Mutual regulation of vasopressin- and oxytocin-induced glucagon secretion in V1b vasopressin receptor knockout mice

Yoko Fujiwara, Masami Hiyoyama, Atsushi Sanbe, Junji Yamauchi, Gozoh Tsujimoto1 and Akito Tanoue

Abstract

[Arg8]-vasopressin (AVP) and oxytocin (OT) are neurohypophysial hormones which exert various actions, including the control of blood glucose, in some peripheral tissues. To investigate the type of receptors involved in AVP- and OT-induced glucagon secretion, we examined the effect of these peptides on glucagon secretion in islets of wild-type (V1bR+/+) and vasopressin V1b receptor knockout (V1bR−/−) mice. AVP-induced glucagon secretion was significantly inhibited by the selective V1b receptor antagonist, SSR149415 (30%), and OT-induced glucagon secretion by the specific OT receptor antagonist, d(CH2)5[Tyr(Me)2, Thr4, Tyr-NH2]OVT (CL-14-26) (45%), in islets of V1bR+/+ mice. AVP- and OT-induced glucagon secretions were not by the antagonist of each, but co-incubation with both 10^{-6} M SSR149415 and 10^{-6} M CL-14-26 further inhibited AVP- and OT-induced glucagon secretions in islets of V1bR+/+ mice (57 and 69% of the stimulation values respectively). In addition, both AVP and OT stimulated glucagon secretion with the same efficacy in V1bR−/− mice as in V1bR+/+ mice. AVP- and OT-induced glucagon secretion in V1bR−/− mice was significantly inhibited by CL-14-26. These results demonstrate that V1b receptors can mediate OT-induced glucagon secretion and OT receptors can mediate AVP-induced glucagon secretion in islets from V1bR+/+ mice in the presence of a heterologous antagonist, while AVP and OT can stimulate glucagon secretion through the OT receptors in V1bR−/− mice, suggesting that the other receptor can compensate when one receptor is absent. Journal of Endocrinology (2007) 192, 361–369

Introduction

Arginine-vasopressin (AVP) and oxytocin (OT) are neurohypophysial hormones synthesized in the paraventricular nucleus and supraoptic nucleus of the hypothalamus. AVP acts in many organs and plays a variety of physiological roles, such as vasoconstriction (Schier et al. 1993), glycogenolysis in the liver (Michell et al. 1979, Eugenin et al. 1998), adrenocorticotropin hormone (ACTH) release from the anterior pituitary (Gillies et al. 1982, Rivier et al. 1984, Hernando et al. 2001), and water reabsorption in the kidney (Nielsen et al. 1995, Eccelbarger et al. 2000). OT also plays crucial roles in uterine contraction (Fuchs et al. 1982, Goodwin et al. 1994) and milk ejection during lactation (Moos et al. 1989, Young et al. 1996). In addition to these physiological roles, AVP and OT are known to regulate the circulating blood glucose level by stimulating insulin and glucagon release (Dunning et al. 1984, Gao et al. 1990, 1991, 1992, Stock et al. 1990, Li et al. 1992, Gao & Henquin 1993, Abu-Basha et al. 2002).

AVP- and OT-induced pancreatic hormone secretion, such as insulin and glucagon, is evoked by the activation of AVP and OT receptors expressed in pancreatic islet cells. These AVP and OT receptors are seven transmembrane G-protein-coupled receptors and belong to the same family. This receptor family consists of the V1a, V1b, and V2 receptors and the OT receptor. Several studies have reported that the V1b and OT receptors are involved in insulin and glucagon secretion from a pancreatic cell line (Richardson et al. 1995, Yibchok-anun & Hsu 1998) or isolated islets (Oshikawa et al. 2004). While insulin secretion by AVP (Richardson et al. 1995, Oshikawa et al. 2004) and OT (Lee et al. 1995) has been shown to be induced via the V1b receptor, previous studies with subtype-nonselective vasopressin receptor antagonists suggested that both the V1b and the OT receptors were involved in glucagon secretion by stimulation with AVP and OT (Yibchok-anun & Hsu 1998, Yibchok-anun et al. 1999). Although both V1b and OT receptors are involved in the glucagon secretion, no one has analyzed this secretion when specific receptor is absent.

