Ceramide inhibition of chondrocyte proliferation and bone growth is IGF-I independent

V E MacRae1,2, T Burdon1, S F Ahmed2 and C Farquharson1

1Bone Biology Group, Division of Gene Function and Development, Roslin Institute, Roslin, Midlothian EH25 9PS, UK
2Bone and Endocrine Research Group, Royal Hospital for Sick Children, Glasgow, UK

(Requests for offprints should be addressed to V E MacRae; Email: vicky.macrae@bbsrc.ac.uk)

Abstract

Proinflammatory cytokines inhibit growth plate development. However, their underlying mechanisms of action are unclear. These effects may be mediated by ceramide, a sphingosine-based lipid second messenger, which is elevated in a number of chronic inflammatory diseases. To test this hypothesis, we determined the effects of C2-ceramide, a cell permeable ceramide analogue, on the growth of the ATDC5 chondrogenic cell line and on cultured fetal mouse metatarsals. In ATDC5 cells, C2-ceramide significantly induced apoptosis at both 40 (82%; \(P<0.05 \)) and 25 \(\mu M \) (53%; \(P<0.05 \)). At 40 \(\mu M \), C2-ceramide significantly reduced proliferation ([\(^{3}H \)]-thymidine uptake/mg protein) (62%; \(P<0.001 \)). At 25 \(\mu M \), C2-ceramide did not markedly alter the differentiation state of the cells as judged by the expression of markers of chondrogenesis and differentiation (sox 9, collagen II and collagen X). The IGF-I signalling pathway is the major autocrine/paracrine regulator of bone growth. Both in the presence and absence of IGF-I, C2-ceramide (25 \(\mu M \)) induced an equivalent reduction in proliferation (60%; \(P<0.001 \)). Similarly, C2-ceramide (40 \(\mu M \)) induced a 31% reduction in fetal metatarsal growth both in the presence and absence of IGF-I (both \(P<0.001 \)). Furthermore, C2-ceramide reduced ADCT5 proliferation in the presence of AG1024, an IGF-I and insulin receptor blocker. Therefore, C2-ceramide-dependent inhibition appears to be independent of IGF-mediated stimulation of bone growth. Indeed, biochemical studies demonstrated that C2-ceramide (25 \(\mu M \)) pretreatment did not alter IGF-I-stimulated phosphorylation of insulin receptor substrate-1, Akt or P44/42 MAP kinase. In conclusion, C2-ceramide inhibits proliferation and induces apoptosis in growth plate chondrocytes through an IGF-I independent mechanism.

Introduction

Chronic inflammatory diseases such as juvenile idiopathic arthritis and inflammatory bowel disease often lead to childhood growth retardation through a number of proposed mechanisms that includes nutritional deficiency, chronic inflammation, increased catabolism, defects in the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis and use of glucocorticoids (MacRae et al. 2006a, Wong et al. 2006). Levels of proinflammatory cytokines, such as tumour necrosis factor (TNF)-\(\alpha \) and interleukin (IL)-1\(\beta \) are often raised in these diseases, and measures that block TNF-\(\alpha \) action, such as anti-TNF therapy, lead to an improvement in growth. This effect has been reported to be independent of the concurrent reduction in growth associated with gluco- corticoid therapy (Tynjala et al. 2006). TNF-\(\alpha \) and IL-1\(\beta \) may directly inhibit growth plate chondrocyte dynamics as well as longitudinal growth in vitro (Martenson et al. 2004, MacRae et al. 2006b), however, the underlying mechanisms that lead to these effects are unclear.

