Distinctive anabolic roles of 1,25-dihydroxyvitamin D₃ and parathyroid hormone in teeth and mandible versus long bones

Hong Liu¹, Jian Guo², Lin Wang¹, Ning Chen¹, Andrew Karaplis³, David Goltzman³ and Dengshun Miao¹,²

¹Institute of Dental Research, Stomatological College and ²The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu 210029, People’s Republic of China
³Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada H3A 1A1

(Correspondence should be addressed to D Miao who is now at Institute of Dental Research, Nanjing Medical University; Email: dsmiao@njmu.edu.cn)

Abstract

To assess the roles of 1,25-dihydroxyvitamin D (1,25(OH)₂D) and parathyroid hormone (PTH) in hard tissue formation in oro-facial tissues, we examined the effect of either 1,25(OH)₂D or PTH deficiency on dentin and dental alveolar bone volume, and dentin sialoprotein immunopositive areas were decreased in 1,25(OH)₂D or PTH deficiency on dentin and dental alveolar bone as it does in long bones, whereas PTH acts predominantly in long bones rather than mandibular bone. Journal of Endocrinology (2009) 203, 203–213

Introduction

Vitamin D is essential for the development and maintenance of a mineralized skeleton. Vitamin D deficiency results in rickets in children and osteomalacia in adults. Vitamin D-dependent rickets type I (VDDR-I) or pseudovitamin D deficiency rickets results from an autosomal recessive hereditary defect in vitamin D metabolism. Patients with VDDR-I have loss-of-function mutations in the gene encoding the enzyme 25-hydroxyvitamin D 1α-hydroxylase (1α(OH)ase) that results in 1α(OH)ase⁻/⁻ mice consistent with their secondary hyperparathyroidism. The expression of PTH receptor and IGF1 was reduced slightly in mandibles, but enhanced significantly in the long bones in the 1α(OH)ase⁻/⁻ mice. To control for the role of secondary hyperparathyroidism, we also examined teeth and mandibles in 6-week-old PTH⁻/⁻ mice. In these animals, dental and bone volumes in mandibles were not altered when compared with their wild-type littermates. These results suggest that 1,25(OH)₂D₃ plays an anabolic role in both dentin and dental alveolar bone as it does in long bones, whereas PTH acts predominantly in long bones rather than mandibular bone. Journal of Endocrinology (2009) 203, 203–213

0022–0795/09/0203–203 © 2009 Society for Endocrinology Printed in Great Britain

DOI: 10.1677/JOE-09-0247

Downloaded from Bioscientifica.com at 05/18/2022 09:17:42AM via free access
decreased, and the osteoid volume was not increased significantly (Xue et al. 2005). In contrast, at 4 months of age, the trabecular volume, osteoblast number, and osteoid volume were all increased significantly in the 1α(OH)ase−/− mice even on a high calcium diet containing 1.5% calcium in the drinking water (Panda et al. 2004). These differences were thought to result from the elevations in circulating parathyroid hormone (PTH). The serum PTH was increased 0.5-fold at 2 weeks of age (Xue et al. 2005), but 30-fold at 4 months of age (Panda et al. 2004), in the 1α(OH)ase−/− mice compared with their wild-type counterparts. This possibility was confirmed in the 1α(OH)ase−/− mice fed a ‘rescue diet’ containing 2% calcium, 1.25% phosphorus, and 20% lactose. After serum PTH and calcium levels were normalized, skeletal mineralization was normalized and the trabecular volume and osteoblast number were reduced in the 1α(OH)ase−/− mice (Panda et al. 2004). These findings suggest that the secondary hyperparathyroidism occurring in the 1α(OH)ase−/− mice on the normal diet was responsible for the increased bone formation. Moreover, the bone volume of the normocalcemic 1α(OH)ase−/− mice on the rescue diet was less than that observed in the wild-type mice, suggesting that 1,25(OH)2D3 was necessary for baseline bone formation. By comparing mice with targeted disruption of the genes encoding either PTH or 1α(OH)ase or both (PTH−/−α(OH)ase−/− mice), we found that PTH plays a major role in appositional bone growth, whereas 1,25(OH)2D3 acts predominantly on endochondral bone formation, and both play collaborative roles in modulating skeletal and calcium homeostasis (Xue et al. 2005). However, the relative contribution of 1,25(OH)2D3 and PTH to dentin formation and intramembranous bone formation remains unknown.

