Differential expression of prostaglandin (PG) synthesis enzymes in conceptus during peri-implantation period and endometrial expression of carbonyl reductase/PG 9-ketoreductase in the pig

Agnieszka Waclawik and Adam J Ziecik

Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland

(Correspondence should be addressed to A J Ziecik; Email: ziecik@pan.olsztyn.pl)

Abstract

Prostaglandins (PGs) play a pivotal role in luteolysis, maternal recognition of pregnancy, and implantation. In many species, including pigs, both conceptus (embryo and associated membranes) and endometrium synthesize PGE2, which may antagonize PGF2a by playing a luteotrophic/antiluteolytic role. Previously, we have reported expression profiles of PG G/H synthases (PGHS-1 and PGHS-2), PGE synthase (mPGES-1), and PGF synthase (PGFS) in the endometrium of cyclic and pregnant pigs. In the present study, expression of above-mentioned PG synthesis enzymes and PG 9-ketoreductase (CBR1), which converts PGE2 into PGF2a, and the PGE2/PGF2a ratios were investigated in porcine peri- and post-implantation conceptuses. Furthermore, expression of CBR1 was examined in the endometrium. PGHS-2 and mPGES-1 were upregulated, and PGHS-1, PGFS, and CBR1 were downregulated in conceptuses during trophoblastic elongation. A second increase of mPGES-1 mRNA occurred after days 20–21 of pregnancy. After initiation of implantation, expression of PGHS-1, PGFS, and CBR1 in conceptuses increased and remained higher until days 24–25 of pregnancy. Comparison of the endometrial CBR1 protein expression in cyclic and pregnant gilts revealed upregulation on days 16–17 of the cycle and downregulation on days 10–11 of pregnancy. In conclusion, reciprocal expression of PGHS-2, mPGES-1, PGFS, and CBR1 in day 10–13 conceptuses and decrease of endometrial CBR1 may be important in increasing the PGE2/PGF2a ratio during maternal recognition of pregnancy. This study indicates that PGE2 produced via PGHS-2 and mPGES-1 in conceptus may be involved in corpus luteum control. Moreover, high expression of conceptus PGHS-1, mPGES-1, PGFS, and CBR1 after initiation of implantation suggests their significant role in placentation.

Introduction

Maternal recognition of pregnancy requires reciprocal communication between the pre-implantation conceptus (embryo and associated membranes) and maternal system: uterine endometrium and corpus luteum (CL). In the pig, these interactions begin at days 11–12 of pregnancy when conceptuses undergo rapid elongation (Geisert et al. 1982) and signal their presence to maternal system by estrogen secretion (Perry et al. 1973, Bazer & Thatcher 1977, Ford et al. 1982). However, estrogen treatment alone, although preventing prostaglandin F2a (PGF2a)-induced luteal regression and prolonging CL lifespan, cannot fully mimic the conceptus effects on growth and development of this gland (Christenson & Ford 1995) as well as an endocrine status in the pig (Ziecik et al. 1986). It has been suggested that besides estrogens, PGE2 could be involved in maternal recognition of pregnancy as a luteoprotective/antiluteolytic factor (Akinlosotu et al. 1986, Christenson et al. 1994). The increased secretion of PGE2 by the gravid versus the non-gravid horn of the uterus is associated with an elevated progesterone concentration of CL on the adjacent ovary in the pig (Christenson et al. 1994). Moreover, on days 11–13 of pregnancy, a dramatic increase of PGE2/PGF2a ratio is observed in uterine lumen and vein when compared with the respective days of the estrous cycle in the pig, suggesting that PGE2 can overcome luteolytic effect of PGF2a. Since PGE2 and PGF2a exert mainly opposite actions, the PGE2/PGF2a ratio may be an important mediator or modulator of several processes in female reproduction (Weens et al. 2006). The PGE2/PGF2a ratio has an influence on CL development and function, endometrial cell growth and differentiation, myometrium contraction, blood flow, vascular permeability, embryo migration, and implantation (Davis & Blair 1993, Cao et al. 2005).

Not only the endometrium but also blastocysts from many species, including mouse (Marshburn et al. 1990), rat (Parr et al. 1988), rabbit (Dey et al. 1980), sheep (Hyland et al. 1982), cow (Lewis et al. 1982), human (Holmes & Gordashko 1980), and pig (Davis et al. 1983) appear to have the capacity...
to transform arachidonic acid into its biological active derivatives via PG G/H synthase enzyme (PGHS) pathway, resulting in the production of PGE2 and PGF2α. The mechanism responsible for maintenance of CL during early pregnancy is complex and may involve a specific expression pattern of PG synthesis enzymes in conceptus and the direct influence of the embryo on endometrial PG synthesis. PGHS converts arachidonic acid into PGH2, which is further metabolized to PGs by specific synthases and reductases (Smith et al. 1996). There are two isoenzymes of PGHS known: PGHS-1 and PGHS-2 whose roles in reproduction have been established (Sales & Jabbour 2003, Murakami & Kudo 2004). PGHS-1 is considered to have mainly constitutive expression in many tissues, while PGHS-2 appears to be an inducible form. Nevertheless, limited information is available on the PGHS-2 expression in blastocysts in the pig (Wilson et al. 1981, 1983, 2007). Moreover, nothing is known about regulation of expression of downstream enzymes: PGE synthase (mPGES-1), PGF synthase (PGFS), and PG 9-ketoreductase in conceptus development. Although changes of PG concentration in porcine uterine lumen are well characterized in the estrous cycle and early pregnancy, content of PGs was studied only in porcine day 7–12 embryos (Davis et al. 1983).

