Liver-derived IGF1 enhances the androgenic response in prostate

Johan Svensson, Jon Kindblom1, Ruijin Shao2, Sofia Movérare-Skritic, Marie K Lagerquists, Niklas Andersson, Klara Sjögren, Katrien Venken3, Dirk Vanderschueren3, John-Olov Jansson, Olle Isaksson and Claes Ohlsson

Division of Endocrinology, Department of Internal Medicine, Sahlgrenska Academy, Sahlgrenska University Hospital, Göteborg University, Gröna Stråket 8, SE-413 45 Göteborg, Sweden
1Department of Oncology, Sahlgrenska University Hospital, SE-41345 Göteborg, Sweden
2Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Göteborg University, SE-40530 Göteborg, Sweden
3Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Box 902, B-3000 Leuven, Belgium

(Correspondence should be addressed to J Svensson; Email: johan.svensson@medic.gu.se)

Abstract

Both IGF1 and androgens are major enhancers of prostate growth and are implicated in the development of prostate hyperplasia and cancer. The aim of the present study was to investigate whether liver-derived endocrine IGF1 modulates the androgenic response in prostate. Mice with adult, liver-specific inactivation of IGF1 (L1-IGF1−/− mice) displayed an ~80% reduction in serum IGF1 levels associated with decreased prostate weight compared with control mice (anterior prostate lobe −19%, P<0.05; dorsolateral prostate (DLP) lobe −35%, P<0.01; ventral prostate (VP) lobe −47%, P<0.01). Reduced androgen receptor (Ar) mRNA and protein levels were observed in the VP lobe (−34% and −30% respectively, both P<0.05 versus control mice). Analysis of prostate morphology showed reductions in both the glandular and fibromuscular compartments of the VP and DLP lobes that were proportional to the reductions in the weights of these lobes. Immunohistochemistry revealed reduced intracellular AR immunoreactivity in the VP and DLP lobes. The non-aromatizable androgen dihydrotestosterone increased VP weight to a lesser extent in orchiectomized (ORX) L1-IGF1−/− mice than in ORX controls (−40%, P<0.05 versus control mice). In conclusion, deficiency of liver-derived IGF1 reduces both the glandular and fibromuscular compartments of the prostate, decreases AR expression in prostate, and reduces the stimulatory effect of androgens on VP weight. These findings may explain, at least in part, the well-known clinical association between serum IGF1 levels and conditions with abnormal prostate growth. Journal of Endocrinology (2008) 199, 489–497

Introduction

The GH/IGF1 axis as well as androgens is involved in the regulation of prostate size and is implicated in the development of prostate cancer (Djavan et al. 2001, Jerome et al. 2003, Lam et al. 2006, Samani et al. 2007). However, little is known of the in vivo interaction between the GH/IGF1 axis and androgens for the regulation of prostate growth (Djavan et al. 2001, Jerome et al. 2003, Samani et al. 2007).

Clinical and experimental studies have demonstrated that both GH and IGF1 have the capacity to increase prostate size, but it is unclear whether all of the effect of GH on prostate size is mediated via IGF1 (Colao et al. 1998, 2003). In humans, several population-based epidemiological studies suggest a positive association between high circulating IGF1 levels and risk of prostate cancer (Mantzoros et al. 1997, Chan et al. 1998, Wolk et al. 1998). By contrast, a high serum level of IGF-binding protein-3 (IGFBP3) appears to protect against the development of prostate cancer (Kanety et al. 1993, Chan et al. 1998). A high IGF1/IGFBP3 ratio has, therefore, been suggested to be a risk factor for prostate cancer (Djavan et al. 2001). Acromegalic patients have excess GH, increased prostate size (Colao et al. 1998), and increased risk of colorectal cancer (Orme et al. 1998), but no increase in prostate cancer (Orme et al. 1998). The latter could be due to the fact that not only serum IGF1 levels but also serum IGFBP3 levels are increased in these patients (Djavan et al. 2001). The assumption that the IGF1 system is involved in prostate cancer is supported by the fact that prostate–specific antigen, an established biomarker for prostate cancer, cleaves and inactivates IGFBP3 (Cohen et al. 1992, 1994b), thereby enhancing the bioavailability of IGF1.