To determine whether endogenous 1,25(OH)2D plays a distinctive role in mandibles relative to long bones, we examined the effect of 1,25(OH)2D deficiency on the dentin and dental alveolar bone formation, and mineralization in the mandibles and compared osteoblastic bone formation in mandibles and tibiae in 1α(OH)ase−/− mice. Our data indicate that 1,25(OH)2D plays a more dominant role than PTH in dentin and dental alveolar bone formation in mandibles.

Materials and Methods

1α(OH)ase and PTH null mice and genotyping

The generation of 1α(OH)ase−/− and PTH−/− mice and mouse genotyping were described previously (Panda et al. 2001, Xue et al. 2005). The mice were fed autoclaved rodent chow containing 1% calcium and 0.67% phosphorus. All animal experiments were approved by the Institutional Animal Care and Use Committee. Mutant mice and control littermates were maintained in a virus- and parasite-free barrier facility and exposed to a 12 h light:12 h darkness. Six-week-old wild-type and 1α(OH)ase−/− siblings, and 6-week-old wild-type and PTH−/− siblings were used for experiments.

Biochemistry

Serum calcium and phosphorus were determined by autoanalyzer (Beckman Synchron 67; Beckman Instruments, Brea, CA, USA). Serum intact PTH was measured using an ELISA (Immutopics, San Clemente, CA, USA).

Radiography

Mandibles were removed and dissected free of soft tissue. Contact radiographs were taken using a Faxitron model 805 radiographic inspection system (Faxitron Contact, Faxitron, Ethicon, Norderstedt, Germany) (22 kV voltage and 4 min exposure time). X-Omat TL film (Eastman Kodak Co.) was used and processed routinely.

Micro-computed tomography

Mandibles were fixed overnight in 70% ethanol and analyzed by micro–computed tomography (micro-CT) with a SkyScan 1072 scanner and associated analysis software (SkyScan, Antwerp, Belgium) as described. Briefly, image acquisition was performed at 100 kV and 98 mA with a 0.98 rotation between frames. During scanning, the samples were enclosed in tightly fitting plastic wrap to prevent movement and dehydration. Thresholding was applied to the images to segment the bone from the background. Two-dimensional images were used to generate three-dimensional renderings using the 3D Creator software (SkyScan, Aartselaar, Belgium) supplied with the instrument. The resolution of the micro-CT images is 18-2 mm.

Histology

Mandibles and tibiae were removed and fixed in PLP fixative (2% paraformaldehyde containing 0.075 M lysine and 0.01 M sodium periodate) overnight at 4 °C, and processed histologically as described (Miao et al. 2001). Mandibles and proximal ends of tibiae were decalcified in EDTA glycerol solution for 5–7 days at 4 °C. Decalcified samples were dehydrated and embedded in paraffin, and 5 μm sections were cut on a rotary microtome. The sections were stained with hematoxylin and eosin (H&E), histochemically for total collagen, tartrate-resistant acid phosphatase (TRAP) or immunohistochemically as described below. Alternatively, undecalcified mandibles were embedded in LR White acrylic resin (London Resin Company Ltd, London, UK), and 1-μm sections were cut on an ultramicrotome. These sections were stained for mineral with the von Kossa staining procedure and counterstained with toluidine blue.