We have recently shown expression patterns of PGHS-1, PGHS-2, mPGES-1, and PGFS in the endometrium of porcine species (Blitek et al. 2006, Wacławik et al. 2006). However, expression of an important enzyme catalyzing NADP(H)-dependent reversible conversion of PGE2 into PGF2α, PG 9-ketoreductase is unknown. Carbonyl reductase (CBR1), also known as 20β-hydroxysteroid dehydrogenase is considered to be identical with PG 9-ketoreductase in the pig (Schieber et al. 1992, Tanaka et al. 1992, Ghosh et al. 2001). The ability of CBR1 to reduce a large number of biological and pharmacological carbonyl compounds has complicated the systematic nomenclature of the enzyme. Three different numbers (EC. 1.1.1.184, 1.1.1.189, and 1.1.1.197) were originally assigned to the enzyme (Maser 1995). Sequence analysis reveals that porcine CBR1 belongs to the short-chain dehydrogenase/reductase superfamily (Jornvall et al. 1981, Tanaka et al. 1992).

Interestingly, expression of PG 9-ketoreductase gene is downregulated in epithelial cells of bovine endometrium by interferon-τ, which is the conceptus signal in ruminants (Asselin & Fortier 2000). These findings suggest that conceptus can alter expression of endometrial PG 9-ketoreductase (CBR1) in order to modulate the PGE2/PGF2α ratio in the uterus during the maternal recognition of pregnancy. Therefore, the objectives of the present study were to 1) characterize steady state levels of mRNA and proteins of PG biosynthesis enzymes (PGHS-1, PGHS-2, mPGES-1, PGFS, and CBR1) in porcine conceptuses during early pregnancy in the pig; 2) determine the ratios of PGE2 to PGF2α and 13,14-dihydro-15-keto-PGF2α, the major stable metabolite of PGF2α (PGFM) to PGF2α in the peri-implantation conceptuses; and 3) evaluate the changes of endometrial expression of CBR1.

Materials and Methods

Tissue collection

The endometrium was collected from 45 cyclic crossbred gilts (Large White × Polish Landrace) at a local abattoir. The stage of the estrous cycle was defined by utero-ovarian morphology (Akins & Morissette 1968, Leiser et al. 1988). Moreover, the histological features of the uterus and CL were used to verify the stage of estrous cycle, as reported previously (Leiser et al. 1988). The endometrium dissected from myometrium was recovered from the middle portion of uterine horn and was accordingly assigned to the following days of the estrous cycle: 1–4 (n = 7), 5–9 (n = 8), 10–11 (n = 6), 12–13 (n = 5), 14–15 (n = 8), 16–17 (n = 5), 18–19 (n = 3), and 20–21 (n = 3).

Furthermore, 57 gilts after exhibiting two estrous cycles of normal length were bred 12 and 24 h after the onset (day 0) of estrus. Pregnant gilts were slaughtered at a local abattoir on days 5–9 (n = 5), 10–11 (n = 12), 12–13 (n = 5), 14–15 (n = 6), 16–17 (n = 8), 18–19 (n = 6), 20–21 (n = 5), 22–23 (n = 4), and 24–25 (n = 6) of pregnancy, and endometrium was collected from the uterus opened longitudinally on the antimesometrial surface. Pregnancy was confirmed by the presence of conceptuses. During the pre-implantation stage, both uterine horns were flushed with 20 mL sterile PBS to recover conceptuses. During implantation and early placentation stage, conceptuses/trophoblasts were dissected from endometrium. Dissection of trophoblast tissues from embryo was done only after days 17–18 post-mating; therefore, expressions of the studied enzymes were analyzed in 10- to 17-day conceptuses and 18- to 25-day trophoblast tissues. Furthermore, endometrial tissue was collected from implantation sites by dissection from myometrium.

Based on the days of pregnancy and conceptus morphology, the conceptuses or trophoblast tissues derived from the same animal were pooled and classified into groups as days 10–13 (spherical and tubular, n = 4), days 10–13 (filamentous, n = 4), 14–15 (n = 5), 16–17 (n = 5), 18–19 (n = 6), 20–21 (n = 3), 22–23 (n = 4), and 24–25 (n = 7). Conceptuses pooled from each uterus separately revealed similar morphology (spherical/tubular or filamentous).

Conceptus/trophoblast, endometrial, and other tissue samples (liver, kidney, lung, CL, 20-day embryo, oviduct, brain, heart, and myometrium) were cut into small pieces and snap-frozen in liquid nitrogen and stored at −80°C until further use. All procedures involving animals were approved by the Local Research Ethics Committee and were conducted in accordance with the national guidelines for agricultural animal care.