The IGF-I signalling pathway is the major autocrine/paracrine regulator of bone growth (Loveridge et al. 1990). Binding of IGF-I to its receptor utilises a family of soluble receptors, known as insulin receptor substrates (IRs), to initiate a series of autophosphorylation events. This results in the activation of two distinct signalling pathways, phosphatidylinositol 3-kinase (PI-3K) and p44/p42 mitogen-activated protein kinase (MAPK), leading to pro-proliferative and anti-apoptotic effects. In many cell types, signal transduction of IL-1\(\beta \) and TNF-\(\alpha \) involves the activation of neutral (N) and acidic (A) sphingomyelinase (SMase) pathways, which catalyse the degradation of the membrane phospholipid sphingomyelin into phosphocholine and ceramide (Mathias et al. 1993, Wiegmann et al. 1994, Rybakina et al. 2001). Ceramide levels are also elevated through a de novo synthesis pathway following activation of IL-1\(\beta \) and TNF-\(\alpha \) receptors (Memon et al. 1998, Xu et al. 1998). Ceramide has been shown to inhibit IGF-I-induced tyrosine phosphorylation of IRS-1 in myoblast and hepatic cells (Canet et al. 1996, Strle et al. 2004). Ceramide has also been shown to induce apoptosis in a wide range of different...
cell types, including pancreatic ß-cells (Sjoholm 1995), cardiomyocytes (de Vries et al. 1997) and astrocytes (Oh et al. 2006). Furthermore, ceramide has been shown to induce apoptosis, proteoglycan degradation and matrix metalloproteinase expression in articular chondrocytes (Sabatini et al. 2000, Gilbert et al. 2004, 2006).

Whilst previous studies have shown that IL-1ß and TNF-ß inhibit growth plate chondrocyte differentiation and induce cell death (Martensson et al. 2004, MacRae et al. 2006b), the direct effects of ceramide on growth plate chondrocytes have yet to be reported. In this study, the ATDC5 chondrogenic cell line was used to characterise and compare the effects of ceramide on cell proliferation, differentiation and apoptosis. Subsequently, the effect of ceramide on IGF-I signalling was examined using ATDC5 cells and the fetal murine metatarsal model.

Materials and Methods

Chondrocyte cell culture

The ATDC5 chondrocyte cell line was sourced from the RIKEN cell bank (Ibaraki, Japan) and maintained as described by Atsumi et al. (1990). Cells were maintained in T175 tissue culture flasks (Greiner Bio-One GmbH, Frickenhausen, Baden-Württemberg, Germany) at a density of 250 000 cells/flask in a maintenance medium of Dulbecco’s Modified Eagle Medium (DMEM)/Ham’s F12 (Invitrogen) supplemented with 5% FCS (Invitrogen), 10 µg/ml human transferrin, 3 × 10⁻⁸ M sodium selenite (Sigma), sodium pyruvate (1 mM; Invitrogen) and gentamycin (50 µg/ml, Invitrogen). For individual experiments semi-confluent cultures were passaged with trypsin-EDTA (Sigma) and cultured (day 0) at a density of 6000 cells/cm² in multi-well plates (Costar, High Wycombe, Bucks, UK) in a differentiation medium that consisted of maintenance medium supplemented with insulin (10 µg/ml; Sigma). Incubation was at 37 °C in a humified atmosphere of 95% air/5% CO₂ and the medium was changed every second or third day. In all experiments, unless otherwise stated, C2-ceramide (Sigma), a cell permeable ceramide analogue, was added to chondrocyte cultures on day 6, at a final concentration of 40, 25 and 10 µM. The diluent for C2-ceramide was ethanol (final concentration 0.1%). All control cultures received 0.1% ethanol only.

ATDC5 cells were deprived of serum and insulin/transferrin/selenium for 18 h before the initiation of treatments in the presence of IGF-I (100 ng/ml; Bachem, UK Ltd, St Helens, Merseyside, UK), AG1024 (Sigma) and before the initiation of the cell-signalling studies.

Ceramide mechanisms associated with proinflammatory cytokine exposure

D609 (10 µg/ml; Sigma), an inhibitor of A-SMase activity, was added to cells cultured in 48 well plates, in the presence of IL-1ß and TNF-ß (both 10 ng/ml). The rate of chondrocyte proliferation was assessed over a 24 h period starting on day 6. On day 7, the chondrocytes were incubated with 0-2 µCi/ml [³H]thymidine (37 MBq/ml; Amersham Pharmacia Biotech) for the last 2 h of the culture period. The amount of radioactivity incorporated into trichloroacetic acid-insoluble precipitates was measured (Farquharson et al. 1999).