Histochemical staining for total collagen and TRAP

Total collagen was detected in paraffin sections using a modified method of Lopez-De Leon & Rojkind (Panda et al. 2004). Dewaxed sections were exposed to 1% Sirius red in saturated picric acid for 1 h. After washing with distilled...
water, the sections were counterstained with hematoxylin and mounted with Biomount medium. Enzyme histochemistry for TRAP was performed using a modification of a previously described protocol (Miao & Scutt 2002). Dewaxed sections were preincubated for 20 min in buffer containing 50 mM sodium acetate and 40 mM sodium tartrate at pH 5-0. Sections were then incubated for 15 min at room temperature in the same buffer containing 2.5 mg/ml naphthol AS-MX phosphate (Sigma) in dimethylformamide as substrate and 0.5 mg/ml fast garnet GBC (Sigma) as a color indicator for the reaction product. After washing with distilled water, the sections were counterstained with methyl green and mounted in Kaiser’s glycerol jelly.

Immunohistochemical staining

Immunohistochemical staining for biglycan, dentin sialopro-tein (DSP), PTH receptor (PTHrP), and insulin-like growth factor 1 (IGF1) using the avidin–biotin–peroxidase complex technique with affinity-purified rabbit anti–mouse biglycan (LF-106) antibody (courtesy of Dr L W Fisher, NIDCR, NIH, Bethesda, MD, USA), affinity-purified rabbit anti–mouse DSP (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), affinity-purified mouse anti–PTH/PTHrP related protein receptor (Clone 3D1.1, Upstate, Syracuse, NY, USA) and goat anti–mouse IGF1 antibody (Santa Cruz) was carried out as described previously (Bai et al. 2007). Briefly, dewaxed and rehydrated paraffin-embedded sections were incubated with methanol–hydrogen peroxide (1:10) to block endogenous peroxidase activity and then washed in Tris-buffered saline (pH 7.6). The slides were then incubated with the Vectastain ABC-AP reagent or the Vectastain Elite ABC reagent (Vector Laboratories, Burlingame, CA, USA) for 45 min. After washing, red pigmentation to demarcate regions of immu-nostaining was produced using 3,3-diaminobenzidine (2.5 mg/ml fast garnet GBC (Sigma) as a color indicator for the reaction product. After washing with distilled water, the sections were counterstained with methyl green and mounted in Kaiser’s glycerol jelly.

Western blot analysis

Proteins were extracted from mandibles and long bones and quantitated using a commercial kit (Bio-Rad). Thirty micrograms protein samples were fractionated by SDS-PAGE and transferred to nitrocellulose membranes. Immuno-blotting was carried out as described (Xue et al. 2005) using antibodies against PTH/PTHrP receptor (Clone 3D1.1, Upstate), IGF1 (Santa Cruz), and β-tubulin (Santa Cruz). Bands were visualized using ECL chemiluminescence (Amersham) and quantitated by Scion Image Beta 4.02 (Scion Corporation, NIH, MD, USA).

Computer-assisted image analysis

Histological images were photographed with a Sony digital camera. Images of micrographs from single sections were digitally recorded using a rectangular template, and recordings were processed and analyzed using Northern Eclipse image analysis software as described (Miao et al. 2001, 2002, Xue et al. 2006).

Statistical analysis

Data from image analysis are presented as means±S.E.M. Statistical comparisons were made using Student’s t-test, with P<0.05 being considered significant.

Results

Effect of 1,25(OH)2D deficiency on mineralization in teeth and mandibles

By the measurement of serum calcium, phosphorus, and PTH levels, we confirmed that 1α(OH)ase−/− mice displayed hypocalcemia (Fig. 1A), hypophosphatemia (Fig. 1B), and hyperparathyroidism (Fig. 1C). To determine whether 1,25(OH)2D3 deficiency affects the mineralization of teeth and mandibles, the teeth and mandibles of 6-week-old wild-type and 1α(OH)ase−/− mice were examined by radiography, micro-CT scanning, and von Kossa staining. As shown in Fig. 1, in 1α(OH)ase−/− mice radiolucency was increased in all teeth including molars and incisors and in the mandible except for the mandibular condylar process compared with their wild-type littermates (Fig. 1D). Comparison between wild-type and 1α(OH)ase−/− littermate of micro-CT scanned sections through the incisor before the first molar, and through the first, second, and third molars showed that the mineralized tooth volume in incisor and molars and the mineralized cortical and alveolar bone volume in mandibles were decreased in 1α(OH)ase−/− mice (Fig. 1E). The mineralization defects in teeth and alveolar bone were also evident in 1α(OH)ase−/− mice by von Kossa staining (Fig. 1F).

