cytochrome P450 monooxygenation (Videla 2000). Specialized cells in direct relation to their functions also produce ROS, as is the case of the NADPH oxidase (NOX2) involved in the bactericidal mechanism of phagocytes or the dual oxidase p138F assumed (DUOX2) that supports thyroid hormone biosynthesis in thyroid cells (Lambeth et al. 2000). When generated at high levels, ROS are cytotoxic and mutagenic due to their high chemical reactivity that produces substantial oxidative modifications in unsaturated lipids, proteins, and DNA, with loss of their functions and cell viability (Dröge 2002, Martindale & Holbrook 2002). In addition, accumulating evidence suggests that production of low levels of ROS (Thannickal & Fanburg 2000, Dröge 2002, Martindale & Holbrook 2002), and lipid oxidation products of ROS-dependent reactivity (Poli et al. 2004, Leonardiuzzi et al. 2004), may play a role in signal transduction processes. This can be accomplished through reversible oxidative modifications of critical amino acid residues within the functional domain of proteins, particularly cysteine residues, which may alter the activity of enzymes such as kinases and phosphatases or the DNA binding of transcription factors involved in cell signaling (Thannickal & Fanburg 2000, Martindale & Holbrook 2002, Poli et al. 2004).

Thyroid hormone is essential for growth, development, and regulation of energy metabolism (Oppenheimer et al. 1996). Hyperthyroidism in vertebrates increases their basal metabolic rate due to higher O2 consumption by target tissues such as liver (Fernández et al. 1985), leading to enhanced ROS generation (Videla 2000). 3,3',5-Triiodothyronine (T3)-induced pro-oxidant activity (i) occurs at mitochondrial (Fernández & Videla 1993a), microsomal (Fernández et al. 1985), and cytosolic (Huh et al. 1998) levels, (ii) involves generation of reactive nitrogen species (RNS) in addition to ROS (Fernández et al. 1997), and (iii) accounts for 16–25% of the net increase in total O2 consumption of the liver (Fernández & Videla 1993b). The latter respiratory component may include O2 equivalents employed both in ROS/RNS generation and in the free radical–dependent oxidation of unsaturated fatty acids (Fernández et al. 1985, Landriscina...
proteins (Tapia et al. 1999), and DNA (Andican et al. 2004). Enhancement in liver mitochondrial H₂O₂ production is also observed in the transition from hypothyroid to hyperthyroid state as a function of the content of autoxidisable electron carriers (Venditti et al. 2003), an effect that is mimicked by cold-induced hyperthyroidism (Venditti et al. 2004). In addition to these changes that are presumed to occur primarily at the parenchymal cell level, T₃ administration to rats led to hyperplasia and hypertrophy of Kupffer cells, with the consequent enhancement in respiratory burst activity (Tapia et al. 1997). The latter process is mainly due to the activity of the ROS generator NOX2, with a smaller contribution of nitric oxide (NO) synthase (NOS) (Wang et al. 1993), being the increase in hepatic NOS activity induced by T₃ partially inhibited by the Kupffer cell inactivator gadolinium chloride (GdCl₃) (Fernández et al. 1997). This liver free radical activity induced by hyperthyroid state is coupled to a diminution in the antioxidant potential of the tissue in experimental animals and man, leading to oxidative stress (Videla 2000) and activation of the redox-sensitive transcription factor NF-κB (Tapia et al. 2003).

In the liver, NF-κB has prominent transcriptional control over expression of a number of genes, such as those for cytokines, chemokines, and adhesion molecules (Flohé et al. 1997, Tsukamoto & Lin 1997), type I acute-phase proteins (Ramadori & Christ 1999), anti-apoptotic proteins (Ashkenazi & Dixit 1998), and enzymes. Among the latter group, manganese superoxide dismutase (MnSOD) constitutes a major protective mechanism against ROS by removing O₂⁻⁻⁻ from both mitochondrial and the cytosol, otherwise inducing oxidant injury or acting as pro-apoptotic factors (Oberley 2004). In view of these considerations, and the substantial enhancement in liver mitochondrial ROS generation by hyperthyroidism (Fernández & Videla 1993a, Venditti et al. 2003), the aim of the present study was to test the hypothesis that T₃-induced pro-oxidant activity stimulates the expression of liver MnSOD and Bcl-2 through upstream processes involving the activation of the inhibitor of κB (IκB) kinase complex (IKK) and the transcription factor NF-κB. For this purpose, hepatic MnSOD activity and the protein expression of MnSOD and Bcl-2 were studied in relation to the serum levels of tumor necrosis factor-α (TNF-α) and liver IκB-α phosphorylation and NF-κB DNA binding, both in control rats and animals given T₃, and in separate groups subjected to α-tocopherol treatment prior to hormone administration.