To elucidate the roles of the V1b receptor in glucagon secretion, we examined the mechanism of AVP- and OT-induced glucagon secretion using receptor-selective antagonists and V1b receptor knockout (V1bR−/−) mice (Tanoue et al. 2004), in which tissue expression of the V1b
receptor mRNA was undetectable (Oshikawa et al. 2004). First, we examined whether SSR149415, a recently developed V1b receptor-specific antagonist (Serradeil-Le Gal et al. 2002, Fohly et al. 2003, Oshikawa et al. 2004), inhibited AVP- and OT-induced glucagon secretion from primary cultured mouse islet cells. Next, we investigated the involvement of the OT receptor in AVP- and OT-induced glucagon secretion using d(CH3)2[Tyr(Me)]2, Thr4, Tyr-NH2)OVT (CL-14-26), an OT receptor-selective antagonist. Furthermore, we investigated glucagon secretion in V1bR−/− mice with the antagonists. We show here that both the V1b and the OT receptors fundamentally mediate AVP- and OT-induced glucagon secretion respectively, and that signaling pathways through the OT receptor can mediate and compensate AVP-induced glucagon secretion when the V1b receptor is completely abolished.

Materials and Methods

Materials

Fetal bovine serum (FBS) was from Thermo Trace (Melbourne, Australia). Hanks’ solution was from Nissui (Tokyo, Japan). AVP and OT were from the Peptide Institute (Osaka, Japan). [3H]AVP ([Arg8]-vasopressin, [phenylalan-3,4,5-3H(N)]; specific activity, 157 Ci/mmol) and [3H]OT (OT, [tyrosyl-2,6,8-3H]; specific activity, 480 Ci/mmol) were from Perkin–Elmer Life and Analytical Sciences (Boston, MA, USA). SSR149415, which was the specific antagonist for the V1b receptor, was donated by Sanofi-Synthelabo (Montpelier, France). d(CH3)2[Tyr(Me)]2, Thr4, Tyr-NH2)OVT (CL-14-26), which specifically antagonized the OT receptor (Elands et al. 1988, Kawamata et al. 2003), was a generous gift from Dr Maurice Manning (Medical College of Ohio). The RPMI 1640 medium, BSA, and diethylstilbestrol dipropionate (DES) were purchased from Sigma-Aldrich (Tokyo, Japan). Collagenase S-1 was purchased from Nitta (Osaka, Japan). Glucagon ELISA kits and all other chemicals were purchased from WAKO (Tokyo, Japan).

Animals

Male mice deficient in the V1b vasopressin receptor were generated by gene targeting as described previously (Tanoue et al. 2004). Briefly, by homologous recombination, we disrupted exon 1, which contains the translation initiation codon. The generated mutant mice were of a mixed genetic background of 129Sv and C57BL/6. For this study, wild-type (V1bR+/+) mice were used as controls and maintained on the 129Sv and C57BL/6 genetic background. All animals used in this study were 9–10 weeks old. Mice were housed in micro-isolator cages in a pathogen-free barrier facility (12 h light:12 h darkness cycle) with access to regular chow and water available ad libitum. All experiments followed the institutional guidelines.