Distinctive effect of 1,25(OH)2D deficiency on trabecular bone volume in long bones and on tooth volume and cortical and alveolar bone volume in mandibles

Our previous study demonstrated that trabecular volume and osteoblast number were increased significantly in the 1α(OH)ase−/− mice at 7 weeks of age (Panda et al. 2001) and at 4 months of age even on a high calcium diet containing 1.5% calcium in the drinking water (Panda et al. 2004). In this
study, we confirmed that trabecular volume was increased significantly in the 1α(OH)ase−/− mice at 6 weeks of age (Fig. 2A and B). To determine whether 1,25(OH)2D3 deficiency affects the tooth volume and the cortical and alveolar bone volumes in mandibles, paraffin sections through the first molars stained by the von Kossa procedure as described in Materials and Methods and photographed. Scale bar represents 50 μm. **P < 0.01; ***P < 0.001 relative to the wild-type mice.

Effect of 1,25(OH)2D deficiency on predentin maturation and dentin formation

To determine whether the decreased tooth mineralization and volume were associated with predentin maturation and dentin formation, we determined the root wall thickness of the first molars (Fig. 2E) and incisors (Fig. 2F), the cortical thickness (Fig. 2G) and alveolar bone volume (Fig. 2H) were all decreased significantly in 1α(OH)ase−/− mice compared with their wild-type littermates.

Figure 1 Effect of 1,25(OH)2D deficiency on the mineralization of teeth and mandibles. (A) Serum calcium, (B) phosphorus, and (C) PTH. (D) Representative contact radiographs of the mandibles from 6-week-old wild-type (WT) and 1α(OH)ase−/− mice. (E) Representative micro-CT scanned sections through the incisor before the first molar (In), and through the first (1st), second (2nd) and third (3rd) molars from wild-type and 1α(OH)ase−/− mice. (F) Representative micrographs from undecalcified sections through the first molars stained by the von Kossa procedure as described in Materials and Methods and photographed. Scale bar represents 50 μm. **P < 0.01; ***P < 0.001 relative to the wild-type mice.

Figure 2 Distinctive effect of 1,25(OH)2D deficiency on tooth volume and on cortical and alveolar bone volume in mandibles. (A) Representative micrographs of decalcified paraffin-embedded sections of proximal ends of tibiae from 6-week-old wild-type (WT) and 1α(OH)ase−/− mice stained with hematoxylin and eosin (H&E). (B) Trabecular bone volume relative to tissue volume (BV/TV, %). (C) Trabecular bone volume relative to tissue volume (BV/TV, %) and (D) with serial red for total collagen as described in Materials and Methods. Scale bars represent 100 μm. (E) The root wall thickness of the first molars, (F) the root wall thickness of incisors, (G) the cortical thickness, and (H) alveolar bone volume of the mandibles were measured. Each value is the mean ± S.E.M. of determinations in six animals of each group. *P < 0.05; **P < 0.01; ***P < 0.001 relative to the wild-type mice.
Figure 3 Effect of 1,25(OH)2D deficiency on predentin maturation and dentin formation. Paraffin-embedded sections through the first molars and the incisors from 6-week-old wild-type (WT) and 1α(OH)ase−/− mice stained with H&E (A and C), immunohistochemically for biglycan (E and G) and dentin sialoprotein (DSP, I) and photographed. Scale bars represent 50 μm. Representative H&E staining of micrographs of (A) the root walls of the first molars and (C) the incisors. Quantitative thickness of predentin in the root walls of (B) the first molars and (D) the incisors. Representative micrographs of the root wall of (E) the first molars and (G) the incisors stained immunohistochemically for biglycan, and (I) the root wall of the first molars stained immunohistochemically for DSP. Quantitative biglycan immunopositive areas in (F) the first molars and (H) the incisors. (J) Quantitative DSP immunopositive areas in the first molars. Each value is the mean±S.E.M. of determinations in six animals of each group. *P<0.05; **P<0.01; ***P<0.001 relative to the wild-type mice.
formation, the thickness of predentin in the first molars and incisors, the area of reparative dentin, and the immunoreactivity of DSP in the first molar were assessed by histology and immunohistochemistry. As seen in H&E sections, the thickness of predentin was increased significantly in the first molars (Fig. 3A and B) and incisors (Fig. 3C and D) in 1α(OH)ase−/− mice compared with their wild-type littermates. Positive immunoreactivity for biglycan was detected in H&E sections, the thickness of predentin was increased significantly in the first molars (Fig. 3A and B) and incisors (Fig. 3C and D) in 1α(OH)ase−/− mice compared with their wild-type littermates. Positive immunoreactivity for biglycan was detected in
the region of the predentin (Fig. 3E and G). The biglycan-positive area was increased significantly in the first molars (Fig. 3E and F) and incisors (Fig. 3G and H) in 1α(OH)ase−/− mice compared with their wild-type littermates. Positive immunoreactivity for DSP was detected in the predentin and dentin in the molars (Fig. 3I). The DSP-positive area was decreased dramatically in the first molars in 1α(OH)ase−/− mice compared with their wild-type littermates (Fig. 3I and J).