In vitro studies have demonstrated that several components of the IGF1 system are involved in the regulation of the growth of prostate-derived cells (Perkel et al. 1990, Cohen et al. 1991, 1994a,b). In primary culture, the prostatic epithelial cells express the IGF1 receptor and IGF1 stimulates them to proliferate and to produce IGFBPs into the medium.
(Perkel et al. 1990, Cohen et al. 1991). Prostatic stromal cells also express the IGF1 receptor (Cohen et al. 1994a,b,c), and there is local production of IGF1 in these cells (Kaplan et al. 1999, Meinbach & Lokeswar 2006). The locally produced IGF1 from the stromal cells can act in a paracrine fashion on the prostatic epithelial cells (Meinbach & Lokeswar 2006), which raises the possibility that locally produced IGF1, rather than circulating IGF1, could be important for prostate growth.

The major part of serum IGF1 is liver derived (Sjögren et al. 1999, Yakar et al. 1999). A mouse model with liver-specific, inducible inactivation of the \(I_{g}f1 \) gene, using the Cre-LoxP conditional knockout system, has been developed (LI-IGF1 \(^{-/-} \) mice; Sjögren et al. 1999, 2001, 2002, Tivesten et al. 2002). The selective inactivation of the \(I_{g}f1 \) gene in the liver results in an \(~80\%\) reduction in circulating IGF1. The expression of IGF1 in peripheral tissues is not reduced (Sjögren et al. 1999), and the LI-IGF1 \(^{-/-} \) mice do not have any major disturbance in postnatal growth (Sjögren et al. 1999). The LI-IGF1 \(^{-/-} \) mice have increased GH secretion secondary to the decrease in serum IGF1 level (geometric mean plasma GH level 3.1 times higher than that in control mice (Sjögren et al. 1999, Wålmenius et al. 2001)). In addition, the LI-IGF1 \(^{-/-} \) mice have unchanged serum concentration of IGFBP1, whereas IGFBP2 and IGFBP3 in serum are decreased (Sjögren et al. 2002).

Thus, it is generally accepted that IGF1 and androgens are two major regulators of prostate size but little is known whether, in vivo, these two pathways converge in the regulation of prostate size. Moreover, there is little information about the relative importance of circulating versus locally produced IGF1 for prostate growth. The aim of the present study was to investigate whether liver-derived endocrine IGF1 modulates the androgenic response in prostate.

Materials and Methods

Animals

The Mx-Cre 31 strain and mice with exon 4 of the \(I_{g}f1 \) gene flanked by LoxP sites were generated and intercrossed as described previously (Kuhn et al. 1995, Liu et al. 1998, Sjögren et al. 1999). The different genotypes were identified by PCR analyses of DNA from tail biopsies. Mice homozygous for LoxP and heterozygous for Mx-Cre were given polyinosinic-polycytidylic acid (PiPc, 6.25 \(\mu \)g/g body weight; Sigma-Aldrich Corp. Sweden AB) in three i.p. injections at 4 weeks of age to induce expression of the Cre protein in hepatocytes (Kuhn et al. 1995). This treatment results in a specific and complete inactivation of IGF1 in hepatocytes (Sjögren et al. 1999, 2001, 2002). PiPc-treated littermates, homozygous for LoxP but lacking Mx-Cre, were used as controls. The animals had free access to fresh water and food pellets (B&K Universal AB, Sollentuna, Sweden). The Ethics Committee of Göteborg University approved this study.