Isolation of pancreatic islets and glucagon measurement

Mouse pancreatic islets were isolated from male mice by collagenase digestion followed by Ficoll gradient separation as described previously (Shibata et al. 1976, Oshikawa et al. 2004). Briefly, the mouse pancreas was injected with an aliquot of 3 ml Hanks’ medium containing 2 mg/ml collagenase S-1 through the choledoch duct by clamping one side of the duct to block the flow into the intestinal tract. Pancreata were collected from four to five mice, and incubated at 37 °C for 20 min. The reaction was stopped by the addition of ice-cold Hanks’ medium. The digested pancreata were washed with the same medium, filtrated through a Spectra-mesh (408 μm; Spectrum Laboratories, Inc., Ft. Lauderdale, FL, USA), and washed with the same medium. The samples were resuspended in 4 ml Ficoll (specific gravity, 1.22) and then overlaid twice with 2 ml Ficoll with specific gravities of 1.09 and 1.05. After centrifugation at 2000 g for 10 min, the islets were collected from the interface. The isolated islets were washed with an RPMI 1640 medium containing 10% FBS, 11 mM glucose, 50 U/ml penicillin, and 50 μg/ml streptomycin and pre-incubated for 2–3 h in the same medium at 37 °C in 5% CO2. Fifteen islets were used for one assay, and experiments including three or four assays in one dose were repeated four to five times. After sampling of the baseline, AVP or OT stimulation was performed at 37 °C for 10 min. Arginine (20 mM) was used as a positive control. Each antagonist was added 5 min before the stimulation with AVP or OT. After stimulation, the supernatant was taken up and the glucagon concentration was measured using the glucagon ELISA kit.

Ligand binding assay

Uterine tissues were isolated from female mice treated with DES (0.3 mg/kg body weight) i.p., 20 h before isolation. Uterine cells stably expressing mouse V1b receptor were prepared as described previously (Oshikawa et al. 2004). Saturation binding studies were performed to incubate 20 μg cell membrane and 50 μg uterine membrane preparations with various concentrations of [3H]AVP and [3H]OT (0–1–5.0 nm) in 250 μl assay buffer containing 50 mM Tris–HCl (pH 7.4), 10 mM MgCl2, and 0.05% BSA. For competition binding studies, 1 nM [3H]AVP and 2 nM [3H]OT were added to cell membrane and uterine membrane preparations respectively, and incubated with various concentrations of compounds in 250 μl assay buffer. The incubation condition in all binding studies was 1 h at room temperature. The reaction was stopped by an ice-cold wash buffer containing 50 mM Tris–HCl (pH 7.4) and 5 mM MgCl2, filtered onto UniFilter-96 GF/C using a FilterMate Cell Harvester (Perkin–Elmer Life Science and Analytical Sciences).
The filters were rinsed five times, and the radioactivity was measured using a TopCount Microplate Scintillation Counter (Perkin–Elmer Life Science and Analytical Sciences). Non-specific binding was determined using 1 μM unlabeled AVP and OT. Specific binding was calculated as the difference between total and nonspecific counts. The inhibitory \(K_i \) values \((K_i) \) were calculated using the following formula (Cheng & Prusoff 1973): \(K_i = IC_{50} \left(1 + [L]/K_D\right) \), where \(IC_{50} \) is the concentration of the test compound that caused 50% inhibition of specific binding, \([L]\) is the concentration of the radioligand present in the assay, and \(K_D \) is the \(K_D \) of the radioligand obtained from Scatchard plotting. The binding data were analyzed by the iterative nonlinear regression program, LIGAND (Munson & Rodbard 1980).

Statistical analysis

Data are expressed as means±standard error (S.E.M.). Statistical analysis was performed using the unpaired Student’s \(t \)-test and the one- or two-way ANOVA followed by a post hoc comparison with Fisher’s probable least-squares differences (PLSD) test using Statview version 5.0 software (Concepts, Inc., Berkeley, CA, USA). Differences between groups were considered statistically significant at the level of \(P<0.05 \).

Results

AVP- and OT-induced glucagon secretion from the islets of \(V1bR^{+/+} \) mice

AVP increased glucagon secretion from the islets of \(V1bR^{+/+} \) mice in a dose-dependent manner (Fig. 1A). AVP-induced glucagon secretion in \(V1bR^{+/+} \) mice was five times the value at the baseline after stimulation of \(10^{-8} \) M, which was a sufficient concentration to release glucagon under the conditions of this experiment (glucagon secretion at \(10^{-8} \) vs \(10^{-7} \) M of AVP, \(P<0.05 \)). The basal glucagon concentration was \(355.1±59.4 \) pg/ml in AVP-stimulation experiments. OT-induced glucagon secretion was six times that at the baseline at \(10^{-7} \) M, which was a sufficient concentration to release glucagon in \(V1bR^{+/+} \) mice (the glucagon secretion at \(10^{-8} \) vs \(10^{-7} \) M AVP, \(P<0.01 \); Fig. 1B).

