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Abstract
The obese cat is a model for the study of the progression

toward type 2 diabetes. In this study, the impact of obesity on

the hypothalamic–pituitary–thyroid axis was examined in 21

domestic shorthair cats before and after the development of

obesity, which significantly increased body mass index (BMI),

% body fat (BF), and girth (P!0.0001 for all). Serum total

thyroxine (TT4), tri-iodothyronine, free T4 (FT4) by direct

dialysis, nonesterified fatty acids (NEFA), and leptin were

measured, and FT4 fraction (FFT4) was calculated. Serum

thyrotropin (TSH) concentrations were measured in nine

animals by validating a heterologous canine TSH assay with

recombinant feline TSH as a standard. FT4, FFT4, NEFAs,

and leptin were significantly higher in obese cats. FT4 had the

strongest positive correlation with obesity indices BF, BMI,
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girth, NEFA, and leptin. Fatty acids oleate and palmitate were

shown to inhibit T4 binding to pooled cat serum in vitro,

suggesting the possibility that this mechanism was also

relevant in vivo. Serum TT4 and TSH did not rise significantly.

The implications for thyroid hormone (TH) action are not

yet clear, but fatty acids have been proposed to inhibit the

cellular uptake of TH and/or pituitary TH receptor binding,

leading to TH resistance. Increased leptin may also alter

sensitivity to negative feedback of TH. In conclusion, feline

obesity is associated with a significant increase in FT4 within

the normal range; future investigation into the cellular thyroid

status will be necessary to establish cause and effect in this

obesity model.
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Introduction

Cats are one of the few model species of human type 2

diabetes in which the progression towards the diabetic state

can be studied longitudinally. They are the only non-primate

species to develop b-cell deposits of the hallmark b-cell

protein of human type 2 diabetes mellitus, amyloid (Hoenig

et al. 2000). Thyroid hormones (THs) are involved in the

regulation of metabolism, and regulate resting metabolic rate,

thermogenesis, and lipolysis (Oppenheimer et al. 1991, Silva

1995). However, studies of thyroid function in obese people

have produced inconsistent results. Obesity has resulted in

either no changes in thyroid-stimulating hormone (TSH) or

TH concentrations in the hands of some investigators (Glass &

Kushner 1996, Roti et al. 2000), a moderate rise in total and

free tri-iodothyronine (T3) and TSH serum concentrations

(Bray et al. 1976, Matzen et al. 1989, Stichel et al. 2000,

Reinehr & Andler 2002), or an increase in total thyroxine

(TT4) and TSH (Iacobellis et al. 2005). A study of over 6000

human patients established a positive correlation between

body mass index (BMI) and serum TSH concentrations

(Nyrnes et al. 2006). Some studies are confounded by an

underlying incidence of overt or subclinical hypothyroidism,

as reflected by the observation of a low free T4 (FT4) and high
TSH concentration (Knudsen et al. 2005), or low total T3

(TT3) and TT4 with increased TSH and thyroid volume,

suggesting a primary disruption of TH synthesis (Sari et al.

2003). A progressive increase in serum T3 concentration and a

concomitant fall in reverse T3 concentration have also been

observed (Davidson & Chopra 1979).

Clinical studies of spontaneous obesity in dogs have resulted

in similar discrepancies: in a case study of 31 obese canine

patients, 58% had results consistent with overt or equivocal

primary hypothyroidism (Martin et al. 2006). In another study,

serum TT4 and T3 concentrations were higher but only T3

decreased with food restriction (Daminet et al. 2003).

It has been suggested that the cause of the increased serum

TH concentrations together with an increase in TSH might

be caused by hypothalamic–pituitary–TH resistance (Edupu-

ganti et al. 1997). Supporting this hypothesis is the

observation that T3 receptors are decreased in obesity and

the negative feedback of circulating THs on TSH is decreased

(Burman et al. 1980). Several studies have tried to establish a

link between TH and leptin on energy expenditure; however,

others have shown that the action of leptin was not dependent

on the presence of TH (Vettor 2005).