Study design

Experiment 1 Four-month-old male control (\(n=8 \)) and LI-IGF1 \(^{-/-} \) (\(n=8 \)) mice were killed. The urogenital tract was removed including the seminal vesicles (SVs), coagulating glands, urethra, and bladder. The individual prostate lobes and SVs were then carefully dissected and separated. Dissections were carried out in Hanks buffer, Mg-free (Gibco), under a Nikon dissection microscope. Wet weights of prostate lobes and SVs were obtained by electronic scale immediately upon dissection. The ventral prostate (VP) was then split and one half was used for the determination of androgen receptor (AR) protein level using western blot analysis. The other half, as well as the anterior prostate (AP) and dorsolateral prostate (DLP) lobes, was used for morphological analyses and immunohistochemistry.

Experiment 2 To investigate the effect of androgen stimulation on VP in male LI-IGF1 \(^{-/-} \) mice, other mice were either sham operated or orchidectomized (ORX) at 3 months of age. At this age, the mice are sexually matured and they no longer grow rapidly but at a slow steady state. Then, the mice received 5-week treatment with either vehicle (V) or the non-aromatizable androgen DHT (45 \(\mu \)g/day) administered via s.c. silastic implants (Silclear Tubing; Degania Silicone, Ltd, Jordan Valley, Israel) in the cervical region (Vandenput et al. 2002). V-treated animals received empty implants. DHT was obtained from Sigma Chemical Co.. At the end of the 5-week treatment, the mice were killed, the blood was collected for the analysis of serum IGF1 level and the wet weight of VP was determined. In addition, in the sham-operated, gonadal intact male control and LI-IGF1 \(^{-/-} \) mice, serum levels of testosterone and estradiol were determined, as well as mRNA levels of AR and IGF1, estrogen receptor-\(\alpha \), and estrogen receptor-\(\beta \) in VP tissue using RT-PCR. The number of animals in each group was as follows: sham operated (control, \(n=6 \); LI-IGF1 \(^{-/-} \), \(n=8 \)); ORX V treated (control, \(n=8 \); LI-IGF1 \(^{-/-} \), \(n=8 \)); or ORX DHT treated (control, \(n=6 \); LI-IGF1 \(^{-/-} \), \(n=8 \)).

Histology

Prostate lobes from 4-month-old LI-IGF1 \(^{-/-} \) and control mice (Experiment 1) were removed as described, and thereafter fixed in 4% paraformaldehyde in PBS (pH 7.4) overnight, dehydrated, and embedded in paraffin. Fixation times were identical in both groups. The paraffin block was cut into 5 \(\mu \)m serial sections. Three adjacent sections from three different levels of each gland were taken to make a single observation. Anatomical analysis was performed on the sections stained with hematoxylin and eosin. Adjacent sections from each level were stained by immunohistochemistry for the detection of AR.
Tris, 150 mM NaCl, and 0.1% Tween 20 (pH 8.0)) for 2 h and non-fat milk in a Tris-buffered saline–Tween 20 buffer (10 mM (Amersham International), the blots were incubated with 5%

After transferring to polyvinyl difluoride membranes a Bis–Tris–MOPS buffer system under reducing conditions. SDS–polyacrylamide gels (Novex, San Diego, CA, USA) with

of protein were directly electrophoresed on 4–12%

4

Santa Cruz Biotechnology, Inc.) in blocking buffer overnight at

subsequently probed with the AR antibody (at 1:250, sc-816; Pierce, Rockford, IL, USA). Western blot analyses were