Total RNA isolation

Total RNA was extracted from endometrial and conceptus/trophoblast samples using the acid guanidinium thiocyanate–phenol–chloroform method (Chomczynski & Sacchi 1987) and treated with DNase I (Invitrogen Life Technology Inc.)
according to the manufacturer’s protocol to eliminate possible DNA contamination.

Real-time PCR quantitation

Real-time PCR was performed with the Applied Biosystems 7300 real-time PCR System (Applied Biosystems, Foster City, CA, USA) using QuantiTect SYBR Green PCR master mix (Qiagen GmbH), as described previously (Waclawik et al. 2006). Briefly, total RNA was reverse transcribed using oligo(dT) primer and avian myeloblastosis virus reverse transcriptase (Promega). Real-time PCR mix (50 µl) included 25 µl QuantiTect SYBR Green PCR master mix, 0.5 µM sense and antisense primers each and reverse-transcribed cDNA (3 µl diluted RT product). To evaluate mRNA levels of the enzymes, specific primers were used (Table 1). For quantification, standard curves consisting of serial dilutions of the appropriate purified cDNA were included. Before amplification, an initial denaturation (15 min at 95 °C) step was used. The PCR programs for each gene were performed as follows: 38 cycles of denaturation (15 s at 95 °C), annealing (30 s at 52-5 °C for PGFS and CBR1; or at 55 °C for PGHS-1, PGHS-2, mPGES-1, and β-actin), and elongation (60 s at 72 °C). After PCR, melting curves were acquired by stepwise increases in the temperature from 50 to 95 °C to ensure that a single product was amplified in the reaction. On the basis of our preliminary data and previous reports (Yelich et al. 1997, Madore et al. 2003, Blomberg et al. 2005, Waclawik et al. 2006), β-actin was used as an internal control for normalization of the real-time PCR data for PGHS-1, PGHS-2, mPGES-1, and PGFS, and CBR1 expression in the cyclic and pregnant endometrium and peri-implantation conceptuses. Control reactions in the absence of reverse transcriptase were performed to test for genomic DNA contamination. Furthermore, specificity of RT-PCR products was confirmed by sequencing. The sequences were compared against PGHS-1, PGHS-2, mPGES-1, PGFS, CBR-1, and β-actin cDNAs (GenBank accession numbers indicated in Table 1).

Preparation of cytosol and membrane fractions for western blot

Protein fractions for immunoblotting were obtained as described previously (Waclawik et al. 2006). Briefly, endometrial, conceptus/trophoblasts, and other tissues were homogenized on ice in buffer containing 50 mM Tris–HCl (pH 8-0), 150 mM NaCl, 1 mM EDTA, 1% (v/v) Triton X-100, 10 µg/ml aprotinin, 52 µM leupeptin, 1 mM pepstatin A, and 1 mM phenylmethylsulfonyl fluoride. Homogenates were then centrifuged for 10 min at 1000 × g at 4 °C. The supernatant was centrifuged for 1 h at 105 000 × g at 8 °C and the resulting supernatant and precipitate were used as the cytosol and membrane fraction respectively. The fractions were stored at −70 °C for further analysis. The protein concentration was determined by the Bradford (1976) method.

Western blot analysis

Equal amounts (30 µg protein) of membrane (for mPGES-1) and cytosol fractions (for PGFS and CBR1) were dissolved in SDS gel-loading buffer (50 mM Tris–HCl (pH 6-8), 4% (w/v) SDS, 20% (v/v) glycerol, and 2% (v/v) β-mercaptoethanol), heated to 95 °C for 4 min, and separated on 15% (w/v; for mPGES-1) and 12% (w/v; for PGFS and CBR1) SDS-PAGE. Separated proteins were electroblotted onto 0.2 µm nitrocellulose membrane in transfer buffer (20 mM Tris–HCl buffer (pH 8-2), 150 mM glycine, and 20% (v/v) methanol). After blocking in 5% (w/v) non-fat dry milk in TBS–T buffer (Tris-buffered saline, containing 0.1% (v/v) Tween 20) for 1-5 h at 25-6 °C, the membranes were incubated overnight with 1:1000 polyclonal anti-mPGES-1 antibodies (Cayman Chemical, Ann Arbor, MI, USA), 1:2000 anti-lung-type PGFS antiserum (Watanabe et al. 1985), or 1:2000 polyclonal anti-human CBR1 antibodies (Abcam, Cambridge, UK), or