Table 1 The receptor affinity of AVP, OT, and compounds for the \(V1b \) and the OT receptors (OTR)

<table>
<thead>
<tr>
<th>(K_i) (nM)</th>
<th>(V1b)</th>
<th>OTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVP 2.4</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>OT ND</td>
<td>55±8.1</td>
<td>83±6.1</td>
</tr>
<tr>
<td>CL-14-26 7800</td>
<td>6.1</td>
<td></td>
</tr>
</tbody>
</table>

ND, not determined.
Figure 2 Effects of the antagonist for the V1b and the OT receptors in V1bR+/+ mice. AVP-induced glucagon secretion treated with (A) SSR149415 or both SSR149415 and CL-14-26 and (B) CL-14-26. (C) OT-induced glucagon secretion treated with CL-14-26 or both SSR149415 and CL-14-26. The experiments, which included two or three assays (15 islets for each assay), were repeated five times, and the mean values and S.E.M. were calculated. B, baseline; V, vehicle; SSR, SSR149415; CL, CL-14-26; S, 10^{-6} M SSR149415; SC, co-treatment at 10^{-6} M with SSR149415 and CL-14-26. *P<0.05, †P<0.01, and ‡P<0.001 versus vehicle treatment by a one-way ANOVA post hoc comparison with Fisher’s PLSD.
glucagon concentration was 386.7 ± 47.4 pg/μl in OT-stimulation experiments. Glucagon secretion by arginine stimulation in this experiment was approximately four times that at the baseline and lower than that by AVP or OT stimulation (Fig. 1).

Analysis of AVP- and OT-induced glucagon secretion with receptor-selective antagonists in V1bR+/- mice

Antagonists were used to identify the receptors involved in glucagon secretion from the islets of V1bR+/+ mice. We selected and used SSR149415 as a V1b receptor-specific antagonist that was used in a previous experiment (Oshikawa et al. 2004). In this study, we examined the specificity of antagonist that was used in a previous experiment (Oshikawa et al. 2004). In this study, we examined the specificity of SSR149415 and CL-14-26 (one-way ANOVA; $P=0.52$ in AVP stimulation, $P=0.33$ in OT stimulation). These results suggested that AVP could stimulate glucagon secretion via the OT receptors, when the V1b receptor was blocked by SSR149415; and that OT could also stimulate it via the V1b receptors, when the OT receptor was blocked by CL-14-26.

AVP- and OT-induced glucagon secretion from the islets of V1bR−/− mice

We examined AVP- and OT-induced glucagon secretion from the islets of V1bR−/− mice (Fig. 3). Not only OT but also AVP was able to stimulate glucagon secretion in V1bR−/− mice in a dose-dependent manner, as observed in V1bR+/+ mice (Fig. 3A and B). In V1bR−/− mice, AVP- and OT-induced glucagon secretion was about six times that at the baseline at 10$^{-7}$ M, which was a sufficient concentration to release glucagon under the conditions of this experiment (glucagon secretion at 10$^{-8}$ vs 10$^{-7}$ M AVP, $P<0.05$; glucagon secretion at 10$^{-8}$ vs 10$^{-7}$ M OT, $P<0.01$). The basal glucagon concentrations were 340.8 ± 52.7 and 339.5 ± 20.8 pg/μl in AVP- and OT-stimulation experiments respectively. There were no significant differences in AVP- and OT-induced glucagon secretion between V1bR+/+ and V1bR−/− mice (V1bR+/+ mice versus V1bR−/− mice; $P=0.85$ for AVP-stimulation experiments, and $P=0.81$ for OT-stimulation experiments by two-way ANOVA). Glucagon secretion by arginine stimulation in this experiment was approximately four times that at the baseline and lower than that by AVP or OT stimulation, similar to the observation in V1bR+/+ mice (Fig. 3). These findings suggested that AVP could stimulate glucagon secretion via a receptor(s) other than the V1b receptor in V1bR−/− mice as potently as OT could.