performed using standard procedures to evaluate the abundance

Protein extraction and western blot analysis

The protein preparation of the selected VP lobes was essentially performed as described previously (Shao et al. 2006, 2007). The protein content was determined using the BCA protein assay (Pierce, Rockford, IL, USA). Western blot analyses were performed using standard procedures to evaluate the abundance and distribution of AR (Shao et al. 2007). Fifty micrograms of protein were directly electrophoresed on 4–12% SDS–polyacrylamide gels (Novex, San Diego, CA, USA) with a Bis–Tris–MOPS buffer system under reducing conditions. After transferring to polyvinyl difluoride membranes (Amersham International), the blots were incubated with 5% non-fat milk in a Tris-buffered saline–Tweed 20 buffer (10 mM Tris, 150 mM NaCl, and 0.1% TWEEN 20 (pH 8.0)) for 2 h and subsequently probed with the AR antibody (at 1:250, sc-816; Santa Cruz Biotechnology, Inc.) in blocking buffer overnight at 4 °C. The following day, the membranes were incubated with alkaline phosphatase-conjugated goat-anti-rabbit antibody (at 1:40 000, AC31RL; Tropix, Bedford, MA, USA) and detected using CDP-Star substrate for alkaline phosphatase system (Tropix). Immunoblotted signals were exposed and developed using ECL film (Amersham International) and subsequently scanned into a computer. Individual bands were quantified directly from membranes by densitometry using the ImageQuant (version 5.0) software program (Molecular Dynamics, Sunnyvale, CA, USA). Signal intensities of the mouse AR protein were normalized to the gels stained with Coomassie blue as ratios to produce arbitrary densitometric units (ADU) of relative abundance. To standardize the assay for the measurement of AR proteins, we examined different starting protein concentrations for individual sample. This study demonstrated the linearity and validity of ADU for all immunoreactive bands in western blot analysis (Shao et al. 2006). All steps were carried out at room temperature, unless otherwise stated.

Table 1 The assays from Applied Biosystems used in the RT-PCR analyses of prostate tissue samples

<table>
<thead>
<tr>
<th>Accession number</th>
<th>TaqMan® assay identification number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_013476</td>
<td>Mm00442688_m1</td>
</tr>
<tr>
<td>NM_007956</td>
<td>Mm00433149_m1</td>
</tr>
<tr>
<td>NM_010157</td>
<td>Mm00599819_m1</td>
</tr>
<tr>
<td>NM_184052</td>
<td>Mm00439539_m1</td>
</tr>
</tbody>
</table>
Statistical analyses

All the descriptive statistical results are presented as the mean ± s.e.m. Between-group differences were calculated using unpaired t-tests. A two-tailed \(P < 0.05 \) was considered significant.

Results

Inactivation of liver-derived IGF1

In all experiments, liver-specific inactivation of the Igf1 gene was induced at 4 weeks of age as described in the Materials and Methods section.

Experiment 1: prostate weight, histology, immunohistochemistry, and AR protein level

Prostate weight In 4-month-old control \((n=8)\) and LI-IGF1\(^{-/-}\) \((n=8)\) mice, serum IGF1 concentration was reduced by 73% in the LI-IGF1\(^{-/-}\) mice, whereas body weight was similar in both groups (Table 2). Prostate and the SV weights were lower in the LI-IGF1\(^{-/-}\) mice compared with the control mice (total prostate \(-31\%, P<0.001;\) AP lobe \(-19\%, P<0.05;\) DLP lobe \(-35\%, P<0.01;\) VP lobe \(-47\%, P<0.01,\) and SV \(-26\%, P<0.01;\) Table 2). All the reductions in prostate and SV weights in the LI-IGF1\(^{-/-}\) mice remained also after correction for body weight (Table 2).

Effects of liver-derived IGF1 on the glandular and fibromuscular components of the prostate gland In the glandular compartment of the DLP and VP lobes, there was a reduction in luminal size and the secretory activity of the epithelium appeared diminished in the 4-month-old LI-IGF1\(^{-/-}\) mice compared with the controls (Fig. 1A). In the AP lobe (also known as coagulating gland) a moderate and non-uniform nuclear staining in epithelial and stromal cells was seen in both LI-IGF1\(^{-/-}\) and control mice (Fig. 1B).

Liver-derived IGF1 regulates AR protein level in VP

In the 4-month-old mice that had received no treatment, AR protein level in VP tissue was analyzed using western blot analysis. These analyses showed a 30% reduction, both in terms of absolute and relative levels, of AR protein level in the VP of the LI-IGF1\(^{-/-}\) mice compared with the control mice (Fig. 2).