Table 1 Primers used for real-time PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequences</th>
<th>GenBank accession number</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGHS-1</td>
<td>Sense: 5’-GGGAGTCTTTCCTCCTGATGAG-3’
 Antisense: 5’-CATCAATAGTGGCCGAGGTCG-3’</td>
<td>AF207823</td>
<td>Blitek et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Sense: 5’-ATGATCTACGCCCTTCAAC-3’
 Antisense: 5’-CAAAGACCTCTTGCTAA-3’</td>
<td>AY028583</td>
<td>Blitek et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Sense: 5’-AGGCTGCCGCCAGGTTGAGG-3’
 Antisense: 5’-GCACTCTGGGCACTC-3’</td>
<td>AY857634</td>
<td>Waclawik et al. (2006)</td>
</tr>
<tr>
<td>mPGES-1</td>
<td>Sense: 5’-AGCCTGGGGCCACAGGTTGAGG-3’
 Antisense: 5’-AAACAGCTGTTGCT-3’</td>
<td>AY863054</td>
<td>Waclawik et al. (2006)</td>
</tr>
<tr>
<td>PGFS</td>
<td>Sense: 5’-GCACTCTGGGCACTC-3’
 Antisense: 5’-ACCGTGCACCTGGGGTCAAA-3’</td>
<td>M80709</td>
<td></td>
</tr>
<tr>
<td>CBR1</td>
<td>Sense: 5’-ATGATCTACGCCCTTCAAC-3’
 Antisense: 5’-CAAAGACCTCTTGCTAA-3’</td>
<td>U07786</td>
<td>Spagnuolo-Weaver et al. (1999) and Waclawik et al. (2006)</td>
</tr>
</tbody>
</table>
polyclonal anti-β-actin antibodies (Abcam; 1:4000) at 4°C. Fragments of amino acid sequence of porcine PG
9-ketoreductase, reported earlier, revealed 90% of homology with human CBR1 (Schieber et al. 1992). From comparison
of several properties (catalytical, structural, and immuno-
logical), it is concluded that PG 9-ketoreductase and CBR1
are identical enzymes. Therefore, we used anti-human CBR1
antibodies to detect PG 9-ketoreductase in the pig.

Subsequently, the studied enzymes were detected by
incubating the membrane with 1:20 000 dilution of
secondary polyclonal anti-rabbit alkaline phosphatase-con-
jugated antibodies (for mPGES-1, PGFS, and β-actin;
Sigma–Aldrich) and anti-goat alkaline phosphatase-conju-
gated antibodies (for CBR1; Abcam) for 1.5h at
25-6°C. Immune complexes were visualized using standard
alkaline phosphatase visualization procedure (Sambrook et al.
1989). Western blots were quantitated using Kodak 1D
analysis.

EIA of PGE2, PGF2α, and PGFM

To measure the concentration of PGE2, PGF2α, and PGFM,
conceptus and trophoblast homogenates were prepared and
extracted with ethyl acetate by the method published earlier
(Davis et al. 1983). The conceptuses were pooled from every
uterus separately as described previously. Concentration of
PG was expressed per protein content. Concentrations of
PGE2 were determined by an enzyme immunoassay (EIA) as
described by Skarzynski & Okuda (2000). Cross-reactivities
of the anti-PGE2 antiserum (donated by Dr Seiji Ito, Kansai
Medical University, Osaka, Japan) were as follows: 18% PGE1,
10% PGA1, 4-6% PGA2, 6-7% PGB2, 0-13% PGD2, 2-8%
PGF2α, 14% PGJ2, and 0-05% 15-keto-PGE2. Assay
sensitivity was 0-19 ng/ml and the intra- and inter-assay
coefficients of variation were 7-6 and 14-9% respectively.
Concentrations of PGF2α were determined by EIA as described
by Uenoyma et al. (1997). Cross-reactivities of the anti-PGF2α antiserum (Sigma–Aldrich) were as follows:
60% PGF1α, <0-1% PGE1 and PGF2; and <0-01% PGA1,
PGA2, PGB1, and PGB2. Assay sensitivity was 0-23 ng/ml and the intra- and inter-assay coefficients of variation were
7-5 and 11-4% respectively. Concentrations of PGFM were
determined by EIA as previously described for PGE2
(Skarzynski & Okuda 2000) using horseradish peroxidase-
labeled PGFM and anti-PGFM antiserum (WS4468-7;
donated by Dr William Silvia, University of Kentucky,
Lexington, KY, USA). Cross-reactivities of the anti-PGFM
antiserum with PGE2, PGA2, PGF2α, and 6-keto-PGF1 were
<0-1%. Assay sensitivity was 50 pg/ml and the intra- and
inter-assay coefficients of variation were 6-2 and 10-1% respectively.

Statistical analysis

Least-squares factorial ANOVA using the general linear
models (GLMs) was used to study endometrial CBR1
expression in cyclic and pregnant gilts. These analyses
included the effects of reproductive status, day and status×
day interaction. Other statistical analyses were performed
using ANOVA, followed by Tukey’s multiple comparison
test. All numerical data are presented as the mean ± s.e.m. and
differences were considered as statistically significant when
P<0-05. Statistical analyses were performed on SPSS 12.0S
software for Windows (SPSS Inc., Chicago, USA) or by
Graphpad Prism 4.0 (Graphpad Software Inc., San Diego,
CA, USA).

Results

Expression of PGHS-1 in conceptus during early pregnancy

PGHS-1 mRNA levels were changing in conceptus during
pre-implantation (days 10–13), implantation (days 14–19),
and post-implantation period (days 20–25 of pregnancy).
PGHS-1 transcript levels were the lowest in spherical/tubular
and filamentous conceptuses collected from day 10 to day 13
of pregnancy during pre-implantation period (P<0-01).
After initiation of implantation, on days 14–15 of gestation
PGHS-1 mRNA levels in conceptus/trophoblast increased
~15-fold and remained enhanced to post-implantation
period (Fig. 1A).