Chondrocyte number, proliferation and apoptosis

Proliferation was determined over a 24 h period starting on day 6, as described above. Protein content of the trichloroacetic acid-insoluble precipitates was determined as a measure of cell number. Protein content was measured using the Bio-Rad DC protein assay (Bio-Rad Laboratories, Inc.) based on the Bradford dye-binding procedure and γ-globulin as standard (Farquharson et al. 1995). Apoptosis of the cells was measured using the APO Percentage Apoptosis assay (Biocolor Ltd, Belfast, Northern Ireland), which quantifies dye uptake by apoptotic cells only after the translocation of phosphatidylserine to the outer surface of the cell membrane (Fadok et al. 1992). Apoptosis was assessed following the manufacturer's protocol in cells cultured in 48- well plates over a 24 h period starting on day 6.

Analysis of chondrogenic gene expression

On days 13 and 15, C2-ceramide was added to cells cultured in six-well plates. During this period of cell maturation, the cells express established markers of the chondrocyte differentiated phenotype (Mushtaq et al. 2002). The experiment was stopped on day 17 and total RNA was extracted from chondrocytes by repeated aspiration through a 25-gauge syringe needle in 0·5 ml Ultraspec (Biocytex, Houston, TX, USA). Following extraction with chloroform, RNA in the aqueous phase was precipitated with isopropanol and bound to RNA Tack resin (Biotecx, Houston, TX, USA). After washing with 75% ethanol, the RNA was eluted in 10 µl reactions containing cDNA (equivalent to 10 ng RNA and 200 nM gene-specific primers (Table 1)) in 1·1× PCR buffer (Jeffries et al. 1998, 2000, Farquharson et al. 1999, Houston et al. 1999). Aliquots of 500 ng RNA (or an equivalent volume of water as a control) were reverse transcribed in 20 µl reactions containing cDNA equivalent to 10 ng RNA and 200 nM gene-specific primers (Table 1) in 1·1× PCR buffer (Jeffries et al. 2000). Primers were designed to span introns. The cycling profile was 1 min at 92 °C (first cycle, 2 min), 1 min at 55 °C and 1 min at 70 °C. The number of cycles performed was carefully titrated to ensure that the reactions were in the exponential phase. Reaction products were analysed on 1.5% agarose gels in the presence of ethidium bromide (250 µg/l), and a digital image of each gel was captured using a gel documentation system (Bio-Rad Laboratories).
IGF-I studies in ATDC5 cells

The cells were treated with C2-ceramide (25 μM) for 24 h in the presence of IGF-I. In further studies, the cells were treated with C2-ceramide (25 μM) in the presence of IGF-I or AG1024, an IGF-I and insulin receptor blocker, (10 μM; Sigma) for 24 h (Lee et al. 2005, Sutter et al. 2006). The diluent for AG1024 was dimethylsulfoxide (final concentration 0.1%). Control cultures received 0.1% dimethylsulfoxide only. The minimum concentration at which ceramide could inhibit IGF-I-induced proliferation in ATDC5 cells was examined using C2-ceramide concentrations between 10 and 40 μM at 5 μM intervals using serum-free medium.

Western blotting analysis

On day 6, ATDC5 cells were treated with C2-ceramide (25 μM) for 24 h in serum-free medium, and then either lysed immediately (control cultures received 0.1% ethanol only) or stimulated with IGF-I (100 ng/ml) for 10 min before lysis (control cultures received 0.1% ethanol and were not stimulated with IGF-I). Cells were then lysed in lysis buffer (150 mM NaCl; 10 mM Tris–HCl pH 7.4; 0.5% NP40; 1 mM sodium vanadate; 0.5 M EDTA; 0.1 M phenylmethylsulphonyl fluoride; 4 mg/l aprotinin). IRS-1 was immunoprecipitated by incubating cell lysates overnight at 4°C with 2 μg/ml anti-IRS-1 antibody and 10 μl aliquots were run on 3–8% Tris–Acetate gels (Invitrogen) and transferred onto a nitrocellulose membrane. The membranes were blocked as described above and probed for 1 h at room temperature with antiphosphotyrosine clone 4G10 and total Akt antibodies (Upstate, Lake Placid, New York, USA), raised in mouse and rabbit respectively. The blots were washed 4×15 min in TBST. The membranes were then incubated with anti-mouse IgG-peroxidase (Cell Signalling Technology) for 1 h (1:1000 dilution in 5% milk). The membranes were washed and developed as described above.