Distinctive effect of 1,25(OH)2D deficiency on osteoblastic bone formation in the mandibles and long bones

We previously reported that the increased trabecular bone volume was associated with the increased osteoblast number in the 1α(OH)ase−/− mice with secondary hyperparathyroidism (Panda et al. 2001, 2004). To determine whether decreased cortical and alveolar bone volume was associated with diminished osteoblastic bone formation in the mandibles, the osteoblast number and surface were measured on the H&E-stained dental alveolar bone by histomorphometric analyses. Results showed that the osteoblast number and surface were reduced in the dental alveolar bone of mandibles from 1α(OH)ase−/− mice (Fig. 4A, D and E). We also confirmed that the osteoblast number and surface were increased in the trabecular bone of tibiae from 1α(OH)ase−/− mice (Fig. 4A, D and E). The increased trabecular bone volume and osteoblast numbers in long bones in the 1α(OH)ase−/− mice, which have been shown to result from elevations in circulating PTH (Panda et al. 2004), may be mediated by IGF1; therefore, we examined the expression of PTHR and IGF1 in the dental alveolar bone of mandibles and in the trabecular bone of tibiae. Positive immunoreactivity for PTHR (Fig. 4B) and IGF1 (Fig. 4C) was detected in the osteoblasts, and the PTHR– and IGF1–positive areas (Fig. 4F and G respectively) were slightly decreased in the dental alveolar bone of the mandibles, but increased significantly in the trabecular bone of tibiae (Fig. 4E). The DSP-positive area was increased significantly in the first molars in 1α(OH)ase−/− mice compared with their wild-type littermates (Fig. 4K–M).

Distinctive effect of PTH deficiency on trabecular bone volume in long bones and on tooth volume and cortical and alveolar bone volume in mandibles

Our previous study demonstrated that trabecular bone volume was increased dramatically in the PTH−/− mice at 4 months of age due to reduced bone turnover (Miao et al. 2004). In this study, we confirmed that trabecular bone volume was increased significantly in the PTH−/− mice at 6 weeks of age (Fig. 2A and B), although trabecular bone volume was not increased as dramatically as at 4 months of age. To determine whether PTH deficiency affects the tooth volume and the cortical and alveolar bone volume in mandibles, paraffin sections through the first molars of 6-week-old PTH−/− mice were stained with H&E (Fig. 5C) and histochemically for total collagen (Fig. 5D). The root wall thickness of the first molars and incisors and the cortical thickness and dental alveolar bone volume were determined by computer-assisted image analysis. Total (mineralized and unmineralized) dental volume and the cortical and alveolar bone volume in mandibles were all not altered significantly in PTH−/− mice compared with their wild-type littermates (Fig. 5C and D). Quantitative data showed that the root wall thickness of the first molars (Fig. 5E) and incisors (Fig. 5F), the cortical thickness (Fig. 5G), and alveolar bone volume (Fig. 5H) were all not altered significantly in PTH−/− mice compared with their wild-type littermates.