Immunohistochemical localization of AR in prostate Both the DLP and VP lobes of 4-month-old control mice displayed nearly uniform nuclear AR staining (moderate to intense) of glandular epithelial cells (Fig. 1B). By contrast, nuclear AR staining in the glandular epithelium of both the DLP and VP lobes of the LI-IGF1\(^{-/-}\) mice was non-uniform and less intense (bottom row). A majority of stromal cells in the DLP and VP of control mice displayed moderate-to-intense AR nuclear staining. In the stromal compartment of LI-IGF1\(^{-/-}\) prostate, a more heterogenic AR staining pattern was observed (Fig. 1B). The same pattern was seen in the SV (not shown). In the AP lobe a moderate and non-uniform nuclear staining in epithelial and stromal cells was seen in both LI-IGF1\(^{-/-}\) and control mice (Fig. 1B).

Liver-derived IGF1 modulates the response to DHT treatment on VP weight At 3 months of age, control and LI-IGF1\(^{-/-}\) mice were started on treatment with the non-aromatizable androgen dihydrotestosterone (DHT;...
The mean weight of the VP lobe (the prostate lobe that displayed the most reduced weight in the LI-IGF1−/− mice in Experiment 1) was reduced by 25% (Fig. 3A) and the mean weight of the SV was reduced by 33% (Fig. 3B) in the LI-IGF1−/− mice compared with the control mice in the sham-operated group. As expected, the ORX LI-IGF1−/− and ORX control mice that had received DHT treatment had increased VP and SV weights compared with the vehicle-treated controls (Fig. 3A and B). Interestingly, VP and SV weights were significantly lower in the DHT-treated LI-IGF1−/− mice compared with the DHT-treated control mice (Fig. 3A and B). The lower VP and SV weights after DHT treatment in the LI-IGF1−/− mice remained also after correction for body weight (Fig. 3C and D). In the sham-operated group, the reduction in VP weight lost statistical significance after correction for body weight (−14%, P = 0.2 versus sham-operated control mice; Fig. 3C), whereas the reduction in SV weight remained significant (Fig. 3D).

Liver-derived IGF1 modulates Ar mRNA levels in VP To determine whether the reduced response to androgen treatment with DHT on VP weight in the LI-IGF1−/− mice was associated with decreased Ar mRNA level, the levels of Ar mRNA in VP tissue were measured using RT-PCR. The sham-operated, gonadal intact LI-IGF1−/− mice displayed a 34% reduction in the Ar mRNA levels in VP when compared with sham-operated, gonadal intact control mice (P < 0.05, Fig. 4A). By contrast, Igf1 mRNA levels in VP were similar in the gonadal intact LI-IGF1−/− mice compared with the gonadal intact controls (Fig. 4B). There was no between-group difference in the levels of mRNA coding for estrogen receptor-α or -β in the VP (Table 4).

Discussion

The possible interaction between IGF1 and androgens for the regulation of prostate weight was investigated in the present study. We here demonstrate that deficiency of liver-derived, endocrine IGF1 results in reduced prostate weight due to a proportional reduction in both the glandular and fibromuscular compartments. Deficiency of liver-derived IGF1 also reduced both Ar mRNA and protein levels in the prostate, and reduced the stimulatory effect of androgen treatment with DHT on VP weight. These findings demonstrate that IGF1 and androgens interact in the regulation of prostate growth.