Organ culture

The middle three metatarsals were aseptically dissected from 19-day-old embryonic Swiss mice. Bones were cultured at 37 °C in a humidified atmosphere of 95% air/5% CO2 in 24 well plates. Each culture well contained 300 μl minimum essential medium (MEM) (Invitrogen) supplemented with 0.2% BSA, Fraction V (Sigma); 1 mmol/l β-glycerophosphate (Sigma); 0.05 mg/ml l-ascorbic acid phosphates (Wako Pure Chemicals Ltd, Neuss, North Rhine-Westphalia, Germany); 0.05 mg/ml gentamycin and 1:25 μg/ml fungizone (Invitrogen; Mushtaq et al. 2004). C2-ceramide was added at a final concentration of 40, 30, 20 and 10 μM for an 8-day period. Controls were treated with BSA described above, and developed using the electrogenerated chemiluminescent labeling (ECL)-plus Western Blotting Detection System (Amersham Biosciences).

Immunoprecipitation of IRS-1

ATDC5 cells were treated with C2-ceramide (25 μM) for 24 h in serum-free medium and stimulated with IGF-I (100 ng/ml) for 10 min (control cultures received 0.1% ethanol and were not stimulated with IGF-I). Cells were then lysed in lysis buffer (150 mM NaCl; 10 mM Tris–HCl pH 7.4; 0.5% NP40; 1 mM sodium vanadate; 0.5 M EDTA; 0.1 M phenylmethylsulphonyl fluoride; 4 mg/l aprotinin). IRS-1 was immunoprecipitated by incubating cell lysates overnight at 4°C with 2 μg/ml anti-IRS-1 antibody and 30 μl protein A-Sepharose beads. Protein bound to the beads was washed four times with lysis buffer, and 10 μl aliquots were run on 3–8% Tris–Acetate gels (Invitrogen) and transferred onto a nitrocellulose membrane. The membranes were blocked as described above and probed for 1 h at room temperature with antiphosphotyrosine clone 4G10 and total IRS-1 antibodies (Upstate, Lake Placid, New York, USA), raised in mouse and rabbit respectively. The blots were washed 4×15 min in TBST. The membranes were then incubated with anti-mouse IgG-peroxidase (Cell Signalling Technology) for 1 h (1:1000 dilution in 5% milk). The membranes were washed and developed as described above.

Table 1 Primer pairs used for semi-quantitative RT-PCR analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequence</th>
<th>Cycles</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S Forward</td>
<td>Unknown, purchased commercially from Ambion*</td>
<td>20</td>
<td>488</td>
</tr>
<tr>
<td>Collagen Type II Forward</td>
<td>5’ CACACTGTAAGGGGCAAGACC 3’</td>
<td>30</td>
<td>172</td>
</tr>
<tr>
<td>Collagen Type II Reverse</td>
<td>5’ GAGTTGTTTCAGGGATCTG 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sox 9 Forward</td>
<td>5’ ATCTGAAGAAGGAGAGCGAG 3’</td>
<td>35</td>
<td>583</td>
</tr>
<tr>
<td>Sox 9 Reverse</td>
<td>5’ TCAGGAGTCTCCAGAGCTTG 3’</td>
<td>35</td>
<td>263</td>
</tr>
</tbody>
</table>

*Ambion, Huntingdon, Cambs, UK.
carrier. In further studies, C2-ceramide was added at a final concentration of 40 μM for an 8-day period, in the presence of IGF-I (100 ng/ml). The minimum concentration at which ceramide could affect metatarsal growth was examined using C2-ceramide concentrations between 0 and 40 μM at 10 μM intervals. In all experiments, the medium was changed every second or third day. The experimental protocol was approved by Roslin Institute’s Animal Users Committee and the animals were maintained in accordance with Home Office guidelines for the care and use of laboratory animals.

Morphometric analysis

Digital images of the metatarsals were captured every second day of culture and viewed on a Nikon Eclipse TE3000 microscope (Nikon, Kingston upon Thames, Surrey, UK), using a digital camera (DS Camera Head DS-5M; Nikon). The total length of the bone through the centre of the mineralising zone was determined using image analysis software (DS Camera Control Unit DS-L1; Nikon). All results are expressed as a percentage change from harvesting length which was regarded as baseline.

