Cross-regulation of cortisol secretion by adrenocorticotropin and platelet-activating factor in perfused guinea pig adrenals

Toshio Shimada, Taeko Hirose, Itsuro Matsumoto and Tadaomi Aikawa

Department of Physiology, Nagasaki University School of Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto-machi, Nagasaki 852-8523, Japan

(Correspondence should be addressed to T Shimada; Email: tshimada@net.nagasaki-u.ac.jp)

Abstract

We examined the cross-regulation of signaling between ACTH- and platelet-activating factor (PAF)-mediated steroidogenesis in the perfused guinea pig adrenal gland. Our method of in situ perfusion using an artificial medium can evaluate whether cortisol secretion in response to ACTH and PAF is interactive. Treating adrenal glands with 100 pg/ml ACTH diminished the subsequent cortisol response to 10 nM PAF. By contrast, PAF resulted in subsequent potentiation of ACTH-induced cortisol secretion. A mixture of 50 μM 1-α-1-oleoyl-2-acetyl-sn-glycerol (OAG), an activator of protein kinase C (PKC), and 3.3 μM calcium ionophore (A23187), or 10 μM forskolin (FRK) diminished the cortisol response to PAF, whereas that to ACTH was unaffected. Each of PAF, ACTH, or FRK eliminated the cortisol response to OAG plus A23187, whereas that to FRK was unaffected. These data show that the protein kinase A (PKA)-dependent processes activated by ACTH or FRK can interfere with PAF-induced signal transduction at receptor and post-receptor levels. In contrast, PKC-dependent processes activated by PAF promoted ACTH-signaling at receptor and post-receptor level. Cross-regulation between processes activated by PAF receptor–PKC and by ACTH receptor–PKA might function in the multifactorial regulation of adrenocortical steroidogenesis.

Introduction

Platelet-activating factor (PAF) is a potent mediator of immune and inflammatory responses, cardiovascular, reproductive, respiratory, metabolic, and nervous systems (Ishii & Shimizu 2000, Stafforini et al. 2003). We found that PAF is a potent activator of glucocorticoid secretion from the adrenal glands of dogs (Aikawa et al. 1991) and guinea pigs (Shimada et al. 2005) perfused with artificial medium. In perfused guinea pig adrenals, PAF acts mainly through a membrane receptor accompanied by protein kinase C (PKC) activation (Shimada et al. 2005). On the other hand, ACTH acts through its receptor, melanocortin-2 receptor (Clark & Cammas 1996), accompanied by protein kinase A (PKA) activation. The secretion of glucocorticoids in response to repeated infusions of adrenocorticotropic hormone (ACTH) or FRK is almost equal in perfused adrenal glands of dogs (Aikawa et al. 1986), mice (Yang et al. 1995), and guinea pigs (Shimada et al. 2005). By contrast, cortisol secretion in response to a second infusion of PAF was diminished (Shimada et al. 2005). Thus, PAF desensitizes steroidogenesis in a homologous manner through its own ligand. The mechanism of such receptor-specific homologous desensitization is agonist-dependent phosphorylation of the receptor by specific G-protein-coupled receptor kinases (GRKs). Since a second exposure to the PKC activator, OAG, together with A23187 elicited a diminished response (Shimada et al. 2005), we proposed that not only GRKs but also activated PKC eliminates PAF receptor-mediated cortisol secretion. These processes should be associated with the modulation of the receptor and post-receptor compounds. At the receptor level, receptors would be phosphorylated and substantially uncouple from G-protein. At the post-receptor level, PKC or phospholipase C (PLC) might be directly inactivated.

The present study examines cross-regulation of adrenal corticosteroidogenesis by pathways activated by PAF and ACTH.