Transgenic mice with global inactivation of the Igf1 gene (Ruan et al. 1999), as well as mice overexpressing a GH antagonist (Ruan et al. 1999), have decreased prostate size (Ruan et al. 1999). However, the role of IGF1 in adult animals is difficult to evaluate in these mice strains due to the possible effect of the absence of IGF1 activity during development. Moreover, there is a local production of IGF1 in the prostate (Kaplan et al. 1999, Meinbach & Lokeshwar 2006), which is depleted in mice with global IGF1 knockout. By contrast, the LI-IGF1−/− mice do not have decreased liver IGF1 expression until the inactivation

Figure 1 Effects of liver-derived IGF1 on prostate morphology and androgen receptor (AR) immunoreactivity. (A) Representative histological sections (original magnification 100×) from 4-month-old LI-IGF1−/− and control mice. A reduction in glandular size, luminal area, and the fibromuscular stromal compartment surrounding the glandular structures was evident in both the dorsolateral prostate (DLP) and ventral prostate (VP) lobes of LI-IGF1−/− mice (bottom row). These reductions in both the glandular and fibromuscular compartments of the VP and DLP lobes were proportional to the reductions in the weights of these lobes. (B) Representative histological sections (original magnification 200×; insets original magnification 400×) of prostate glands stained for the AR. Both the DLP and VP of control mice displayed a uniform nuclear AR staining (moderate to intense) in glandular epithelial and stromal cells (top row). By contrast, nuclear AR staining in glandular epithelium and stromal cells of both the DLP and VP of LI-IGF1−/− mice was non-uniform and less intense (bottom row). In the anterior prostate (AP) lobe (also known as coagulating gland), a moderate and non-uniform nuclear staining in epithelial and stromal cells was seen in both LI-IGF1−/− and control mice (third column). Full colour version of this figure available via http://dx.doi.org/10.1677/JOE-08-0406

45 μg/day). After 5 weeks, body weight was similar in the sham-operated control and LI-IGF1−/− mice, whereas it was reduced in the ORX vehicle-treated and the ORX DHT-treated LI-IGF1−/− mice (Table 3). In the LI-IGF1−/− mice, serum IGF1 levels were reduced by 78% in the sham-operated group, by 74% in the ORX vehicle-treated group, and by 82% in the ORX DHT-treated group (Table 3). Serum estradiol and testosterone levels, which were determined only in the sham-operated, gonadal intact mice, were similar in the LI-IGF1−/− and control mice (Table 3).
at 4 weeks of age and the \(\text{Igf1} \) mRNA levels, as investigated in the present study, are unaffected in VP. The inactivation of liver-derived IGF1 at 4 weeks of age resulted in a marked and maintained reduction in serum IGF1 level. The decreased prostate weight observed in the present study was therefore not, or only to a small extent, due to developmental changes in the prostate or suppressed local IGF1 production in the adult LI-IGF1\(^{−/−}\) mice.

Acromegalic patients, who have high serum levels of both GH and IGF1, have increased prostate size (Colao et al. 1998). Conversely, prostate size is decreased when compared with controls in GH-deficient adult humans with low serum GH and IGF1 values (Colao et al. 2003), and GH replacement therapy increases both serum IGF1 levels and prostate size in these patients (Colao et al. 2003). These clinical findings demonstrate that GH has the capacity to increase prostate size, but they do not establish whether this effect is mediated via IGF1. The LI-IGF1\(^{−/−}\) mice have an \(\sim 80\% \) reduction in serum IGF1 concentration and compensatory increased GH secretion with a geometric mean plasma GH level 3.1 times higher than that in control mice (Sjögren et al. 1999, Wallenius et al. 2001). The present results, with decreased prostate size in the LI-IGF1\(^{−/−}\) mice, suggest that circulating GH cannot increase prostate size without a concomitant increase in circulating IGF1, and that the combination of high circulating GH and low circulating IGF1 even results in decreased prostate size. Therefore, the increased prostate size in acromegaly and during GH replacement in GH-deficient humans is likely due to the increased serum IGF1 levels.