Discussion

Our previous study demonstrated that trabecular volume, osteoblast number, and osteoid volume were all increased significantly in the 1α(OH)ase−/− mice at 7 weeks of age (Panda et al. 2001) and at 4 months of age even on a high calcium diet containing 1.5% calcium in drinking water.
Figure 5 Effect of PTH deficiency on tooth volume and on cortical and alveolar bone volume in mandibles. (A) Representative micrographs of decalcified paraffin-embedded sections of proximal ends of tibiae from 6-week-old wild-type (WT) and PTH−/− mice stained with hematoxylin and eosin (H&E). (B) Trabecular bone volume relative to tissue volume (BV/TV, %). Representative micrographs of decalcified paraffin-embedded sections through the first molars from 6-week-old WT and PTH−/− mice stained (C) with HE, and (D) with serial red for total collagen as described in Materials and Methods. Scale bars represent 100 μm. (E) The root wall thickness of the first molars, (F) the root wall thickness of incisors, (G) the cortical thickness, and (H) alveolar bone volume of the mandibles were measured. Each value is the mean ± S.E.M. of determinations in six animals of each group. **P<0.01 relative to the wild-type mice.

Roles of vitamin D in teeth and bone

Skeletal mineralization defects have been observed in both VDDR-I patients (Fraser et al. 1973, Vasilakis et al. 1980) and vitamin D-deficient experimental animals (Dardenne et al. 2001, Panda et al. 2001, 2004). The dental manifestations of VDDR-I have not been reported in detail until recently (Zambrano et al. 2003), and the hard dental tissue alterations of 1α(OH)ase−/− mice have not been previously described in the literature. In the reported case of VDDR-I, hypomineralization of teeth was observed by radiographs (Zambrano et al. 2003). In the present study in 1α(OH)ase−/− mice, we detected decreased mineral density in teeth and mandibles by radiography and by micro-CT scanning, and increased unmineralized dentin and unmineralized bone matrix in dental alveolar bone by von Kossa staining. Furthermore, we observed an increase in biglycan immunopositive area in 1α(OH)ase−/− mice consistent with increased predentin thickness. Our results therefore suggest that the mineralization defects in teeth and mandibles caused by 1,25(OH)2D3 deficiency are similar to those that occur in long bones. The mineralization defect and alterations of the predentin and biglycan protein expression in teeth of the 1α(OH)ase−/− mice found here were comparable to those observed in vitamin D receptor (VDR) gene knockout mice (Lezot et al. 2002, Davideau et al. 2004, Zhang et al. 2007). Although these findings suggest that VDR-mediated actions of 1,25(OH)2D3 play an essential role in dental mineralization, several studies indicate that the principal function of vitamin D in mineralization of bone is to provide adequate calcium and phosphorus in the extracellular fluid space. Thus, when vitamin D–deficient rats have been infused with high calcium and high phosphorus for several days, it was found that the bones had little evidence of rickets (Holick et al. 1992). Similarly, when vitamin D–deficient rats were fed a high calcium, high phosphorus diet, histological studies of the skeleton did not reveal any skeletal abnormalities consistent with either osteomalacia or rickets (Holthrop et al. 1986). When a child with severe rickets caused by the rare hereditary disease VDDR-II (also known as hereditary resistance to 1,25(OH)2D), which is caused by loss-of-function mutations in the VDR, was infused with calcium for 7 months, her skeleton began to mineralize normally (Balsan et al. 1986). Our recent studies showed that mineralization of both cartilage and bone was severely impaired in the 1α(OH)ase−/−, VDR−/−, and 1α(OH)ase−/−/VDR−/− mice that were hypocalcemic on either a lactose-free normal diet or a high calcium diet (Panda et al. 2001, 2004). However, cartilage and bone mineralization were normalized in all mutants when hypocalcemia was eliminated by a high lactose, high calcium, high phosphorus ‘rescue’ diet
(Panda et al. 2004). Consequently, the major determinant of mineralization of both bones and teeth appears to be the ambient concentration of extracellular calcium and phosphate, and the 1,25(OH)2D/VDR system appears to play no direct role in this process.