Despite the varietyof prior studies, none have ascertained the

mechanism of the increase in free and/or total TH
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concentrations in obesity. Most studies in man have been in

spontaneously obese patients and interpretation has been

complicated by the uncertainty of the underlying incidence of

subclinical hypothyroidism. Cats are not prone to the

development of spontaneous adult onset hypothyroidism to

the extent of man or dog, having only a small incidence of

congenital disease (Tobias & Labato 2001). We have previously

shown that obese cats have decreased heat production and

changes in fat metabolism (Hoenig et al. 2007a,b), raising the

possibility that alterations in fat mass may impact hypothalamic–

pituitary–thyroid axis function as well as calorigenesis. There-

fore, in this study, we sought to study lean euthyroid cats before

and again after the development of stable obesity to identify

potential effects on the hypothalamic–pituitary–thyroid axis.
Materials and Methods

Animals

Twenty-one adult (aged 1–2 years) neutered purpose-bred

female cats (Sinclair, Columbia, MO, USA and Harlan Sprague–

Dawley, Madison, WI, USA) were used. All cats were

maintained at the University of Georgia College of Veterinary

Medicine Animal Care Facility, using standard colony

conditions. Cats were housed separately in cages and were

provided unlimited access to water. Animal studies were

approved by the University of Georgia Animal Care and Use

Committee and conducted in accordance with the guidelines

established by the Animal Welfare Act and the National

Institutes of Health. It was determined that the cats were

healthyon the basis of results of physical examination and clinical

laboratory tests. All catswere used to being handled daily. All cats

were fed a commercially available diet (Iams Ocean Fish and

Rice, Dayton, OH, USA) once daily and food intake was

recorded at each feeding. Their weight was monitored weekly.

BMI and % fat mass were measured as described (Hoenig et al.

2003) at the beginning of the study and after the cats had gained

w40% of fat mass. At both time points, blood was drawn,

allowed to clot, and serum was collected after centrifugation at

500 g for 10 min.The serumwas stored atK20 8Cuntil assayed.
TH and NEFA assays

Serum TT4 and TT3 were measured by previously described

and validated procedures using in-house RIAs with commer-

cially prepared antibodies (Endocrine Sciences, Tarzana, CA,

USA) as described previously (Peterson et al. 1983, Ferguson

& Peterson 1992). Free T4 (FT4) concentrations were

measured by direct dialysis using the Nichols Institute (San

Juan Capistrano, CA, USA) kit. Leptin was measured using

the Linco multi-species leptin ELISA as validated for cats

(Hoenig et al. 2003). Nonesterified fatty acids (NEFAs) were

measured using an enzymatic test kit (Wako Diagnostic,

Richmond, PA, USA). In the cats, the FT4 fraction expressed
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as a percentage was calculated as: % FT4ZFT4 concentration

(pmol/l)/TT4 concentration (nmol/l) !10.

Although each animal served as its own control, for

purposes of comparison, the normal ranges for hormonal

analytes as determined by values 2S.D. above and below the

mean in 30 lean cats in our research colony were: TT4 (12–

29 nmol/l), TT3 (0.06–1.1 nmol/l), FT4 (15–40 pmol/l),

and FT4 fraction (FFT4) (0.05–0.23%). The values demon-

strated a parametric distribution.
Serum TSH immunoassay

The commercial canine TSH immunoassay (Immulite Canine

TSH, Diagnostic Products Corporation Inc., (DPC) Los

Angeles, CA, USA) was standardized for feline TSH using a

standard curve of purified recombinant feline TSH prepared as

described by Rayalam et al. (2006a,b). In brief, the protein

concentration of the purified recombinant feline TSH

(rfsTSH) standard was determined by bicinchoninic acid

protein assay using bovine TSH as a protein standard. Purity of

the recombinant hormone was established by densitometric

analysis of a silver-stained PAGE. For rfTSH preparations in

which this gravimetric analysis was performed in parallel with

measurement in this commercial canine TSH assay, rfTSH was

detected with 34.0G6.2% (meanGS.D.) efficiency. We noted

that recombinant canine TSH prepared, expressed, and

purified with the same techniques was detected with 73.6%

efficiency. The rfTSH standards diluted in the serum ‘blank’

provided in the commercial assay showed linearity with the

provided canine TSH standards (RZ0.999) with an intercept

indistinguishable from zero. Using this standardized assay,

serum TSH concentrations were determined in nine animals

during the lean and obese state. To facilitate comparison with

other studies using this canine TSH assay to measure feline

TSH, the values directly derived from the canine standard

curve (i.e. uncorrected for efficiency of detection of rfTSH)

were reported. For comparison, one laboratory has reported

immunoreactive TSH in normal cats as measured in the DPC

canine TSH assay to be 0.03–0.11 ng/ml with a detection limit

of 0.03 ng/ml and a median of 0.05 ng/ml (Moore et al. 2004).
FT4 fraction by tracer equilibrium dialysis: effect of added NEFAs