Materials and Methods

Animals

Adult male Hartley guinea pigs weighing 490–780 g each, were group housed in cages with suspended steel-mesh floors in a well-ventilated room at 25 °C under a 12 h light:12 h darkness cycle. Sterilized laboratory guinea pig chow and water were made available ad libitum. The protocols conformed to the guidelines governing animal experiments issued by the Animal Care and Use Committee of Nagasaki University and the Physiological Society of Japan Guiding Principles for the Care and Use of Animals in the Fields of Physiological Sciences (revised 2002).
Drugs and reagents

We purchased 1-O-hexadecyl-2-acyl-sn-glycero-3-phosphocholine (PAF) from Bachem (Bettendorf, Switzerland). Synthetic adrenocorticotropic hormone 1–24 (ACTH; Cortrosyn) was obtained from Organon (Boxtel, Holland). Forskolin (FRK) was purchased from Wako Pure Chemical Industries (Osaka, Japan) and 1-α-1-octadecyl-2-acyl-sn-3-glycerol (OAG), which was obtained from Avanti Polar-Lipids (Alabaster, AL, USA.). BSA (fraction V) was obtained from Sigma. Krebs–Ringer bicarbonate glucose (KRBG) contained NaHCO₃ and 10 mM glucose.

Perfusion of adrenal glands

The bilateral adrenal glands of guinea pigs were perfused in situ with fresh KRBG containing 0.2% BSA and equilibrated with 95% O₂ and 5% CO₂ as described previously (Shimada et al. 2005). Briefly, the animals were anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, Washington, anesthetized with an i.p. injection of pentobarbital sodium (Somnopentyl; 3.8 mg/100 g; Pitman-Moore, W
Results

Secretory response of cortisol to ACTH and PAF after exposure to PAF and ACTH respectively

To study the effect of ACTH and PAF cross-regulation on the secretory response of cortisol in the perfused guinea pig adrenal, 10 nM PAF was perfused for 45–50 min before 100 pg/ml ACTH (Fig. 1A). We also similarly examined the cortisol response to PAF after ACTH perfusion (Fig. 1B). As the cortisol response to ACTH after saline infusion (vehicle control) was almost equal to the first and second infusions of repeated exposure to ACTH, we compared the response to second infusions of ACTH (Fig. 1B) with the first one (Fig. 1A). Exposure to PAF potently augmented subsequent cortisol release in response to ACTH; the rate of maximal cortisol secretion induced by the second perfusion with ACTH was significantly augmented (Fig. 1A). By contrast, ACTH attenuated subsequent cortisol release in response to PAF; the rate of maximal cortisol secretion induced by the second PAF infusion was significantly attenuated (Fig. 1B). The total amounts of cortisol secretion in response to the second perfusions with ACTH and PAF were 162.8 and 40.9% when compared with the initial responses (Fig. 1C and Table 1). Thus, PAF augmented ACTH-mediated cortisol secretion, and ACTH diminished PAF-mediated cortisol secretion.

Secretory responses of cortisol to PAF and FRK after perfusion with FRK and PAF respectively

To determine whether PKA participates in the cross-regulation of cortisol secretion by ACTH and PAF, FRK, an activator of cAMP–PKA pathways, was perfused before PAF (Fig. 2A). Cortisol secretion induced by 10 nM PAF after perfusion with 10 μM FRK resulted in potent suppression. The total amount of cortisol secretion in response to the second perfusions with PAF was 15-9% when compared with the initial responses (Fig. 2C). On the contrary, PAF potently augmented subsequent

Figure 1 Effect of PAF on ACTH-induced cortisol secretion and vice versa. (A) We perfused adrenals with 10 nM PAF for 5 min (bar above curve) then with 100 pg/ml ACTH for 5 min (bar above curve), and monitored cortisol production. (B) Adrenals were perfused with 100 pg/ml ACTH followed by 10 nM PAF and cortisol secretion was monitored. (C) Total amounts of cortisol secretion during first and second perfusions with ACTH and PAF were as follows: 13.6±1.9 and 22.1±2.8 μg/100 mg adrenal wt./30 min for ACTH, and 3.3±0.3 and 11.4±0.4 μg/100 mg adrenal wt./15 min for PAF. All data are shown as means±S.E.M. (n=6).

**P<0.01, *P<0.05 versus basal value (immediately before perfusion with compounds); †P<0.01, †P<0.05 and ‡P<0.01, ‡P<0.05 first versus second perfusion.
cortisol release in response to FRK (Fig. 2B), and the rate of sub-maximal cortisol secretion induced by the second perfusion with FRK was potently augmented. PAF caused a consistent, but not statistically significant, augmentation in the total amounts of cortisol secretion in response to the second perfusion with FRK (Fig. 2C). Thus, PAF augmented FRK-mediated cortisol secretion, and PKA activated by FRK participates in heterologous desensitization of PAF-induced cortisol secretion.