Statistical analysis

All experiments were performed at least twice. General Linear Model analysis was used to assess the data. All data are expressed as the mean ± S.E.M. of six observations within each experiment. Statistical analysis was performed using Minitab 14 (State College, PA, USA). P<0·05 was considered to be significant.

Results

Proinflammatory cytokine exposure inhibits proliferation via a ceramide mechanism

TNF-α (10 ng/ml) treatment of the ATDC5 chondrocyte cell line significantly reduced cell proliferation compared with control cultures (Fig. 1; 93%; P<0·001). To determine whether this inhibition might be mediated via an A-SMase ceramide mechanism, we assayed the effects of the A-SMase inhibitor D609 in conjunction with TNF-α treatment. D609 (10 μg/ml) significantly increased proliferation over tenfold compared with cytokine treatment alone (Fig. 1; P<0·001), and in the absence of TNF-α (Fig. 1; 84%; P<0·001). These results suggest that TNF-α reduces proliferation through an A-SMase ceramide mechanism.

Characterisation of the effect of C2-ceramide on ATDC5 cells

In order to examine the effect of ceramide on cell growth, the relative contribution of altered cell proliferation, apoptosis or differentiation were assessed. In the ATDC5 cells, 40 μM C2-ceramide significantly reduced cell proliferation over a 24 h period (Fig. 2A). This was confirmed in further studies when thymidine uptake was corrected for protein content (Fig. 2B). Apoptosis was increased at both 40 and 25 μM C2-ceramide following exposure for 24 h (Fig. 2C). There was no significant alteration in C2-ceramide-induced mRNA expression of markers of chondrogenesis or differentiation (sox 9, collagen II and collagen X) at all concentrations studied (Fig. 3).

IGF-I studies

The IGF-I signalling pathway is the major autocrine/paracrine regulator of bone growth. Therefore, we undertook a series of studies to examine the effects of C2-ceramide on IGF-I-induced proliferation and bone growth. The lowest concentration of C2-ceramide that inhibited ATDC5 cell proliferation following 18 h serum deprivation was 25 μM in the presence of IGF-I (Fig. 4A). Cells exposed to C2-ceramide (25 μM) in the presence or absence of IGF-I for 24 h indicated that IGF-I alone significantly increased proliferation (Fig. 4B; P<0·001). In the presence of IGF-I, C2-ceramide induced a 68% reduction in proliferation (Fig. 4B; P<0·001). However, in the absence of IGF-I, ceramide induced a comparable 61% decrease (Fig. 4B; P<0·001).

To confirm that these effects are physiologically relevant, we tested the effects of C2-ceramide on bone growth using a fetal metatarsal model. The lowest concentration of C2-ceramide that significantly reduced fetal metatarsal growth was 40 μM in the presence of IGF-I (Fig. 5A). A 31% reduction in metatarsal growth was observed at 40 μM C2-ceramide both in the presence and absence of IGF-I (Fig. 5B; both P<0·001). In conclusion, C2-ceramide does not appear to inhibit exogenous IGF-I-induced growth plate chondrocyte proliferation or bone growth.

The effect of C2-ceramide on endogenous IGF-I-induced ATDC5 cell proliferation was examined (Fig. 4C). AG1024

Figure 1 Effect of TNF-α (10 ng/ml), D609 (10 μg/ml) and TNF-α + D609 on [3H] thymidine uptake (d.p.m.), mean ± S.E.M., n=6; *P<0·001 compared with control.

(10 μM) reduced proliferation by 28% compared with control cells ($P<0.001$). C2-ceramide (25 μM) significantly reduced proliferation compared with AG1024 treatment (55%, $P<0.001$). C2-ceramide and AG1024 in combination further reduced proliferation compared with C2-ceramide alone (46%; $P<0.01$). Therefore, C2-ceramide does not inhibit endogenous IGF-I-induced ATDC5 proliferation.