To directly evaluate the effect of specific NEFAs on serum

binding of T4, a tracer dialysis procedure was used as

described for dog serum (Ferguson & Peterson 1992). In

brief, customized Plexiglas chambers with dialysand and

dialysate chamber volumes of 1 ml were used. High specific

activity 125I-T4 was purchased from Perkin–Elmer (Wellesley,

MA, USA) and added to a 5% solution of BSA and pre-

dialyzed against 0.15 M NaH2PO4, pH 7.4, overnight to

remove iodide. Pooled normal cat serum was used for these

in vitro studies and was assayed to have 0.159 mEq/l non-

esterified fatty acids. Stock solutions of sodium oleate and

sodium palmitate (Sigma Chemical Co.) were prepared in 1%

BSA solution at 300 mEq/l and, by dilution, to 100, 60, 30,
www.endocrinology-journals.org
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and 10 mEq/l. Sera with added NEFAs were prepared by a

1:100 dilution of the stock, resulting in final concentrations of

0.159, 0.259, 0.459, 0.759, 1.159, and 3.159 mEq/l, and

allowed to pre-incubate 30 min at room temperature. Ten

microliters of the pre-dialyzed tracer (0.1–0.2 mCi) were then

added to the serum and incubated for 30 min at room

temperature. One milliliter of serum and of the dialysis buffer

was added to each side of the chamber, sealed, and allowed to

dialyze for 16–24 h. The dialysate buffer was then subject to

magnesium precipitation to remove residual iodide in the

dialysate and FT4 fraction calculated as described previously

(Ferguson & Peterson 1992).
Statistical analysis

All data were analyzed using computer software (Prism

software, GraphPad Software Inc, San Diego, CA, USA). The

data are expressed as meansGS.D. unless otherwise stated. The

significance of differences of means was evaluated by paired

t-test. Values of P!0.05 were considered significant.
Results

Body weight, fat mass, girth, and BMI were significantly

higher between the lean and obese state (Table 1). Leptin

increased from 327G17 to 482G48 (pmol/l; P!0.004), as

did NEFAs. They were 0.33G0.04 mEq/l in the lean state

and 0.49G0.05 mEq/l in the obese state (P!0.002).

TT4, TT3, and FT4 concentrations, and % FFT4 are shown

in Fig. 1A–D. Although TT4 trended to be higher in obese

than lean cats (P!0.08), this was not significant. TT3 also did

not change significantly with an increase in fat mass; however,

FT4 was significantly higher in obese than lean cats

(P!0.0001), as was FFT4 (P!0.004). FT4 correlated

positively and significantly with all indices of obesity (body

weight, P!0.002; % body fat (BF), P!0.0001, Fig. 2A;

girth, P!0.0001; and BMI, P!0.02). FT4 also correlated

positively with NEFA (P!0.025, Fig. 2B) and leptin

(P!0.04). TT4 correlated positively and significantly with

all indices of obesity (body weight, P!0.001; % fat, P!0.02;

girth, P!0.003; and BMI, P!0.03), as well as with leptin

(P!0.002) but not with NEFA. TT3 correlated positively

with weight (P!0.004), girth (P!0.013), and BMI

(P!0.04). FFT4 correlated significantly and linearly with

NEFA concentration (Fig. 2C; P!0.002).
Table 1 Body weight (kg), body fat (%), girth (m), and body mass index
becoming obese (obese). Variances are S.D.

Body weight (kg) Body fat (%)

Lean 4.2G0.5 23.6G6.2
Obese 5.0G0.7† 36.8G5.9†

Significance when compared in paired analysis with same parameter in the lean

www.endocrinology-journals.org
Mean (GS.D.) TSH concentration (ng/ml) measured in

nine cats during the lean state was 0.038G0.016 ng/ml, and

in the obese state was 0.048G0.024 ng/ml, an insignificant

rise. All samples were above the lower limit of detection of

0.01 ng/ml against the canine TSH standard.