Next, we examined glucagon secretion with antagonists to elucidate the receptors involved in AVP-induced glucagon secretion in V1bR−/− mice. While 10$^{-6}$ M SSR149415 could not suppress AVP- or OT-induced glucagon secretion, CL-14-26 could significantly inhibit AVP- and OT-induced glucagon secretion (Fig. 4). In particular, CL-14-26 could almost completely inhibit AVP-induced glucagon secretion at a concentration of 10$^{-6}$ M in V1bR−/− mice, whereas it did not significantly antagonize AVP-induced glucagon secretion in V1bR+/+ mice. There were no significant differences between the basal level and either AVP or OT stimulation in combination with CL-14-26 in V1bR−/− mice (one-way ANOVA; $P=0.50$ in AVP stimulation, $P=0.12$ in OT stimulation). This suggested that AVP and OT stimulate glucagon secretion through the OT receptor in V1bR−/− mice, in which a signaling pathway of the OT receptors could achieve optimal efficacy by stimulation of even OT and AVP.

We conducted further experiments to reveal the response to co-stimulation of AVP and OT in V1bR+/+ and V1bR−/− mice. In V1bR+/+ mice, glucagon secretion by co-stimulation was higher than single stimulation of AVP.
Figure 3 AVP- and OT-induced glucagon secretion from the islets of V1bR−/− mice. (A) AVP-induced glucagon secretion. (B) OT-induced glucagon secretion. The experiments, which included two or three assays (15 islets for each assay), were repeated four times, and the mean values and S.E.M. were calculated. B, baseline; Arg, 20 mM arginine. *P<0.05 and †P<0.001 versus baseline in each stimulation by a one-way ANOVA post hoc comparison with Fisher’s PLSD.

Figure 4 Effect of CL-14-26 treatment on AVP- or OT-induced glucagon secretion in V1bR−/− mice. (A) AVP-induced and (B) OT-induced glucagon secretion treated with CL-14-26 or SSR149415. The experiments, which included two or three assays (15 islets for each assay), were repeated five times, and the mean values and S.E.M. were calculated. B, baseline; V, vehicle; CL, CL-14-26; S, 10^{-6} M SSR149415. *P<0.05, †P<0.01, and ‡P<0.001 versus vehicle treatment by a one-way ANOVA post hoc comparison with Fisher’s PLSD.
or OT, and the level was 10–12 times the value at the baseline. On the other hand, in V1bR−/− mice, glucagon secretion was not changed, even by co-stimulation of AVP and OT (Fig. 5). These findings indicated that the effect of simultaneous stimulation of both AVP and OT was additive in V1bR+/+ mice but not in V1bR−/− mice, suggesting that AVP and OT secreted glucagon through a single pathway, i.e. the OT receptor-mediating pathway, in V1bR−/− mice.

Discussion

Our study shows that AVP and OT sufficiently stimulate glucagon secretion from mouse islets, as observed in previous reports (Dunning et al. 1984, Gao et al. 1991, 1992). As reported in the rat (Yibchok-anun et al. 1999), AVP- and OT-induced glucagon secretion was significantly inhibited by treatment with the V1b receptor and OT receptor antagonists respectively, suggesting that AVP and OT stimulate glucagon secretion via the V1b and the OT receptors respectively, in V1bR+/+ mice. However, AVP-induced glucagon secretion was not completely inhibited by 10−6 M SSR149415, and co-administration of SSR149415 and CL-14-26 further inhibited AVP-induced glucagon secretion, suggesting that the OT receptors could be involved in the mediation of AVP-induced glucagon secretion. Similarly, OT-induced glucagon secretion was not completely inhibited by 10−6 M CL-14-26 but was further inhibited by the co-administration of SSR149415 and CL-14-26, suggesting that the V1b receptors could also mediate OT-induced glucagon secretion. These observations suggested cross-reactivity between AVP and OT in releasing glucagon from the mouse islets. Since V1a and V2 receptors, the other vasopressin receptor subtypes, do not exist in isolated islets (Oshikawa et al. 2004), this cross-reactivity refers to the event involving V1b and OT receptors. Such cross-reactivity among the receptor family for AVP and OT has been reported in several tissues. For example, OT stimulated ACTH release at the nanomolar order via the V1b receptor in primary cultured cells of the rat anterior pituitary (Schlosser et al. 1994), although OT had more than 300-fold higher affinity with the OT receptor than the V1b receptor. In other cases, the AVP acts on the OT receptor to induce the uterine contraction of nonpregnant and pregnant myometrium in mice and humans (Bossmar et al. 1994, Akerlund et al. 1999, Kawamata et al. 2003). Therefore, there could also be a cross-reactivity between AVP and OT in the mouse islets. In contrast to the case of glucagon secretion, AVP could not stimulate insulin release from the islets of V1bR−/− mice, suggesting that the V1b receptor could be essential for AVP-induced insulin secretion from the mouse islets and that receptors other than the V1b receptor could not mediate AVP-induced insulin secretion (Oshikawa et al. 2004).