Cell signalling

The IGF-I-induced phosphorylation of IRS-1, Akt or P44/42 MAP kinase was not inhibited by 24 h C2-ceramide exposure (Fig. 6). Further, studies determined the direct effects of C2-ceramide on MAPK subfamilies, which are associated with cell survival and stress stimuli. The phospho-SAPK/JNK, phospho-p38 MAP kinase or P44/42 MAP kinase expression was not altered by 24 h C2-ceramide exposure (data not shown). Therefore, C2-ceramide does not inhibit signalling of the MAPK subfamilies or IGF-I in ATDC5 chondrogenic cells.

Discussion

Ceramide is an intracellular second messenger, whose signalling plays an important role in the regulation of cell proliferation, differentiation and survival (Kolesnick 2002, Ruvolo et al. 2002, Menaldino et al. 2003). This is the first study to demonstrate that C2-ceramide inhibits proliferation and induces apoptosis in growth plate chondrocytes. Ceramide has been shown to induce apoptosis in a wide range of different cell types, including pancreatic β-cells (Sjoholm 1995), cardiomyocytes (de Vries et al. 1997), astrocytes (Oh et al. 2006) and articular chondrocytes (Sabatini et al. 2000, Gilbert et al. 2004, 2006).

The partial attenuation of TNF-α-induced inhibition of proliferation by D609, an inhibitor of ceramide synthesis, suggests that ceramide may mediate the effects of pro-inflammatory cytokines in growth plate chondrocytes. An increase in proliferation was also observed in the presence of...
D609 in the control cells, without exogenous cytokines, suggesting that growth plate chondrocytes have an endogenous production of ceramide. Blocking this endogenous production may act as an internal regulator of proliferation.

Standardisation of $[^{3}H]$thymidine uptake to protein content (Phornphutkul et al. 2006) confirms that an actual reduction in proliferation was observed following ceramide exposure, rather than solely a reduced uptake due to fewer cells through increased apoptosis. Both TNF-α and IL-1β exposure have also been reported to inhibit proliferation and induce apoptosis in ATDC5 cells (MacRae et al. 2006b), and the results of this present study now suggest that ceramide may be acting as a second messenger in both processes. Both IL-1β and TNFα have also been shown to markedly reduce the gene expression of collagen II, collagen X and aggrecan (MacRae et al. 2006b), but in our present study ceramide did not alter the gene expression of markers of chondrogenesis and differentiation (sox 9, collagen II and collagen X). This suggests that ceramide generation does not affect differentiation in growth plate chondrocytes. Therefore, ceramide production may be just one of many different pathways through which the pro-inflammatory cytokines act.

Having established that C2-ceramide inhibits proliferation and induces apoptosis, we went on to demonstrate that these effects are not mediated through the inhibition of the IGF-I signalling pathway, which is the major autocrine/paracrine regulator of bone growth (Loveridge et al. 1990). Strle et al. (2004) demonstrated that ceramide inhibits IGF-I-induced protein synthesis and differentiation in myoblasts. However, it has also been reported that ceramide can inhibit myoblast growth and differentiation in the absence of exogenous IGF-I (Meadows et al. 2000, Strle et al. 2004). This apparent discrepancy is likely to be a consequence of experimental design, and in particular the presence or absence of serum and

Figure 4 Effect of (A) C2-ceramide (10, 15, 20, 25, 30, 35 and 40 μM); (B) C2-ceramide +/− IGF (100 ng/ml) and (C) C2-ceramide (25 μM), AG1024 (10 μM) and C2-ceramide + AG1024 on $[^{3}H]$ thymidine uptake (d.p.m.) in ATDC5 cells; mean ± S.E.M., n=6; *P<0.001 compared with control.

Figure 5 Effect of (A) C2-ceramide (10, 20, 30 and 40 μM) in the presence of IGF-I (100 ng/ml) and (B) C2-ceramide (40 μM)+/− IGF (100 ng/ml) on fetal metatarsal bone growth (percentage change in bone length from baseline percentage); mean ± 1 S.E.M., n=6; *P<0.001 compared with control.

In our experiments, the lowest concentration of C2-ceramide that inhibited ATDC5 cell proliferation following 18 h serum deprivation was 25 μM in the presence of IGF-I, compared with 40 μM under standard serum-containing culture conditions. This indicates that the ATDC5 cells are more susceptible to the actions of ceramide when serum deprived, and under stress.