Materials and Methods

Animals and treatments

Female Sprague-Dawley rats (Biotério Central, ICBM, Facultad de Medicina, Universidad de Chile) weighing 200–300 g were housed on a 12 h light/dark cycle and were provided with rat chow and water ad libitum. Animals received daily i.p. injections of 0.1 mg of T₃/kg body weight for three consecutive days or equivalent volumes of hormone vehicle (0.1 mol/l NaOH, controls) and studies were performed at the indicated times after treatment. Thyroid hormone-induced calorigenesis was assessed by the rectal temperatures of the animals measured with a thermocouple (Cole-Parmer Instrument, Chicago, IL, USA), the basal rate of O₂ consumption by the liver was determined polarographically in perfusion studies (Fernández & Videla 1993b, Tapia et al. 1997), and blood samples were taken from the tail vein for the measurement of serum T₃ levels by GammaCoat (125I)-T₃ Radio-immunoassay (assay sensitivity limit of 9 ng T₃/dl, between-assay variation of 4%, and intra-assay variation of 3.5% at 33 ng/dl and 2.7% at 290 ng/dl; Baxter Healthcare, Cambridge, MA, USA). Separate groups of rats were subjected to 100 mg of α-tocopherol/kg i.p. (Camandola et al. 1999) 17 h prior to the first dose of T₃, and studies were carried out at the indicated times after hormone treatment. In these groups, the levels of α-tocopherol in plasma were measured by reverse phase high performance liquid chromatography (HPLC) after extraction with hexane, according to Shearer (1986). For this purpose, a Symmetry C-18 column (Waters Corporation, Milford, MA, USA), 3.5 μm, with dimensions of 4.6 × 100 mm was employed. Separation was done using a flow rate of 1 ml/min of the mobile phase (7% v/v dichloromethane in methanol) and detection was performed at 292 nm. All animals used were cared for according to the guidelines outlined in the Guide for the Care and Use of Laboratory Animals by the National Academy of Sciences (National Institutes of Health publication No. 86–23).

Assay for MnSOD activity

The animals were anesthetized with sodium pentobarbital (50 mg/kg i.p.) and the livers were perfused with 150 ml of a cold solution containing 150 mM KCl and 5 mM Tris pH 7.4 in order to remove blood. Mitochondrial pellets obtained by differential centrifugation were suspended in a buffer containing 210 mM mannitol, 70 mM sacarose, 2 mM HEPES, and 0.5 g/l serum bovine albumin, pH 7.4, and MnSOD activity was measured by the MnSOD-sensitive autoxidation of hematoxylin at 560 nm, in a reaction medium containing 0.05 M sodium phosphate buffer pH 7.5, 0.1 mM EDTA, and 5 mM hematoxylin (Martin et al. 1987). Results are expressed as units/mg mitochondrial protein (1 unit corresponds to the amount of enzyme producing 50% inhibition of the rate of hematoxylin autoxidation at 30°C), standardized with purified MnSOD (Sigma Chemical Co., St Louis, MO, USA). Although mitochondrial fractions may contain traces of CuZnSOD, this enzyme activity is significantly diminished after the administration of T₃ for 3 consecutive
days (Fernández et al. 1988), thus minimizing possible contamination artifacts. The protein content was determined according to Lowry et al. (1951).

Enzyme-linked immunosorbent assay (ELISA) for TNF-α

Serum from rat blood was obtained by cardiac puncture, separated and stored at −80°C, and TNF-α levels were measured by ELISA (UltraSensitive Cytoscreen KRC3013 kit, Biosource International, Camarillo, CA, USA) according to manufacturer’s specifications. Serum samples containing high TNF-α levels were repeated after dilution to ensure assay results within the standard curve.