In adults with GH deficiency and low serum IGF1 values, combined GH and testosterone treatment has additive effects on prostate size (Colao et al. 2003). In the present study, the response to androgen treatment with DHT on VP weight was determined. DHT treatment was given because DHT, in contrast to testosterone, cannot be aromatized to estrogens and therefore stimulates the AR without any effect on estrogen receptors. After the 5-week DHT treatment, VP weight was reduced in ORX mice with inactivation of liver-derived IGF1 compared with ORX control mice, demonstrating that liver-derived IGF1, \textit{in vivo}, modulates the androgenic response on VP weight.

Ar mRNA and protein levels in VP tissue were evaluated to determine whether the reduced response to DHT treatment on VP weight in the LI-IGF1\(^{−/−}\) mice was caused by a reduced AR expression. The RT-PCR and western blot analyses showed clearly reduced mRNA and protein levels

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Body weight and serum concentrations of IGF1, estrogen, and testosterone after 5-week treatment (sham/ORX vehicle/ORX DHT) in control and LI-IGF1(^{−/−}) mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham (gonadal intact)</td>
<td>ORX (vehicle-treated)</td>
</tr>
<tr>
<td>Control</td>
<td>LI-IGF1(^{−/−})</td>
</tr>
<tr>
<td>Body weight (g)</td>
<td>27.6 (1.3)</td>
</tr>
<tr>
<td>Serum IGF1 (ng/ml)</td>
<td>245 (9)</td>
</tr>
<tr>
<td>Estradiol (pg/ml)</td>
<td>10.5 (0.6)</td>
</tr>
<tr>
<td>Testosterone (ng/ml)</td>
<td>2.23 (0.48)</td>
</tr>
</tbody>
</table>

Values are given as means (s.e.m.) for 6–8 animals/group. ORX, orchidectomized; DHT, dihydrotestosterone; ND, not determined. \(^{*}P<0.05\), \(^{\ddagger}P<0.01\), \(^{\ddagger\ddagger}P<0.001\) versus control mice that had received the same treatment.

respectively, in VP tissue in the LI-IGF1 K/K mice. Reduced nuclear AR staining in both glandular epithelium and stromal cells was also seen in the VP and DLP lobes of the LI-IGF1 K/K mice using immunohistochemistry. Taken together, these findings suggest that deficiency of liver-derived IGF1 results in reduced AR synthesis in the prostate both in terms of mRNA and protein levels. This down-regulation of AR expression in prostate provides one plausible explanation for the reduced response to androgen treatment with DHT on VP weight in the LI-IGF1 K/K mice.

The reduction in AR expression in the prostate of the LI-IGF1 K/K mice was not caused by changes in circulating sex steroids as serum levels of testosterone and estradiol were unchanged in the LI-IGF1 K/K mice. Furthermore, the mRNA levels of IGF1 as well as those of estrogen receptor-α and -β were unaffected in VP tissue of the LI-IGF1 K/K mice. However, IGFBP3 may regulate the bioavailability of IGF1, and in addition, IGFBP3 may exert IGF-independent effects on the prostate (Liu et al. 2007). Although serum IGFBP3 concentration was not measured in the present study, we have previously observed an 86% reduction in serum IGFBP3 level in the LI-IGF1 K/K mice (Sjögren et al. 2002). Thus, serum levels of IGF1 as well as IGFBP3 are markedly reduced in the LI-IGF1 K/K mice. The importance of the reduction in serum IGFBP3 level is not fully clear, but it can be concluded

Table 4 The mRNA levels of estrogen receptor-α and -β in the ventral lobe of the prostate of LI-IGF1 K/K mice (n=8) expressed as the percentage of those in control mice (n=6). The RT-PCR analyses were performed on tissue samples from individual mice.

<table>
<thead>
<tr>
<th>Control mice</th>
<th>LI-IGF1 K/K mice</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogen receptor-α (% of control)</td>
<td>100 (10)</td>
<td>114 (11)</td>
</tr>
<tr>
<td>Estrogen receptor-β (% of control)</td>
<td>100 (9)</td>
<td>101 (13)</td>
</tr>
</tbody>
</table>

Values are given as means (S.E.M).
that in the LI-IGF1−/− mice, the reduced prostate size and downregulated AR expression in prostate are unlikely to be due to an IGFBP3-mediated inhibition of IGF1 activity.