The analysis of V1bR−/− mice has revealed that AVP could sufficiently stimulate glucagon secretion under the V1b receptor-deficient condition, since AVP stimulated glucagon secretion as potently in V1bR−/− mice as in V1bR+/+ mice. AVP-induced glucagon secretion in V1bR−/− mice was inhibited by the OT receptor antagonist but hardly affected AVP-induced glucagon secretion in V1bR+/+ mice. These findings indicated that AVP-induced glucagon secretion via the OT receptors could be activated in V1bR−/− mice. Thus, our study implicated that there was a cross-reactivity of AVP to the OT receptor on releasing glucagon and that switching from the V1b to the OT receptors would take place under the V1b receptor-deficient condition. This is the first time that the existence of a compensating system between the V1b and the OT receptors has been revealed. On the other hand, OT has been reported to stimulate glucagon secretion via the V1b receptor in In-R1-G9, a hamster clonal α cell line (Yibchok-anun & Hsu 1998). Because this cell line has low affinity for OT (Folny et al. 2001), the events involving V1b and OT receptors have been revealed. In any case, the AVP and OT systems are involved in the control of glucagon secretion in the mouse islets.
OT-induced glucagon secretion could be activated in this cell line. Thus, it is likely that the compensating mechanisms between the V1b and the OT receptors could be interchangeable and that AVP and OT could have different efficacy to the V1b and the OT receptors depending on their population and predominance.

In conclusion, our studies with mutant mice and receptor-selective antagonists clearly demonstrate that AVP and OT may induce glucagon secretion through a dual pathway, which is mediated by either the V1b and OT receptors or the OT receptor in the case of V1b receptor deficiency. The plasma concentration of AVP and OT is approximately \(10^{-12} \) M in humans (Baylis et al. 1981, Volpi et al. 1998). Since \(10^{-9} \)–\(10^{-7} \) M AVP and OT was used in the present study, it is unlikely that glucagon secretion occurred via the V1b and OT receptor stimulation under normal conditions. However, when diseases such as severe septic shock and congestive heart failure occur, it is known that the plasma AVP level increases approximately \(10^{-11} \)–\(10^{-9} \) M (Riegger et al. 1982, Lodha et al. 2006). In addition, i.v. injections of AVP and OT induce glucagon secretion in humans (Spruce et al. 1985). Thus, the cross-reactivity of V1b and OT receptors may be physiologically relevant in some severe disease cases. Our results suggest that it is necessary to consider the possibility that a substitution by other receptors of the same family is caused by the regulation of one receptor. The selective drugs targeting these two receptors could control glucagon secretion, contributing to the regulation of the blood glucose level as novel therapeutic agents.

Acknowledgements

We thank Dr M Manning for providing CL-14–26.

Funding

This work was supported by research grants from The Japan Health Sciences, the NOVARATIS Foundation, and the Takeda Science Foundation and was supported in part by a research grant from the Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government. The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

References

Cheng Y & Prusoff WH 1973 Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochemical Pharmacology 22 3099–3108.

AVP- and oxytocin-induced glucagon secretion · Y Fujiwara and others 369

Received in final form 13 November 2006
Accepted 15 November 2006
Made available online as an Accepted Preprint 15 November 2006