Western blot analysis of IκB-α, phospho-IκB-α (Ser32), Bcl-2, and MnSOD

At selected times after T3 treatment, liver samples (100–500 mg) frozen in liquid nitrogen were homogenized and suspended in a buffer solution pH 7.9 containing 10 mM HEPES, 1 mM EDTA, 0.6% Nonidet P-40, 150 mM NaCl, and protease inhibitors (1 mM phenylmethylsulfonyl fluoride, 1 µg/ml aprotinin, 1 µg/ml leupeptin, and 1 mM orthovanadate). Soluble protein fractions (50 µg) were separated on 12% polyacrylamide gels using SDS-PAGE (Laemmli 1970) and transferred to nitrocellulose membranes (Towbin et al. 1979), which were blocked for 1 h at room temperature with TBS-containing 0.1% Tween 20 and hybridized with rabbit polyclonal antibody for rat IκB-α (Santa Cruz Biotechnology, Santa Cruz, CA, USA) followed by rabbit polyclonal antibody for rat phospho-IκB-α (Ser32) (Cell Signaling Technology, Beverly, MA, USA). For Bcl-2, samples were hybridized with mouse monoclonal antibody for rat Bcl-2 (BD Transduction Laboratories, San Jose, CA, USA). In the case of MnSOD, mitochondrial suspensions (25 µg) were separated on 13% SDS-PAGE and resolved with mouse monoclonal antibody for rat MnSOD (BD Transduction Laboratories, San Jose, CA, USA). In all determinations, mouse monoclonal antibody for rat β-actin (ICN Biomedicals, Inc., Aurora, OH, USA) was used as internal control. After extensive washing, the antigen–antibody complexes were detected using horseradish peroxidase labeled goat anti-rabbit IgG or goat anti-mouse IgG and a SuperSignal West Pico Chemiluminescence kit detection system (Pierce, Rockford, IL, USA).

Electromobility Shift Assay (EMSA)

Nuclear protein extracts from liver samples were prepared according to Deryckere and Gannon (1994). The samples were subjected to EMSA for assessment of NF-κB DNA binding using the NF-κB probe 5’-GATCTCATAGGGAAGACTTTCGAGG-3’ (Genset Corp., La Jolla, CA, USA), labeled with α-32P-dCTP using the Klenow DNA Polymerase Fragment I (Invitrogen Corp., Carlsbad, CA, USA), as previously described (Videla et al. 2004). The specificity of the reaction was determined by a competition assay using 100-fold molar excess of unlabeled DNA probe. The subunit composition of DNA binding protein was confirmed by supershift assay using specific antibodies from goat and rabbit IgG raised against NF-κB p50 and p65 (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Samples were loaded on nondenaturating 6% polyacrylamide gels and run until the free probe reached the end of the gel; NF-κB bands were detected by autoradiography and quantified by densitometry using Scion Image (Scion Corp., Frederick, MD, USA).

Statistical analysis

Values shown are means ± s.e.m. for the number of separate animals indicated. One-way ANOVA and the Newman–Keuls’ test assessed the statistical significance of differences between mean values (P<0.05).

Results

The administration of T3 to rats as depicted in Fig. 1A resulted in significant increases in serum T3 levels over control values (Controls, 51±3 (n=10) ng/dl; T3-treated rats at 24 h, 354±61 (n=6) (P<0.05 vs controls); T3-treated rats at 48 h, 307±26 (n=5) (P<0.05 vs controls); T3-treated rats at 72 h, 288±15 (n=8) (P<0.05 vs controls). Under these conditions, T3 treatment induced a calorigenic response with significantly higher rectal temperatures either at 24 and 48 h after treatment or in the 5674 h time period studied, over control values (Fig. 1A). In the latter experimental time interval, T3 treatment led to (i) an increase (44%) in the average rate of O2 consumption of the liver compared with control values (controls, 1·84±0·07 (n=8) µmol/g liver/min; T3-treated rats, 2·65±0·12 (n=9); P<0.05) and (ii) significantly higher TNF-α levels in serum, which returned to control values at 74 h (Fig. 1B).

To examine the effect of T3 treatment on the expression of MnSOD and Bcl-2 in rat liver, assessment of hepatic IκB-α serine 32 phosphorylation, NF-κB activation, and MnSOD and Bcl-2 protein expression was performed. Fig. 2A shows significant 1740% increases in IκB-α phosphorylation at 58–72 h after T3 administration, expressed as the quotient of phosphorylated IκB-α/non phosphorylated IκB-α ratios in T3-treated and control rats, with the concomitant 2.7 to 6.6-fold enhancement in the DNA binding capacity of NF-κB (Fig. 2B). Under these conditions, T3 led to the upregulation of liver MnSOD, as evidenced by the 12–34% increase in protein expression (Fig. 3A, upper panel), with the concomitant 125–160% enhancement in the specific activity of the MnSOD.
controls, 12.1 ± 0.6 (n=5) µM; (b) T3-treated rats, 12.9 ± 1.9 (n=5); (c) α-tocopherol, 19.9 ± 0.6 (n=7) (P<0.05 vs a and b); (d) α-tocopherol and T3, 19.3 ± 1.2 (n=4) (P<0.05 vs a and b). Abrogation of T3-induced serum TNF-α levels, liver IκB-α phosphorylation, and hepatic NF-κB DNA binding by α-tocopherol administration prior to hormone treatment, have recently been reported by our group (Fernández et al. 2005).