Expression of PGHS-2 in conceptus during early pregnancy

PGHS-2 transcript content was elevated in filamentous day
10–13 blastocysts when compared with post-elongation
conceptuses (days 14–17) and trophoblast tissues from day
22 to day 25 (P<0-05; Fig. 1B). PGHS-2 mRNA levels in
filamentous days 10–13 blastocysts were approximately three-
to fourfold higher when compared with moderate content in
spherical/tubular 10– to 13-day conceptuses and low content
in elongated day 14–17 conceptuses (P<0-05). After decrease
of PGHS-2 mRNA levels at the beginning of implantation
(on days 14–15 of pregnancy), the studied transcript remained
at comparable levels until post-implantation period.

Expression of mPGES-1 in conceptus during early pregnancy

Expression of mPGES-1 was highly modulated during
conceptus development (Fig. 2A and B). PGE synthase
transcript levels were significantly elevated (28-fold times
higher than on days 14–15) in spherical/tubular and
filamentous day 10–13 conceptuses during pre-implantation
period (versus days 14–23, P<0-001; and spherical/tubular
inter-assay coefficients of variation were 6-2 and 10-1%
respectively.
Expression of PGFS in conceptus during early pregnancy

Both PGFS mRNA and protein levels were the lowest in spherical/tubular and filamentous day 10–13 conceptuses (P<0.001 and P<0.01 respectively) during pre-implantation period (Fig. 2C and D). The expression of PGFS mRNA and protein in 10- to 13-day conceptuses was 12- to 24- and 5- to 12-fold lower in comparison with 14- to 25-day conceptuses/trophoblasts respectively. After days 14–15 of pregnancy, PGFS mRNA and protein levels in conceptuses/trophoblasts increased and remained higher during implantation and post-implantation period.

Expression of CBR1 in conceptus during early pregnancy

Patterns of both CBR1 mRNA and protein in conceptus/trophoblasts were parallel (Fig. 2E and F). Content of CBR1 mRNA and protein in spherical/tubular and filamentous conceptuses collected on days 10–13 post-mating, during pre-implantation period was very low (P<0.001) and undetectable respectively. After initiation of implantation, expression of CBR1 mRNA and protein increased and remained high until post-implantation period. Blockage of CBR1 antibodies with the control peptide led to the complete disappearance of bands when compared with antibodies without the blocking peptide (Fig. 4B).

The PGE2/PGF2α and PGFM/PGF2α ratios in conceptus during early pregnancy

PGE2 concentration was higher (P<0.05) in spherical/tubular day 10–13 conceptuses (25.4 and 28.1 ng/mg protein respectively) when compared with conceptuses collected from day 14 to day 19 (5.5 ng/mg protein) and day 24 to day 25 of pregnancy (4.3 ng/mg protein; Table 2). Concentration of PGE2 increased twofold from implantation to post-implantation period (days 20–23 of pregnancy). PGF2α and PGFM concentration in conceptuses during pre-implantation, implantation, and post-implantation period ranged from 5.4 to 16.5 and 1.3 to 10.2 ng/mg protein respectively, but revealed no significant variation (Table 2).

The paired data analyzed as ratios of PGE2 to PGF2α and PGFM to PGF2α were determined in conceptus and trophoblast tissues during peri-implantation period (Fig. 3). The PGE2/PGF2α ratio was higher (P<0.05) in spherical/tubular day 10–13 conceptuses during pre-implantation stage when compared with days 16–19 and intermediate on days 22–25 of pregnancy (Fig. 3A). The PGFM/PGF2α ratio which is index of 15-hydroxyprostaglandin dehydrogenase activity was significantly lower in spherical/tubular and filamentous 10- to 13-day conceptuses when compared with conceptuses collected on days 22–23 of pregnancy (P<0.05) and days 16–23 (P<0.05) respectively (Fig. 3B). On days 24–25 of pregnancy, the PGFM/PGF2α ratio was decreased when compared with days 16–23 (P<0.05).

CBR1 protein expression in different porcine tissues

CBR1 band of ~31.5 kDa was present in all examined tissues (Fig. 4A). The abundance of CBR1 protein was the highest in liver, kidney, and oviduct, and intermediate in myometrium,
Figure 2 Expression of mPGES-1 (A and B), PGFS (C and D), and CBR1 (E and F) in porcine conceptus/trophoblast during early pregnancy. Quantification of mPGES-1 (A), PGFS (C), and CBR1 mRNA (E) by real-time PCR expressed as the mean ± S.E.M. ratios relative to β-actin. Western blot analyses of mPGES-1 (B), PGFS (D), and CBR1 proteins (F). β-Actin was used as an internal control for protein loading. Band intensity of mPGES-1, PGFS, and CBR1 was standardized to β-actin band intensity and presented as the mean ± S.E.M. For each group, conceptuses/trophoblasts collected from three to seven uteri were analyzed. The representative samples of western blots are shown. Conceptuses collected from day 10 to day 13 of pregnancy were divided into two groups according to morphology: spherical, tubular (S/T), and filamentous (F). Means with different letters indicate significant differences (P < 0.05).
endometrium, brain, and CL. Low CBR1 protein expression was observed in heart, 20-day embryo, and lung.