In contrast to consistency in the mode of regulation of mineralization of bones and teeth, our studies in adult 1α(OH)ase−/− mice show discordance between the regulation of dental volume and dental alveolar bone volume in mandibles versus trabecular volume in long bones. Our previous study showed that trabecular volume and osteoblast numbers in long bones were increased significantly in 1α(OH)ase−/− mice on a normal or even on a high calcium intake (Panda et al. 2004). This increase disappeared when elevated concentrations of circulating PTH were normalized and is therefore attributable to the anabolic effect of endogenous PTH. However, in the present study, we found that the dental volume, the reparative dentin volume, and DSP immunopositive area were all reduced below wild-type levels, even though endogenous PTH levels are highly elevated in the 1α(OH)ase−/− mice on the high calcium intake. The cortical thickness, the dental alveolar bone volume, and osteoblast numbers were all decreased significantly in the mandibles of 1α(OH)ase−/− mice. We showed previously that trabecular volume and osteoblasts were reduced in long bones of 2-week-old 1α(OH)ase−/− mice (Xue et al. 2005) and of 4-month-old 1α(OH)ase−/− mice on a rescue diet when the serum calcium, phosphorus, and PTH were normalized (Panda et al. 2004). Therefore, 1,25(OH)2D appears to exert an anabolic effect, which is necessary to sustain basal bone-forming activity in long bones. We also demonstrated previously that exogenous 1,25(OH)2D3 increased both trabecular and cortical bone volume, augmented both osteoblast number and type I collagen deposition in bone matrix, and up-regulated expression levels of the osteoblastic genes including alkaline phosphatase, type I collagen, and osteocalcin (Xue et al. 2006). Consequently, the reduction in dental volume and dental alveolar bone below wild-type levels in the present study, even in the presence of secondary hyperparathyroidism is consistent with the absence of this bone anabolic effect of 1,25(OH)2D. During dentin formation, VDR is mainly present in subodontoblastic cells (Davideau et al. 1996). However, VDR expression in odontoblasts and ameloblasts, cells involved in matrix deposition and mineralization, appears to be induced by 1,25(OH)2D injection (Davideau et al. 1996), suggesting that these cells are target cells for 1,25(OH)2D. This is in keeping with a role for 1,25(OH)2D in dental homeostasis and consistent with our finding that 1,25(OH)2D is required for anabolic activity in dental and dental alveolar bone as well as in long bones.

The question raised in the present study is why the trabecular bone volume and osteoblast numbers are markedly increased in long bones (Dardenne et al. 2001, Panda et al. 2001, 2004), but not in mandibles of the 1α(OH)ase−/− mice with increased circulating PTH. We previously compared the relative contributions of PTH and 1,25(OH)2D to bone anabolism by analyzing and comparing the skeletal phenotypes of 1α(OH)ase−/− mice and PTH−/− mice (Xue et al. 2005). Reduced osteoblastic bone formation in the metaphyseal region was seen in both mutants; however, PTH deficiency caused a more marked reduction, whereas 1α(OH)ase ablation caused a smaller reduction in trabecular bone volume. Therefore, although both 1,25(OH)2D and PTH can affect trabecular bone growth, PTH plays a greater role in appositional bone formation than 1,25(OH)2D. Consequently, the secondary hyperparathyroidism in hypocalcemic 1α(OH)ase−/− mice is in keeping with this anabolic effect of PTH to increase trabecular bone volume and osteoblast numbers in long bones. Nevertheless, this did not explain the absence in our present studies of an anabolic effect of high circulating PTH in teeth and mandibles.