Discussion

Mitochondria are primarily concerned with intracellular energy homeostasis, but also play crucial roles in the regulation of apoptotic and necrotic cell death, Ca2+ homeostasis, or ROS generation. Acceleration of energy metabolism, as a consequence of thyroid calorigenesis, leads to a higher production of ROS at the mitochondrial level (Fernández & Videla 1993a, Venditti et al. 2003), which may represent potential proapoptotic and/or necrotic factors (Lemasters et al. 1999). Under these conditions, aerobic cells have different mechanisms for minimizing or re-establishing the original redox state, including the upregulation of the expression of genes encoding for proteins with antioxidant activity (Dröge 2002). Data presented in this work indicate that thyroid hormone upregulates gene expression in the liver through a redox signaling mechanism resulting in the induction of two nuclear encoded proteins, namely, the mitochondrial matrix enzyme MnSOD (Oberley 2004) and the anti-apoptotic protein Bcl-2 (Oberley 2004), predominantly located in mitochondrial membranes (Tsujimoto 2003). These effects of T3 elicited at 68–72 h after hormone administration (i) occur under thermogenic conditions with increased liver O2 consumption rates underlying a higher oxidative stress status (Videla 2000) and (ii) involve a TNF-α response triggered by oxidative stress in Kupffer cells, due to its abrogation by α-tocopherol or N-acetylcysteine (Fernández et al. 2002, 2005) and GdCl3 pretreatment (Fernández et al. 2005). Although T3-induced calorigenic effects are significant at 24 h, in the experimental design employed, the redox upregulation of liver MnSOD and Bcl-2 occurs at 68–72 h after treatment, coinciding with the maximum oxidative stress status reached (Fernández et al. 2005). This is evidenced by the higher lipid peroxidation and protein carbonylation responses induced by T3 at 72 h over those found at 24 h (Fernández et al. 2005), thus supporting the contention that the redox regulation of gene expression depends on the pro-oxidant level attained (Martindale & Holbrook 2002) within a given time interval (Dröge 2002). T3-induced TNF-α response was paralleled by the activation of the IKK complex, as shown by the significant enhancement in liver IκB-α phosphorylation. This process, that is accomplished after TNF-α/TNF-α receptor 1 coupling requiring the recruitment of several adaptor molecules and the activation of different mechanisms for minimizing or re-establishing the original redox state, including the upregulation of the expression of genes encoding for proteins with antioxidant activity (Dröge 2002). Data presented in this work indicate that thyroid hormone upregulates gene expression in the liver through a redox signaling mechanism resulting in the induction of two nuclear encoded proteins, namely, the mitochondrial matrix enzyme MnSOD (Oberley 2004) and the anti-apoptotic protein Bcl-2 (Oberley 2004), predominantly located in mitochondrial membranes (Tsujimoto 2003). These effects of T3 elicited at 68–72 h after hormone administration (i) occur under thermogenic conditions with increased liver O2 consumption rates underlying a higher oxidative stress status (Videla 2000) and (ii) involve a TNF-α response triggered by oxidative stress in Kupffer cells, due to its abrogation by α-tocopherol or N-acetylcysteine (Fernández et al. 2002, 2005) and GdCl3 pretreatment (Fernández et al. 2005). Although T3-induced calorigenic effects are significant at 24 h, in the experimental design employed, the redox upregulation of liver MnSOD and Bcl-2 occurs at 68–72 h after treatment, coinciding with the maximum oxidative stress status reached (Fernández et al. 2005). This is evidenced by the higher lipid peroxidation and protein carbonylation responses induced by T3 at 72 h over those found at 24 h (Fernández et al. 2005), thus supporting the contention that the redox regulation of gene expression depends on the pro-oxidant level attained (Martindale & Holbrook 2002) within a given time interval (Dröge 2002). T3-induced TNF-α response was paralleled by the activation of the IKK complex, as shown by the significant enhancement in liver IκB-α phosphorylation. This process, that is accomplished after TNF-α/TNF-α receptor 1 coupling requiring the recruitment of several adaptor molecules and the activation
of NF-κB-inducing kinase (Garg & Aggarwal 2002), may play a role in the enhancement of NF-κB DNA binding found after T3 administration, although the participation of other signaling kinases cannot be discarded.