Expression of CBR1 in endometrium during the estrous cycle and early pregnancy

Endometrial CBR1 mRNA content was affected by day \((P < 0.001)\) but not by reproductive status (Fig. 5A). CBR1 mRNA levels did not differ in endometrium during the estrous cycle (days 1–21) and on days 5–23 of pregnancy. However, increase of the transcript levels occurred on days 24–25 of gestation when compared with all other examined days of the estrous cycle and pregnancy \((P < 0.001)\).

A day \(\times\) reproductive status interaction was detected for endometrial CBR1 protein expression \((P < 0.004)\). Endometrial expression of CBR1 protein was affected by day \((P < 0.001)\) and by pregnancy status \((P < 0.006; \text{Fig. 5B})\). CBR1 protein levels were low from day 1 to day 9 of the estrous cycle. Afterward, CBR1 protein content in endometrium increased and was the highest on days 16–17 of the estrous cycle (when compared with days 1–9 and 18–21 of the estrous cycle, \(P < 0.05; \text{Fig. 5B}\)). During early pregnancy, endometrial expression of CBR1 protein was significantly lower on days 10–11 when compared with days 5–9, 18–19, and 24–25 post-mating (Fig. 5B). CBR1 protein content in endometrium on days 10–11 of pregnancy was also significantly decreased when compared with days 10–11 of the estrous cycle (Fig. 5B). Moreover, the endometrial protein expression of the studied enzyme on days 16–17 of the estrous cycle was significantly higher than on respective days of pregnancy.

Discussion

Achieving an optimal PGE\(_2\)/PGF\(_{2\alpha}\) ratio is essential for luteolysis or maintenance of the CL, which are the critical events in domestic animal female reproduction. Porcine CBR1 is the enzyme which exhibits PG 9-ketoreductase activity and can modulate both PG concentrations. We found a CBR1 band of \(\sim 31.5\) kDa to be present in every porcine tissue analyzed but its abundance varied widely. CBR1 was most abundantly expressed in kidney, liver, and oviduct. The results are consistent with previous studies demonstrating that CBR1 is expressed in many tissues in the male pig in the neonatal stage (Kobayashi *et al.* 1996). Until now, PG 9-ketoreductase activity has also been reported in some female reproductive tissues like ovary, uterus, and placenta in different species (Watson *et al.* 1979, Niesert *et al.* 1986, *Figure 3* The ratio of PGE\(_2\) to PGF\(_{2\alpha}\) (A) and PGFM to PGF\(_{2\alpha}\) (B) in porcine conceptus and trophoblast tissues during early pregnancy. Values are expressed as the mean \(\pm\) S.E.M. For each group, conceptuses/trophoblasts collected from three to seven uteri were analyzed. Conceptuses collected from day 10 to day 13 of pregnancy were divided into two groups according to morphology: spherical, tubular (S/T), and filamentous (F). Means with different letters indicate significant differences \((P < 0.05)\).
Moreover, the presence of PG 9-ketoreductase mRNA was detected in CL and epithelial cells of bovine endometrium (Asselin & Fortier 2000). The wide distribution of porcine PG 9-ketoreductase (CBR1) may reflect its broad substrate specificity. The studied enzyme reduces keto groups not only on PGs but also on androgens, progestins as well as aldehydes and ketones on a large number of xenobiotics (Tanaka et al. 1992, Nakajin et al. 1997). Nevertheless, the physiological role of CBR1 is not well determined.

In the present study, for the first time, CBR1 protein and mRNA were identified in the porcine uterine endometrium and conceptus. One potential mechanism by which the PGE2/PGF2α ratio during the maternal recognition of pregnancy could be changed in favor of the luteoprotective/antiluteolytic PGE2 may be the direct contribution of the conceptus to PGE2 synthesis (Davis et al. 1983, Wilson et al. 2002). Not only CBR1 but also other PG synthesis enzymes were detected in the conceptus. The present study revealed that PGHS-2 mRNA was significantly elevated in day 10-13 filamentous conceptuses when compared with conceptus/trophoblast tissues collected from day 14 to day 17 and from day 22 to day 25 of pregnancy. Similarly, Wilson et al. (2002) demonstrated enhanced PGHS-2 transcript content in day 12 filamentous porcine conceptuses, but in these studies no mRNA of the enzyme was detected in spherical blastocysts from day 11 to day 12 of pregnancy. In contrast, the present report revealed moderate PGHS-2 transcript abundance also in spherical and tubular blastocysts from day 10 to day 13. However, there was a wide variation in mRNA levels among day 10-13 spherical, tubular, and filamentous conceptuses. The difference in these results can be explained due to the much higher sensitivity of the real-time RT-PCR method we applied than the ribonuclease protection assay used in the cited studies. The present study is consistent with reports showing high expression of PGHS-2 protein in ovine and mouse pre-implantation embryos (Charpigny et al. 1997, Tan et al. 2005).