The prostate is composed of two compartments: glandular and fibromuscular. In a previous study, mice with global inactivation of the Igf1 gene displayed impaired development of the glandular prostate compartment (Ruan et al. 1999). In a later study, it was shown that IGF1 can affect the development of both prostate compartments (Kleinberg et al. 2007). In the present study, there were reductions in glandular size and luminal area, as well as a reduction in the FMS compartment surrounding the glandular structures in the VP and DLP lobes of LI-IGF1−/− mice. These reductions in both the glandular and fibromuscular compartments in the VP and DLP lobes by liver-derived IGF1, which were proportional to the reductions in the weights of these lobes, raise the possibility that IGF1 inhibition could be useful in benign prostate hyperplasia. This needs, however, to be further investigated in future studies.

In the present study, the importance of liver-derived IGF1 for prostate weight and AR expression in the prostate was studied, but it was not investigated whether prostate cancer development was affected in the LI-IGF1−/− mice. Previous studies in the transgenic adenocarcinoma of the mouse prostate model have suggested that in addition to low levels of circulating IGF1, low GH levels may also be needed to reduce prostate cancer progression (Majeed et al. 2005, Anzo et al. 2008). In vitro studies suggest that IGF1 and androgens may interact in prostate cancer cells (Culig et al. 1994, Pandini et al. 2005), and in humans, in epidemiological studies, a high serum IGF1 level is a risk factor for the development of prostate cancer (Mantzoros et al. 1997, Chan et al. 1998, Wolk et al. 1998). Preliminary studies have been initiated in which the action of the GH/IGF1 system is antagonized. These studies suggest that the blockade of GH/IGF1 or the IGF1 receptor may reduce prostate tumor cell progression (Djavan et al. 2001, Jerome et al. 2003, Samani et al. 2007), but further studies are needed to explore whether the blockade of serum IGF1 could be a complement to surgical or medical androgen ablation therapy for prostate cancer.

In conclusion, we here demonstrate, in the face of unchanged local IGF1 expression, that deficiency of liver-derived, endocrine IGF1 decreases AR expression in prostate and reduces VP growth in response to androgen treatment with DHT. One could therefore speculate that liver-derived IGF1 and IGF1 receptors, and IGF binding proteins in prostate stromal cells from patients with benign prostate hyperplasia, which were proportional to the reductions in the weights of these lobes, raise the possibility that IGF1 inhibition could be useful in benign prostate hyperplasia. This needs, however, to be further investigated in future studies.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This study was supported by the Swedish Research Council (no. K2007-54X-09894-16-3), Swedish Society for Medical Research, the Swedish Foundation for Strategic Research, Sahlgrenska Center for Cardiovascular and Metabolic Research (CMR, no. A305:188), the Lundberg Foundation, the Torsten and Ragnar Söderberg’s Foundation, Petrus and Augusta Hedlunds Foundation, the Magnus Bergvall Foundation, the Tore Nilsson Foundation, the Novo Nordic Foundation, and Katholieke Universiteit Leuven Grant OT/01/39. Dirk Vanderschueren is a senior clinical investigator of the Fund for Scientific Research-Flanders, Belgium.

Acknowledgements

We thank Maud Petterson and Lotta Uggla for their excellent technical assistance.

References

www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 12/15/2018 10:30:01AM via free access

Kindblom J, Dillner K, Ling C, Törnell J & Wennbo H 2002 Progressive prostate hyperplasia in adult prostatic transgenic mice is not dependent on elevated serum androgen levels. Prostate 54 23–33.

Majeed N, Blouin M, Kaplan-Leiko P, Barry-Shaw J, Greenberg N, Gaudreau

Received in final form 9 September 2008
Accepted 28 September 2008
Made available online as an Accepted Preprint 30 September 2008