Table 1 Summary of experimental results

<table>
<thead>
<tr>
<th>First application</th>
<th>Second application</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAF</td>
<td>ACTH</td>
</tr>
<tr>
<td>PAF</td>
<td>↓</td>
</tr>
<tr>
<td>ACTH</td>
<td>↓</td>
</tr>
<tr>
<td>OAG + A23187</td>
<td>↓</td>
</tr>
<tr>
<td>Forskolin</td>
<td>–</td>
</tr>
</tbody>
</table>

↓, ↑, or – indicates a decrease, increase, or no change respectively, in the total amounts of cortisol secretion in response to second application of 10 nM PAF, 100 pg/ml ACTH, 50 μM OAG plus 3-3 μM A23187, and 10 μM FRK when compared with those of first applications.

To confirm whether PKC participates in the cross-regulation of cortisol secretion by ACTH and PAF, OAG plus A23187, a direct PKC activator, was perfused before ACTH (Fig. 3A). The cortisol response to 100 pg/ml ACTH after 50 μM OAG plus 3-3 μM A23187 was unaffected. By contrast, ACTH potently attenuated subsequent cortisol release in response to OAG plus A23187 (Fig. 3B). The total amounts of cortisol secretion in response to the second perfusions with ACTH and OAG plus A23187 were 119.7 and 47.0% respectively, when compared with the initial responses (Fig. 3C and Table 1). Thus, ACTH-mediated activation of PKA diminishes the OAG plus A23187-induced cortisol secretion, and PKC activated by OAG plus A23187 did not significantly affect ACTH-mediated one.

Figure 2 Effect of FRK on PAF-induced cortisol secretion and vice versa. (A) Adrenals were perfused with 10 μM FRK for 5 min (bar above curve) followed by 10 nM PAF for 5 min (bar above curve), and cortisol secretion was monitored. (B) Adrenals were perfused with 10 nM PAF followed by 10 μM FRK, and cortisol production was monitored. (C) Total amounts of cortisol secretion during first and second perfusions with PAF and FRK were as follows: 4.1 ± 1.9 and 2.0 ± 0.2 (μg/100 mg adrenal wt./15 min) for PAF, and 3.7 ± 0.7 and 5.2 ± 0.8 (μg/100 mg adrenal wt./30 min) for FRK. All data are shown as means ± S.E.M. (n=6). For significance of differences, see Fig. 1.
10 μM FRK after 50 μM OAG plus 3-3 μM A23187 was unaffected. By contrast, the cortisol response to OAG plus A23187 after FRK was diminished (Fig. 4B). The total amounts of cortisol in response to the second perfusions with FRK and OAG plus A23187 were 109-9 and 57-1% when compared with the initial responses (Fig. 4C; Table 1). Thus, PKA activated by FRK diminished OAG plus A23187-induced cortisol secretion, but PKC activated by OAG plus A23187 did not affect the FRK-activated one.

Secretory response of cortisol to ACTH after FRK and vice versa

To confirm whether PKA affects ACTH-induced cortisol secretion, FRK was perfused before ACTH (Fig. 5A). The cortisol response to 100 pg/ml ACTH after 10 μM FRK was unaffected. Similarly, ACTH did not affect subsequent cortisol release in response to FRK (Fig. 5B). The total amounts of cortisol in response to the second perfusions with ACTH and FRK were 79-7 and 104-2% respectively, of the initial responses (Fig. 5C; Table 1). Thus, the ACTH receptor–cAMP–PKA pathway is almost completely free of desensitization.

Discussion

This study characterizes the functional properties of the short-term cross-regulation of PAF- and ACTH-mediated cortisol secretion using in situ perfusion of the guinea pig.
The PAF receptor interacts with multiple G-proteins, Gq/11 and Gi, leading to the simultaneous stimulation of distinct signaling pathways. While the ACTH receptor interacts preferentially with stimulatory G-protein (Gs) to stimulate adenylyl cyclase (AC), coupling to inhibitory G-protein (Gi) has also been reported (Cote et al. 2001, Martini et al. 2004). However, the net effect of Gi activation is the stimulation of cAMP production via the βγ-subunit of Gi and not AC inhibition through the αi subunit (Cote et al. 2001).