Our findings provide the first evidence that conceptus PGE synthase is upregulated during trophoblastic elongation and the maternal recognition of pregnancy in any domestic species. The higher mPGES-1 expression in 10- to 13-day conceptuses coincided with elevated PGE2 content in blastocysts (Davis et al. 1983), uterine lumen (Davis & Blair 1993, Ashworth et al. 2006), and utero-ovarian circulation in the pig (Christenson et al. 1994). It suggests that PGE2 produced via PGHS-2 and mPGES-1 in conceptus may be involved in CL control. The present study also correlates with the presence of PG 9-ketoreductase mRNA in CL and uterine epithelial cells (Beaver & Murdoch 1992, Kankofer & Wiercinski 1999).
the report showing that PGE2 treatment at the blastocyst stage could accelerate and enhance spreading of the trophoblast in vitro (Chan 1991). Our findings revealed two periods of increased conceptus/trophoblast mPGES-1 expression (days 10–13 and 22–25), which correspond with profile of the PGE2/PGF2α ratio in peri- and post-implantation conceptuses. A similar pattern of mPGES-1 expression has recently been described in endometrium also during early pregnancy in the pig (Waclawik et al. 2006). However, the changes of PGE synthase content in endometrium are less dynamic than in conceptus.

PGE synthase expression pattern in conceptus also correlates with biphasic profiles of estrogen synthesis and secretion by blastocysts (Geisert & Yelich 1997). Even spherical 5–7 mm blastocysts from day 10 to day 11 after fertilization are capable of enhanced synthesis of estradiol-17β and other estrogens (Fisher et al. 1985, Pusateri et al. 1990). This suggests that mPGES-1 in both endometrium and conceptus may be stimulated by conceptus estrogens. Moreover, it was demonstrated that estrogens may be an important factor in increase of PGE2 synthesis (Geisert et al. 1982b) and the PGE2/PGF2α ratio in porcine endometrium (Ziecik 2002).

In contrast to PGE synthase, both enzymes involved in PGF2α production were expressed in conceptus at very low level during the maternal recognition of pregnancy. Among pre-implantation day 10–13 conceptuses, no differences were found among spherical, tubular, and filamentous forms in expression of PGFS and PG 9-ketoreductase (CBR1). Interestingly, the PGE2/PGF2α ratio in peri-implantation conceptuses may be reverse index of PG 9-ketoreductase activity and also reflects activities of mPGES-1 and PGFS in conceptus. Therefore, profile of the PGE2/PGF2α ratios did not correspond exactly to inverse expression pattern of CBR1 in conceptus.

Upregulation of PGHS-2 and mPGES-1, and down-regulation of PGFS and CBR1 expression in day 10–13...
Conceptus PG synthesis enzymes may play an important role in increase of the PGE\textsubscript{2}/PGF\textsubscript{2\alpha} ratio, which is a pivotal event in the maternal recognition of pregnancy in the pig. The present results are consistent with the reports, suggesting that conceptus secretes much more PGE\textsubscript{2} than PGF\textsubscript{2\alpha} during this period (Davis et al. 1983, Wilson et al. 2002). Moreover, relatively stable levels of mPGES-1, PGFS, and CBR1 in CL (A Waclawik, unpublished) and moderate changes of PGF and PGE synthases in endometrium (Waclawik et al. 2006) indicate a significant contribution of pre-implantation conceptus to synthesis of PGE\textsubscript{2} during the maternal recognition of pregnancy in the pig.

Interestingly, after initiation of implantation, expression of PGFS and CBR1 in conceptus and trophoblastic tissues increased sharply and remained high by days 24–25 of pregnancy, which correlates with the high PG concentrations in uterine lumen in implantation period (Davis & Blair 1993, Ashworth et al. 2006). These findings also correspond with reduced luteal PGF\textsubscript{2\alpha} receptors concentration on day 14 in pregnant when compared with cycling pigs, which may lead to decreased luteal sensitivity of pregnant CL to PGF\textsubscript{2\alpha} (Gadbsy et al. 1993). Furthermore, changes of the PGFM/PGF\textsubscript{2\alpha} ratios in the peri-implantation conceptuses indicate that 15-hydroxyprostaglandin dehydrogenase activity is low in 10- to 13-day conceptuses and increased during implantation and post-implantation period (days 16–23 of pregnancy). Higher levels of 15-hydroxyprostaglandin dehydrogenase activity after day 14 of pregnancy suggest enhanced metabolism of PGF\textsubscript{2\alpha} during implantation, which may decrease luteolytic effect of PGF\textsubscript{2\alpha} and, in such a way, maximize the biological effect of luteotropic PGE\textsubscript{2}. Changes of PGFM/PGF\textsubscript{2\alpha} ratio correspond with CBR1 expression profile in conceptus and report that CBR1 can also exhibit some 15-hydroxyprostaglandin dehydrogenase activity (Chang & Tai 1981).

The transient elevated expression of mPGES-1 that we found in conceptus/trophoblast is in agreement with studies on the significant role of mPGES-1 in implantation in other species (Ni et al. 2002, Wang et al. 2004). It is likely that PGE\textsubscript{2} produced in the conceptus could exert an immunomodulatory effect (Parhar et al. 1989) and act in paracrine manner via endometrial PGE\textsubscript{2} receptors (Kennedy et al. 1986), resulting in the local increase of endometrial vascular permeability and preparation for angiogenesis and placentation (Hamilton & Kennedy 1994, Yang et al. 1997).