When specific NEFAs were examined for effects of

displacing tracer T4 from pooled cat serum, oleate and

palmitate increased FFT4 at a concentration above 1 mEq/l

(Fig. 3). This in vitro effect appears to confirm a direct

inhibitory effect of common circulating NEFAs on T4

binding to cat serum proteins, an effect seen at NEFA

concentrations observed in obese cats, and one which would

account in significant part for the elevations in FT4

concentrations by direct dialysis seen in obese patients.
Discussion

The observation of an increase in FT4 in cats developing

obesity is similar to those reported in a recent study of obese

women. Serum concentrations of TSH, T4, T3, and FT4 were

observed to be elevated (Kozlowska & Rosolowska-Huszcz

2004). This study did not see the FFT4 fall during weight loss

and attributed it to potentially increased non-esterified fatty

acids, although they were not measured, nor was FT4

measured by a dialysis procedure. However, while multiple

studies have demonstrated a positive correlation between

TSH and BMI, they generally have noted a negative

association between BMI and FT4 concentrations, albeit

with changes within normal range. It should be noted that

non-dialysis techniques were used to estimate FT4 concen-

tration (Knudsen et al. 2005).

Our studies of developing obesity in cats suggest that a

primary alteration in thyroid function is an alteration of FFT4

induced by the increase in NEFAs, and that this effect can be

mimicked in pooled cat serum by the addition of the exogenous

NEFAs oleic or palmitic acid. It is possible that a larger sample

size might have demonstrated a significant increase in TT4 and

TT3, and it is notable that both correlated significantly with the

obesity indices of weight, girth, and BMI, and TT4 also

correlated with BF and leptin. The lack of significant changes in

TT3 or TT4 is inconsistent with studies in man, which have

generally shown an increase in T3 production and rT3

degradation rates, with no change in net T4 production or

degradation, suggesting an increase in the Type I 50-deiodinase

(D1) enzyme activity (Roti et al. 2000). Studies in the dog
(kg/m2) in 21 neutered female adult cats before (lean) and after

Girth (m) Body mass index (kg/m2)

0.37G0.04 44.3G6.2
0.43G0.01* 54.7G7.1†

state *P!0.004, †P!0.0001.
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showed an increase in T3, but no change in reverse T3

concentrations (Daminet et al.2003).Conversely, the Type II 50-

deiodinase (D2) was shown to be decreased in white adipose

tissue of obese human patients (Nauman et al. 1990).

Establishing cause and effect for the observed changes is

difficult with this study alone. However, it should be noted

that the tightest correlations to FT4 were with % BF and

between FFT4 and NEFAs (Fig. 2). Furthermore, the changes

in the calculated FFT4 in vivo are made more plausible by the

in vitro evidence that NEFAs can increase FFT4 at

concentration ranges achieved during obesity.

TSH is a very sensitive marker of altered thyroid status in

man with exponential increases or decreases with linear

changes in FT4 concentrations. If the change in plasma NEFA

concentration was the initial and sole effect, one would

predict that FT4 would be transiently increased, TSH would

suppress transiently, and then TT4 would fall, until FT4

normalized. However, to explain the results, it is necessary to

postulate that there is a concomitant change in the sensitivity

of the hypothalamus and/or pituitary to negative feedback. In

cats progressing to the obese state, FT4 remained elevated,

TT4 was unchanged (with a trend toward elevation, not

depression), and TSH did not change, and in no case in which

it was measured, was it undetectable as is observed in

spontaneous hyperthyroidism. Measurement of serum TSH

in additional cats might have uncovered a significant change

in TSH, but TSH measurements were not initially planned

because recombinant feline TSH was not yet available to

standardize the canine assay.

We propose that obesity induces a relative state of TH

resistance, either caused by the effect of leptin or by the effect

of increased NEFA concentrations, or both. The diagnostic

criterion for TH resistance is an elevated FT4 with a normal

or elevated TSH concentration, and we believe that these

observations are consistent with this criterion (Brucker-Davis

et al. 1995, Larsen & Davies 2003). Most often when TSH

and TH concentrations are elevated in obese human subjects,

they are still within the normal range (Reinehr & Andler

2002, Michalaki et al. 2006, Nyrnes et al. 2006).