Enhancement of NF-κB DNA binding upregulates the expression of numerous inducible genes, including those for MnSOD (Jiang et al. 2004) and Bcl-2 (Tamatani et al. 1999). T3-induced liver NF-κB DNA binding led to increased expression of MnSOD, an effect that involves a higher activity of the enzyme and that is abolished by α-tocopherol pretreatment. Upregulation of MnSOD expression by T3 represents an effective protective mechanism against T3-induced liver O₂⁻⁻ generation, which occurs not only in mitochondria (Fernández & Videla 1993a, Venditti et al. 2003), but also in microsomes (Fernández et al. 1985) and the cytosol (Huh et al. 1998), as enhancement in MnSOD in mitochondria will increase O₂⁻⁻ removal from mitochondria and the cytosol. The latter process is due to O₂⁻⁻ diffusion into the positively charged mitochondrial intermembrane space, followed by O₂⁻⁻ protonation to form hydroperoxyl radical, which reaches the mitochondrial matrix for dismutation of MnSOD and Bcl-2 expression by thyroid hormone · V Fernández and others 543
It is interesting to note that T3-induced liver MnSOD expression is coordinated with the upregulation of inducible NOS (iNOS) (Fernández et al. 2005). Under these conditions, the effective scavenging of \(\cdot O_2^+\) by MnSOD will minimize its reaction with NO, thus favoring the maintenance of high NO levels that are important to avoid prolonged NF-κB activation by oxidative stress and the consequent excessive proinflammatory cytokine expression. This negative feedback signaling mechanism for NF-κB may involve the diminution of its DNA binding capacity by nitrosylation of NF-κB p50 and/or the enhancement in IκB availability by synthesis or stabilization (Laroux et al. 2000).

In addition to liver MnSOD expression, T3 administration achieved the redox upregulation of hepatic Bcl-2, in association with the activation of the IKK/NF-κB pathway. Although Bcl-2 function is primarily concerned with the control over apoptosis commitment in disease development, overexpression of Bcl-2 is also related to the regulation of the intracellular redox state (Voehringer & Meyn 2000). In agreement with this proposal, previous work by our group showed that elevation of basolateral \(\gamma\)-glutamyl transferase (\(\gamma\)-GT) ectoactivity is related to the recovery of hepatic GSH content after depletion by T3 administration, by supplying the precursors for intracellular GSH synthesis (Carrión et al. 1993). Bcl-2 overexpression is correlated with the expression of CD53, a member of the membrane-spanning tetraspanin 4 (TM4) family of surface proteins that facilitate the interaction and activity of membrane-bound proteins, including \(\gamma\)-GT (Voehringer & Meyn 2000). Enhancement in sinusoidal \(\gamma\)-GT by T3 occurs under conditions of enhanced hepatic GSH biosynthetic capacity (Fernández & Videla 1996), with higher rates of the NADPH-generating enzyme glucose-6-phosphate dehydrogenase to support oxidized glutathione (GSSG) reduction into GSH (Giavarotti et al. 1998).

Collectively, data presented indicate that T3 administration elicits the redox upregulation of MnSOD and
Bcl-2 in rat liver, in association with the Kupffer cell-dependent release of TNF-α and activation of the IKK/NF-κB cascade. These adaptive responses, and that of hepatic iNOS previously reported (Fernández et al. 2005), represent protective mechanisms against ROS toxicity that underlies the oxidative stress status induced in the liver by thyroid calorigenesis, and that might involve cell death signaling.

Acknowledgements

This work was supported by grant 1030499 from FONDECYT (Chile). The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

References

Camandola S, Aragno M, Cutrin JC, Tamagno E, Danni O, Chiarpotto E, Parela M, Loenarduzzi G, Biasi F & Poli G 1999 Liver AP-1 activation due to carbon tetrachloride is potentiayed by 1,2-dibromoethane but is inhibited by α-tocopherol or gadolinium chloride. Free Radical Biology and Medicine 26 1108–1116.


Oberley TD 2004 Mitochondria, manganese superoxide dismutase, and cancer. Antioxidants and Redox Signaling 6 483–487.


Fernández V & Videla LA 1996 Hepatic glutathione biosynthetic capacity in hyperthyroid rats. Toxicology Letters 89 85–89.


Received 27 May 2005
Accepted 24 June 2005