Phosphoinositide-3-kinase inhibition induces sodium/iodide symporter expression in rat thyroid cells and human papillary thyroid cancer cells

Takahiko Kogai¹, Saima Sajid-Crockett¹, Lynell S Newmarch¹, Yan-Yun Liu¹ and Gregory A Brent¹,²

Departments of ¹Medicine, ²Physiology David Geffen School of Medicine at UCLA, Endocrinology and Diabetes Division, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 114, Room 230, Los Angeles, California 90073, USA

(Correspondence should be addressed to T Kogai; Email: tkogai@ucla.edu)

The journal apologises for errors that have occurred in the above article in the November issue of the Journal of Endocrinology which appeared in volume 199.

Figure 6 on page 249 was printed erroneously. The correct figure is shown below.

Figure 6 Effects of LY294002 on the NIS protein expression in FRTL-5 cells treated with or without insulin. Cells were maintained in the 5H5% medium for 5 days, the 4H0.2% medium for 2 days, and then treated with 30 μM LY294002 (LY294), 10 μM of FSK, and/or 10 μg/ml bovine insulin (Ins) in the 4H0.2% medium for 48 h. Whole cell lysates were prepared and western blot analysis was performed with anti-rat NIS antibody, as well as anti β-actin antibody. *glycosylated NIS; **non-glycosylated NIS. Lower panel. Quantitative analysis of the Western blotting of NIS. The broad bands of glycosylated NIS were quantitated and normalized with β-actin. The cells without FSK, insulin, or LY294002 were set at 1. Values are means ± s.d. (n=2). *P<0.01.