Accurate measurement of TSH is critical to the accurate

interpretation of the physiological significance of the

increased FT4 concentrations in obesity. This is the first

report of the use of a commercially available canine TSH assay

to measure serum feline TSH with documentation of

detection efficiency of a feline TSH standard of known

gravimetric purity. It is apparent that detection of feline TSH

by the Immulite canine TSH assay is less complete (46%) than

that observed with recombinant canine TSH. We would note

that the predicted normal range for this small sample of lean
Figure 1 Serum concentrations of total T4 (A), total T3 (B), direct
dialysis free T4 (FT4; C), and calculated free fraction of T4 (FFT4; D)
in 21 cats before (lean) and after becoming obese (obese). Error bars
are S.D. Values with the same superscript letter differ significantly.
Significance when compared in paired analysis with same
parameter in the lean state: **P!0.0001, *P!0.004.
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Figure 2 (A) Correlation between FT4 (pM) and body fat (%) in 21
neutered female adult cats before and after becoming obese (r 2Z
0.38, P!0.0001). (B) Correlation between FT4 (pM) and nonester-
ified fatty acids (mEq/l) in 21 neutered female adult cats before and
after becoming obese (r2Z0.11, P!0.03). (C) Correlation between
FFT4 (%) and nonesterified fatty acids (mEq/l) in 21 neutered female
adult cats before and after becoming obese (r 2Z0.22, P!0.03).

Figure 3 Effect of added oleic and palmitic acids on the
displacement of 125I-T4 from pooled cat serum as reflected by the
free T4 fraction (%) determined by equilibrium dialysis in vitro. Points
represent the average three replicate dialyses per concentration.
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cats would predict a normal range with 95% confidence limits

for TSH of 0.01–0.21 ng/ml, much closer to those observed

in the normal dog (!0.5 ng/ml) or human (0.02–

0.32 ng/ml, assuming 0.08 ng/microunit bioactivity (Nyrnes
www.endocrinology-journals.org
et al. 2006). Higher concentrations would be more consistent

with the concentration range observed for the IC50s for

bovine TSH displacement of 125I-bovine TSH from the feline

TSH receptor (0.19 nmol/l or 5.5 ng/ml; Nguyen et al.

2002) and for recombinant feline TSH stimulation of

adenylate cyclase in cells expressing the human TSH receptor

(10.7 vs 4.9 ng/ml for bovine TSH; Rayalam et al. (2006a,b).

Thecurrent study is the first to identify a relationshipbetween

the rise in FT4 associated with obesity being linked to the rise in

NEFA. There may be several reasons that the elevation of FT4

had not previously been identified. First with the exception of

one study of dogs (Daminet et al. 2003), non-dialysis analog

procedures for determining FT4 have generally been employed.

Analog FT4 assays are not as likely to distinguish the effect of

low-affinity inhibitors of serum TH binding such as NEFAs

(Nelson et al. 2005). In studies of healthy euthyroid dogs, a good

correlation between dialysis and analog FT4 immunoassays has

been observed (Schachter et al. 2004, Martin et al. 2006).

However, this correlation tends to degrade when sick animals

are evaluated suggesting that these assays may be incapable of

discerning the effects of weak circulating weak inhibitors of

serum TH binding (Schachter et al. 2004).

Secondly, the current study evaluated the same cat as it

progressed from the lean to the obese state. It is also worth

noting that, for most of the prior studies, FT4 and, when it

was measured, TSH generally remained within the normal

range. Given intersubject variation, this pathophysiological

mechanism may have been obscured when lean and obese

groups were distinct populations.

Thirdly, cats are a species that have very low concentrations of

specific serum thyroid-hormone-binding proteins such as

thyroxine-binding globulin (TBG), which dominate serum

binding of T4 in primates (Refetoff et al. 1970). As such, changes

in NEFA concentrations may have a greater tendency to impact

TH binding in serum. Given the close similarity of the

composition of serum thyroid-hormone-binding proteins in
Journal of Endocrinology (2007) 194, 267–273

Downloaded from Bioscientifica.com at 08/17/2022 04:52:22AM
via Massachusetts Inst of Technology



D C FERGUSON and others . Obesity increases free thyroxine in cats272
dogs and cats, it is interesting to compare the results in cats with a

study of separate groups of lean and obese laboratory beagles

(Daminet et al. 2003). The obese dogs had significantly elevated

serum TT4 and T3 concentrations, but neither TSH nor FT4,

measured byequilibrium dialysis, was increased. The investigators

suggest that the T4 increase in obesity could be the result of an

increase in the serumconcentrationof thyroid-hormone-binding

proteins, specifically TBG. However, they also show that the

maximum serum T4 response following TSH administration was

not different. From this, one would conclude that the thyroid

functional reserve is unchanged inobesity, and the results aremore

suggestive of a change in hypothalamic–pituitary set point than

that of a change in binding protein capacity (Daminet et al. 2003).