The results of previous reports on the action of PTH on dentin formation are inconsistent. One previous report showed that PTH stimulated dentin apposition in the thyroparathyroidectomized rat in a dose-dependent manner (Turnbull et al. 1983), but another study showed that intermittent PTH treatment had no effect on dentin formation in aged ovariectomized rats (Miller et al. 1997). Although intermittent PTH treatment was shown to stimulate mandibular and alveolar crest bone formation in aged ovariectomized rats (Miller et al. 1997), the increased mineral apposition rate was much less in mandibles than in long bones (Humziker et al. 2000). Therefore, these findings suggest that the sensitivity of skeletal tissues to PTH may vary according to their embryological origin (Yonaga 1978). The mandibular condylar process is derived from endochondral bone formation, whereas the mandibular body develops by intramembranous bone formation (Lee et al. 2001). Our data showed that the bone mineral density was decreased in mandibular bodies, but not in the mandibular condylar process in the 1α(OH)ase−/− mice consistent with an effect of PTH on bone derived by endochondrial ossification but not on bone of intramembranous origin. The dental alveolar bone volume and osteoblast numbers were decreased in mandibles of the 1,25(OH)2D deficient animals, whereas the trabecular bone volume and osteoblast number were increased in long bones in the same 1α(OH)ase−/− mice with secondary hyperparathyroidism. In the present study, we confirmed that trabecular bone volume was increased significantly in long bones in PTH-deficient mice at 6 weeks of age and demonstrated that the dental and dental alveolar bone volumes in mandibles were not altered in PTH-deficient mice. These results therefore indicate that the mandibles are at least less sensitive to the anabolic actions of increased endogenous PTH than are long bones, and that 1,25(OH)2D3 plays a greater role in mandibular bone formation than PTH.

Given that PTH has a direct effect on the activity of the osteoblast, a cell known to have the PTHR (Halloran et al. 1997), and that IGF1 is required for the skeletal anabolic
actions of PTH (Bikle et al. 2002, Yamaguchi et al. 2005, Wang et al. 2007), we examined the expression of PTHR and IGF1 in the mandibles and long bones by immunohistochemistry and western blots. Our results revealed that the levels of PTHR and IGF1 expressed in osteoblasts were reduced slightly in the dental alveolar bone of mandibles, but were enhanced in the trabecular bone of tibiae in the adult 1α(OH)ase−/− mice. These alterations in PTHR and IGF1 between mandibles and long bones were confirmed by western blots. These findings suggest that the differential sensitivity of the mandibles and long bones to PTH may be associated with differential expression of PTHR and subsequent regulation of IGF1 by PTH.

In summary, our study suggests that endogenous 1,25(OH)2D plays an anabolic role in dentin formation and dental alveolar bone formation in mandibles as it does in long bones, whereas PTH exerts an anabolic role predominantly in bone derived by endochondral ossification. This selective role of PTH may be contributed to by site-specific differences in PTHR and IGF1 expression.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 30671009) to D S M from Nanjing Medical University, China, and to D G from the Canadian Institutes for Health Research, Canada.

References

Downloaded from Bioscientifica.com at 05/18/2022 09:17:42AM
via free access

Xue Y, Karaplis AC, Hendy GN, Goltzman D & Miao D 2005 Genetic models show that parathyroid hormone and 1,25-dihydroxyvitamin D3 play distinct and synergistic roles in postnatal mineral ion homeostasis and skeletal development. Human Molecular Genetics 14 1515–1528.

Xue Y, Karaplis AC, Hendy GN, Goltzman D & Miao D 2006 Exogenous 1,25-dihydroxyvitamin D3 exerts a skeletal anabolic effect and improves mineral ion homeostasis in mice that are homozygous for both the 1alpha-hydroxylase and parathyroid hormone null alleles. Endocrinology 147 4801–4810.

Yonaga T 1978 Action of parathyroid hormone, with special reference to its anabolic effect on different kinds of tissues in rats (II). Bulletin of Tokyo Medical and Dental University 25 249–258.

Received in final form 29 July 2009
Accepted 25 August 2009
Made available online as an Accepted Preprint 25 August 2009