Moreover, profiles of mPGES-1 and PGFS expression in conceptus/trophoblast are highly correlated with changes of expression of both synthases in endometrium recently reported by us (Waclawik et al. 2006). The similar patterns of PG synthase expression may be a result of interactions between conceptus and endometrium, which are essential for maternal recognition of pregnancy, implantation, and placentation.

In the present study, CBR1 mRNA and protein were identified not only in the conceptus but also in the uterine endometrium. Interestingly, it was shown more than 20 years ago that PGE\textsubscript{2} intrauterine infusion increases PGF\textsubscript{2\alpha} concentration immediately in utero-ovarian vein in the cyclic gilt (Okras et al. 1985). We believe that it can now be explained by activity of endometrial CBR1, the enzyme that converts PGE\textsubscript{2} into PGF\textsubscript{2\alpha} when the concentration of estrogens in the circulation is low. Furthermore, in the present study, a significant decrease of CBR1 protein expression was observed in the endometrium on days 10–11 of pregnancy when compared with the corresponding days of the estrous cycle. It is consistent with the findings demonstrating inhibition of activity of PG-9-ketoreductase in sheep endometrium during the maternal recognition of pregnancy (Beaver & Murdoch 1992). Therefore, the present report supports the hypothesis that CBR1 expression changes in the endometrium are involved in the increase of the PGE\textsubscript{2}/PGF\textsubscript{2\alpha} ratio in the uterus during maternal recognition of pregnancy in the pig.

The data presented in this report demonstrated that CBR1 was upregulated in the endometrium during the end of luteolysis. Comparison of endometrial CBR1 protein levels between day 16–17 cyclic and pregnant gilts indicated significantly higher expression of this enzyme in the cyclic animals. Moreover, it has previously been shown that PGFS is expressed abundantly on days 13–15 of the estrous cycle (Waclawik et al. 2006). It appears that CBR1 is not involved in initiation of luteolysis like PGFS but may rather play a role in successful completion of luteal regression.

The results of present study provide the first direct evidence to support the hypothesis that reciprocal expression of PGHS-2, mPGES-1, and the downstream enzymes involved in PGF\textsubscript{2\alpha} production in 10- to 13-day conceptuses could be important in increase of the PGE\textsubscript{2}/PGF\textsubscript{2\alpha} ratio during the maternal recognition of pregnancy in the pig. Our findings indicate that another potential mechanism of luteolysis inhibition in the pig may be downregulation of endometrial CBR1 protein expression. This study suggests possible conceptus–endometrium interaction in the increase of the PGE\textsubscript{2}/PGF\textsubscript{2\alpha} ratio in uterine lumen at this critical period. Moreover, high conceptus expression of PGFS, mPGES-1, and CBR1 after initiation of blastocyst attachment may indicate involvement of these enzymes in implantation and early placentation in the pig.

Acknowledgements

We would like to thank Dr Kikuko Watanabe for generously providing anti-PGFS antibodies, Dr Seiji Ito for anti-PGE\textsubscript{2} antiserum, and Dr William Silvia for anti-PGF\textsubscript{M} antiserum. We are grateful to Mr Jan Klos and Ms Katarzyna Gromadzka-Hliwa for excellent technical assistance in the laboratory and Mr Michal Blitek for help in care and handling of animals. This research was supported partly by grant 2 P06D 041 26 from the State Committee for Scientific Research in Poland. The authors declare that there

Acknowledgements

We would like to thank Dr Kikuko Watanabe for generously providing anti-PGFS antibodies, Dr Seiji Ito for anti-PGE\textsubscript{2} antiserum, and Dr William Silvia for anti-PGF\textsubscript{M} antiserum. We are grateful to Mr Jan Klos and Ms Katarzyna Gromadzka-Hliwa for excellent technical assistance in the laboratory and Mr Michal Blitek for help in care and handling of animals. This research was supported partly by grant 2 P06D 041 26 from the State Committee for Scientific Research in Poland. The authors declare that there

Acknowledgements

We would like to thank Dr Kikuko Watanabe for generously providing anti-PGFS antibodies, Dr Seiji Ito for anti-PGE\textsubscript{2} antiserum, and Dr William Silvia for anti-PGF\textsubscript{M} antiserum. We are grateful to Mr Jan Klos and Ms Katarzyna Gromadzka-Hliwa for excellent technical assistance in the laboratory and Mr Michal Blitek for help in care and handling of animals. This research was supported partly by grant 2 P06D 041 26 from the State Committee for Scientific Research in Poland. The authors declare that there

Acknowledgements

We would like to thank Dr Kikuko Watanabe for generously providing anti-PGFS antibodies, Dr Seiji Ito for anti-PGE\textsubscript{2} antiserum, and Dr William Silvia for anti-PGF\textsubscript{M} antiserum. We are grateful to Mr Jan Klos and Ms Katarzyna Gromadzka-Hliwa for excellent technical assistance in the laboratory and Mr Michal Blitek for help in care and handling of animals. This research was supported partly by grant 2 P06D 041 26 from the State Committee for Scientific Research in Poland. The authors declare that there
is no conflict of interest that would prejudice the impartiality of this scientific work.

References