Aside from the hypothesis of TH resistance associated with

increased NEFA concentrations, the increase in FT4 observed

in the cats during the obese phase of this study could be the

result of other factors changing the hypothalamic–pituitary

set point for negative feedback. Some studies have

demonstrated an increase in free TH as well as TSH

concentrations in humans (Duntas et al. 1991). TSH increases

in another study were shown to be proportional to BMI

(Nyrnes et al. 2006). In support of this theory is the fact that in

obesity, nuclear T3 receptors are decreased in number

(Burman et al. 1980) and, presumably, the negative feedback

between the TSH and the peripheral THs and TSH secretion,

mediated by the TRb nuclear thyroid receptor of the

hypothalamus and pituitary, is decreased. As demonstrated

in the rat, some compounds may inhibit binding of TH to

TRb without affecting TRa, resulting in tissue hyperthyr-

oidism where the latter receptor subtype exists (Zoeller et al.

2005). Our study of cats showed no significant increase in

TSH concentration with obesity. This does not preclude the

presence of an altered set point for negative feedback as a

normal TSH concentration is inappropriately high in the face

of the elevation of FT4 concentration. In the obese dog, the

elevated baseline T4 but identical maximal response of T4 to

TSH also suggests that there was a change in hypothalamic–

pituitary set point, albeit with a normal baseline TSH

concentration (Daminet et al. 2003). It has been suggested

that measurement of the serum response of TSH to

administered TRH would be useful to ascertain whether

pituitary sensitivity is altered in obesity. However, at least in

one study of obese patients, the response of TSH to i.v. TRH

was not altered (Duntas et al. 1991). Future studies will be

necessary to address this question in the cat.

Leading theories suggest that leptin and the adrenergic

neurotransmitters are key regulators of the hypothalamic–

pituitary–thyroid axis. When human subjects were sampled

every 10 min for leptin and TSH concentrations, there was a

linear relationship between the 24-h leptin and TSH, with a

significantly higher 24-h rate in obese but a lower rate in fasted

patients. Indeed, leptin has been shown to also correlate with

thyroid volume (Ghizzoni et al. 2001). However, leptin and

TSH concentrations both correlate with the degree of obesity,

obscuring whether there is a cause–effect relationship. Reduced

dopamine 2 (D2) receptors in the brain have been observed in
Journal of Endocrinology (2007) 194, 267–273
obesity (Pinkney et al. 1998, Kok et al. 2005), and production of

TSH is also regulated by transmitters and hormones, which

regulate body weight and satiety, such as the neurotransmitters

neuropeptide Y, a-melanocyte-stimulating hormone, and the

agouti-related peptide, which interact with hypothalamic TRH

neurons (Fekete et al. 2000, 2001, 2002, Guo et al. 2004).

In summary, thedevelopmentofobesity in the cat is associated

with a significant increase in FT4 within the normal reference

range, a change that correlated with the increase in plasma

NEFA concentrations. We propose that the effect of obesity on

FT4 is primary as FT4 and FFT4 were most tightly correlated

with BF and plasma NEFA concentrations. However, the set

point for negative feedback on TSH secretion must also be

altered as TT4 and TSH concentrations remained unchanged,

and TT4 did not fall inversely with the rise in FT4. Furthermore,

we were able to demonstrate that the in vitro addition of NEFAs

led to a significant increase of the FT4 fraction. It is difficult to

ascertain whether the cats developed a change in their tissue

thyroid status upon the development of obesity.

Further investigation into the cellular thyroid status will be

necessary to establish cause and effect in this animal model of

obesity. It will require the measurement of markers of TH action

in peripheral tissue such as muscle or adipose tissue to evaluate

whether there might be tissue-specific changes in the TH’s

action resulting from the increased serum FT4 concentration.
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