C2-ceramide induced a comparable reduction in ATDC5 proliferation and fetal metatarsal growth both in the absence and presence of exogenous IGF-I. Furthermore, in the presence of AG1024, an IGF-I and insulin receptor blocker, ceramide was still able to inhibit proliferation. These data suggest that C2-ceramide is able to inhibit bone proliferation by mechanisms that are independent of IGF-I signalling, which are in agreement with the previous studies (Meadows et al. 2000, Strle et al. 2004).

Cell signalling studies confirmed that ceramide did not inhibit the IGF-I-induced phosphorylation of IRS-1, or the major downstream pathways of IRS-1; P44/42 MAP kinase and PI3 kinase (as determined by Akt phosphorylation). Previous studies have reported that ceramide inhibits IGF-I-induced IRS-1 phosphorylation in myoblasts (Strle et al. 2004) and inhibits insulin-induced IRS-1 phosphorylation in hepatic cells (Kanety et al. 1996). However, studies in other cell types, such as adipocytes (Summers et al. 1998) and motor neuron cells (Zhou et al. 1998) have shown that ceramide does not inhibit insulin-induced IRS-1 phosphorylation. Ceramide has been shown to inhibit IGF-I-induced Akt phosphorylation in myoblasts (Strle et al. 2004) and to inhibit insulin-induced Akt phosphorylation in adipocytes (Stratford et al. 2004) and motor neuron cells (Zhou et al. 1998). Therefore, the effects of ceramide on the IGF-I signalling pathway may depend on cell type, as well as whether stimulation is through insulin or IGF-I.

Involvement of MAPK subfamilies (P44/42 MAP kinase, c-JNK, and p38 kinase) in ceramide-induced apoptosis have been reported in various cell types, including astrocytes (Blazquez et al. 2000, Oh et al. 2006), neuronal cells (Verheij et al. 1996, Willaime et al. 2001, Willaime-Morawek et al. 2003), lung cancer-derived cells (Kurinna et al. 2004) and vascular smooth muscle cells (Loidl et al. 2004). The P44/42 MAP kinase pathway plays a major role in regulating cell growth, survival and differentiation. In contrast, JNK and p38 pathways are activated in response to chemical and environmental stress (Xia et al. 1995, Cobb 1999). However, our studies showed that in growth plate chondrocytes, whilst ceramide induced apoptosis, the phosphorylation of P44/42 MAP kinase, JNK and p38 kinase was not altered.

Our previous studies have shown that IGF-I plays a major role in promoting longitudinal growth in the mouse metatarsal model (Mushtaq et al. 2004). Furthermore, the growth inhibitory effect of dexamethasone was reversed in this model following exposure to IGF-I (Mushtaq et al. 2004). However, the growth inhibitory effects of TNF-α and IL-1β are only partially reversed following treatment with IGF-I (Martensson et al. 2004), suggesting that some of the effects of these proinflammatory cytokines may be IGF-I independent. Furthermore, recombinant human growth hormone therapy in children with growth retardation and chronic inflammatory disease may result in a rise in IGF-I and a cessation in further deterioration in growth (Davies et al. 1997, Bechtold et al. 2003).

However, the failure to observe a clear normalisation of growth may be explained by the possibility that the growth retardation in these children may be due to a combination of a defect in growth regulatory pathways that are IGF-I dependent and independent.

Acknowledgements

We are grateful to Miss Elaine Seawright for her contribution to the experiments. Novo Nordisk UK Ltd and the Biotechnology and Biological Sciences Research Council (BBSRC) generously supported this study. The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.
Ceramide effects on bone growth

References

MacRae VE, Farquharson C & Ahmed SF 2006a The pathophysiology of the growth plate in juvenile idiopathic arthritis. Rheumatology 45 11–19.

MacRae VE, Farquharson C & Ahmed SF 2006b The restricted potential for recovery of growth plate chondrogenesis and longitudinal bone growth following exposure to pro-inflammatory cytokines. Journal of Endocrinology 189 319–328.

V E MacRae and others · Ceramide effects on bone growth

www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 12/15/2018 06:49:55PM via free access
Ceramide effects on bone growth · V E Macrae and others

Received in final form 11 July 2006
Accepted 28 July 2006