Prior perfusion with PAF preferentially enhanced cortisol secretion in response to ACTH (Fig. 1A). Angiotensin II (ANG II) and ACTH are major hormonal regulators of the adrenal zona glomerulosa and zona fasciculata. In adrenal glomerulosa and fasciculata cells, ANG II enhances subsequent ACTH-induced AC activity and the steroidogenic response (Langlois et al. 1992, Baukal et al. 1994). Since the actions of PAF and ANG II are mediated by PKC activation, we evaluated the effects of an activator of the PKC pathway on the cortisol response to ACTH. OAG plus A23187 did not significantly augment the subsequent cortisol response to ACTH (Fig. 3A). This means that direct PKC activation cannot mimic the potentiating effect of PAF. This finding suggests that Gq/11 activation by PAF binding to the receptor is required for potent augmentation of the cortisol response to ACTH. Although ANG II potentiates the stimulatory effect of ACTH in glomerulosa cells, the PKC activator, phorbol 12-myristate 13-acetate (PMA), only partially mimics the effect of ANG II (Langlois et al. 1992). Besides, these actions of ANG II and PMA are prevented by pre-incubation with calcineurin (Ca2+/calmodulin-dependent protein phosphatase) inhibitors (Baukal et al. 1994). The dual regulation system mediated by Ca2+-calmodulin and PKC might explain why ACTH-induced cortisol secretion can be regulated through phosphorylation and dephosphorylation steps that control the activities of ACTH receptor-coupled G-proteins and/or AC. Figs 2B and 4A show that PAF significantly augmented but OAG plus A23187 did not affect the cortisol response to FRK. Two sites of enhancement of ACTH receptor-mediated signaling should be considered. One is at the receptor and/or G-protein level, namely, a result of greater turnover of Gs or attenuation of αi subunit of Gi that renders receptors resistant to inactivation and the other is the potentiation of AC activity. The results indicate that PKC-dependent processes activated by PAF promote ACTH signaling at receptor and post-receptor levels.

Our previous results have indicated that the secretory response of cortisol to repeated infusions of ACTH (Aikawa et al. 1986, Yang et al. 1995, Shimada et al. 2005) or FRK (Shimada et al. 2005) is almost equal (Table 1). The results suggest that either desensitizing or potentiating regulation is absent in PKA-induced
steroidogenesis. However, short- and long-term incubations with ACTH have generated contradictory results in terms of regulation of the numbers of ACTH receptors and the production of glucocorticoids. Some investigators have found up-regulation (Penhoat et al. 1989, Lebrethon et al. 1994), whereas others have found down-regulation or no effect (Sheela Rani et al. 1983, Lamberts et al. 1987, Kilianova et al. 2006). To verify the effect of activated PKA on ACTH-induced cortisol secretion, we perfused adrenal glands with FRK and found that the subsequent cortisol response to ACTH was unaffected (Fig. 5A). Although the ACTH receptor has potential sites for phosphorylation by PKC and PKA in the second and/or third cytoplasmic loops (Clark & Cammas 1996), such sites might not be correlated with susceptibility to desensitization or potentiation.

Within seconds or minutes of PAF challenge, cells can diminish or virtually eliminate agonist-evoked responses. Such desensitization involves phosphorylation of the receptors on one or more intracellular domains and the uncoupling of receptors from signal-transducing G-proteins. Short-term desensitization of receptors can be either homologous or heterologous. The former is restricted to the agonist-occupied form of the receptor, being mediated through phosphorylation by GRK (Chuang et al. 1992). We indicated that repeated PAF infusion desensitizes cortisol secretion in response to PAF in a homologous manner (Shimada et al. 2005). Heterologous desensitization occurs independently of receptor binding by a ligand and is mediated through phosphorylation by activated PKC and/or PKA. Agonists that target different receptors or exposure to desensitizing compounds induce this type of desensitization. These phosphorylation phenomena promote the binding of an arrestin to receptors, which prevents subsequent coupling of the receptor to the G-protein. Both homologous and heterologous types of desensitization are adaptive physiological processes that terminate hyper-responsiveness. After 30 min to several hours of exposure to an agonist, short-term desensitization is augmented by internalization of a plasma membrane receptor into intracellular vesicles, and the receptors become down-regulated (Ferguson 2001).

Cross-desensitization among receptors for PAF and peptide chemoattractants (N-formylpeptide, a cleavage product of the fifth component of complement (C5a) and interleukin-8) demonstrated that although the response to PAF was cross-desensitized by these peptide ligands, PAF did not cross-desensitize the responses to any of the peptide chemoattractants. The cross-desensitization of PAF receptor

![Figure 5](image-url)
induced by peptide chemoattractants was a consequence of PAF receptor cross-phosphorylation (Tomhave et al. 1994, Richardson et al. 1996). We found that ACTH preferentially attenuated the cortisol response to subsequent PAF exposure (Fig. 1B). Prior ACTH exposure interferes with ANG II-induced signaling and aldosterone production in adrenal glomerulosa cells (Yoshida et al. 1991). Since the action of ACTH is mediated by PKA activation, heterologous desensitization of PAF and ANG II receptors by PKA might be involved in desensitization of the adrenal fasciculata and glomerulosa cells. Therefore, we evaluated the effects of an activator of the cAMP–PKA pathway and found that prior perfusion with FRK significantly inhibited the cortisol response to PAF (Fig. 2A). Prior incubation with cAMP also interferes with the signaling pathway of ANG II in adrenal glomerulosa cells (Yoshida et al. 1991). These results indicate that PKA plays a pivotal role in heterologous desensitization of PAF and ANG II receptors by PKA. In contrast to numerous agonist-dependent and -independent PKC phosphorylation sites, the cytoplasmic tail of the human PAF receptor has only one consensus sequence for PKA phosphorylation (Kennelly & Krebs 1991). While differences in phosphorylation sites might be correlated with the difference in susceptibility to desensitization, such sites should play a pivotal role in cross–desensitization. Moreover, ACTH or FRK attenuated the subsequent cortisol response to OAG plus A23187 (Figs 3B and 4B). This evidence indicates that the PKA-dependent processes activated by ACTH or FRK can interfere with PAF signal transduction at the receptor and post-receptor levels.

We clarified the effect of OAG plus A23187 on the cortisol response to PAF. Prior perfusion with OAG plus A23187 preferentially attenuated the cortisol response to PAF (Fig. 6A), indicating that PKC plays a pivotal role in PAF receptor desensitization. Likewise, PKC activators inhibit PAF binding and signaling (Schwertschlag & Whorton 1988, Yamazaki et al. 1989, Ali et al. 1994). These results suggest that at least three kinases (most likely PKA, PKC, and GRKs) phosphorylate and desensitize PAF receptors. The other two sites of interference in PAF receptor-mediated signaling are at the PLC and PKC levels. In RBL-2H3 cells that express the PAF receptor, PKC but not PKA phosphorylates PLCβ3, resulting in the attenuation of responses stimulated by PAF (Ali et al. 1997). We found that since the cortisol response to OAG plus A23187 was attenuated by prior exposure to PAF (Fig. 6B) or this mixture (Shimada et al. 2005; Table 1), the membrane–associated form of PKC might be readily degraded by proteolysis (Kishimoto et al. 1989).

The most fundamental issue is the physiological significance of PAF and ACTH cross-regulation in the adrenal fasciculata. Under physiological conditions, sub-nanomolar or nanomolar concentrations of PAF circulate in the bloodstream.
Cross-regulation of signaling of PAF and ACTH

Acknowledgements

The authors thank Mr Yukinori Hirayama for skillful technical assistance. This study was supported in part by grants from the Ministry of Education, Science and Culture, Japan. The use of the Laboratory Animal Center for Biomedical Research at the Medical School of Nagasaki University is gratefully acknowledged. The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

References

Cross-regulation of signaling of PAF and ACTH · T SHIMADA and others 37

www.endocrinology-journals.org

Received in final form 25 July 2007
Accepted 7 August 2007
Made available online as an Accepted Preprint 9 August 2007