The role of IGF1 on the differentiation of prolactin secreting cells in the mouse anterior pituitary

Tamiki Hikake, Shinji Hayashi, Taisen Iguchi1 and Tomomi Sato

Abstract

IGF1 knockout (IGF1KO) mice show a reduced number of prolactin (PRL) producing cells (PRL cells); however, the role of IGF1 in PRL cell proliferation and differentiation in immature mice is unclear. In this study, ontogenic changes in the percentages of PRL cells, GH producing cells (GH cells), and 5-bromo-2’-deoxyuridine (BrdU)-labeled cells in the anterior pituitary of male IGF1KO mice during the postnatal period were investigated. The percentage of PRL cells in IGF1KO mice was significantly lower at day 20 compared with that in wild-type (WT) mice, while GH cells in IGF1KO mice were significantly increased from day 10. From days 5 to 20, the percentage of BrdU-labeled cells in WT and IGF1KO mice was similar. PRL cells and GH cells are thought to originate from the same progenitor cells, therefore, PRL cells in IGF1KO mice are not able to differentiate because progenitor cells have already committed to be GH cells. However, IGF1, 17β-estradiol (E2), epidermal growth factor (EGF), or IGF1 plus E2 treatments increased the PRL cell number in the pituitaries in vitro of 10-day-old WT and IGF1KO mice. This fact suggests that these factors are involved in PRL cell proliferation and differentiation. In addition, the increase of PRL cells in IGF1KO mice stimulated by E2 or EGF was less than that of WT mice. Thus, IGF1 plays a crucial role in PRL cell proliferation and differentiation in mouse pituitaries by regulating the differentiation of progenitor cells and mediating the actions of E2 and EGF.

Journal of Endocrinology (2009) 203, 231–240

Introduction

Differentiation of anterior pituitary cells is thought to be controlled by various factors from the hypothalamus, peripheral hormones and/or growth factors (Schwarz 2000, Denef 2003). In fetal mice, hormone-producing cells except prolactin (PRL) producing cells (PRL cells) in the anterior pituitary can be detected by immunohistochemistry at embryonic day 18-5 (Watanabe & Haraguchi 1994, Stefaneanu et al. 1999). PRL cells are rarely observed in the fetal anterior pituitary (Ogasawara et al. 2001), and these cells begin to increase at postnatal day 3 (Taniguchi et al. 2001). Several factors involved in PRL cell proliferation and differentiation have been investigated using knockout (KO) techniques. In adult insulin-like growth factor 1 (IGF1) KO (IGF1KO) and estrogen receptor 1 (Esr1) KO mice, PRL cells are decreased in number (Stefaneanu et al. 1999, Pelletier et al. 2003). Therefore, IGF1 and estrogen are suggested to influence PRL cell proliferation and differentiation in postnatal life.

IGF1, a small peptide, plays an important role in the regulation, differentiation, and proliferation of various normal and neoplastic cells as autocrine and/or paracrine signals (Yokoyama et al. 1997). The mitogenic effect of IGF1 is mediated via the IGF1 receptor which acts as a tyrosine kinase receptor (LeRoith et al. 1995). Circulating IGF1 produced in the liver acts as a mediator of GH action and regulates systemic growth (D’Ercole et al. 1984). In the regulation of GH synthesis and release, IGF1 specifically inhibits GH gene transcription and secretion by negative feedback mechanisms (Wallenius et al. 2001). Therefore, high blood GH levels are induced by severe IGF1 deficiency (Lembo et al. 1996). In fact, the Gh miRNA expression is increased in IGF1KO mice of both sexes (Stefaneanu et al. 1999).

Since PRL cells and GH-producing cells (GH cells) are thought to originate from the same progenitor cells which express the transcription factors Pit-1 (listed as Pou1f1 in the MGI Database) and Prop1 that play important roles in the differentiation of PRL cells and GH cells (Slabaugh et al. 1981, Simmons et al. 1990). Insulin and IGF1-induce PRL synthesis in the MtT/S pituitary cells which produce large amount of GH with PIT-1 expression (Inoue & Sakai 1991). PRL cells are suggested to be transdifferentiated from somatotrophs in association with insulin or IGF1. IGF1 also stimulates the proliferation of PRL cells in mouse pituitaries in vitro (Oomizu et al. 1998). IGF1 mRNA is detected only in GH cells of the mouse anterior pituitary, and immunoreactive IGF1 is
detected in corticotrophs and some of the GH cells in rats. However, IGF1 receptor is localized in GH cells and some corticotrophs in mice, and corticotrophs, gonadotrophs, GH cells, and some of PRL cells in rats (Honda et al. 1998, Eppler et al. 2007). Thus, IGF1 may act in a paracrine manner in PRL cells of anterior pituitary in rodents.

Several factors besides IGF1 which stimulate PRL production and release both in vivo and in vitro have been reported. Estrogen is a potent stimulator of PRL cell proliferation, PRL production and secretion (Lloyd et al. 1975, Raymond et al. 1978, Amara et al. 1987). Epidermal growth factor (EGF) also stimulates PRL production, and this effect may be mediated through ESR1 in mouse pituitaries (Ben-Jonathan et al. 2009). In addition, dopamine produced in the hypothalamus inhibits PRL production via adrenergic D2 receptor (Drd2) in lactotrophs (Cristina et al. 2006). These factors may be necessary for PRL production; however, the involvement of IGF1 with these factors on PRL cells has not been investigated.

In this study, our aim was to clarify the role of IGF1 in PRL cell proliferation and differentiation in mouse pituitaries from neonate to adult, and analyze the ontogenic changes of PRL cells and GH cells in adult and immature homozygous male wild-type (WT) and IGF1KO mice. Expression of PRL, Pit-1, Esr1, Egf, and Drd2 mRNAs in anterior pituitaries of WT and IGF1KO mice at days 10 and 20 was also examined by real-time RT-PCR. Finally, the effects of 17β-estradiol (E2), IGF1, and EGF on PRL production were examined in pituitaries from WT and IGF1KO mice at postnatal day 10 using an organ–culture system.

Materials and Methods

Animals

IGF1KO mice were obtained by mating of a mixed MF1 × 129/Sv background that was heterozygous for the Igf1 gene disruption, as previously described (Baker et al. 1996). The pups’ genotypes were determined by multiplex PCR of DNA extracted from tails, homozygous WT, and homozygous IGF1KO males were used. They were housed under 12 h light:12 h darkness cycles with lights on at 0800 and controlled temperature (24 °C). Animals were given free access to mouse chow (MF, Oriental Yeast Co., Ltd, Tokyo, Japan) and tap water ad libitum, and were maintained in accordance with the NIH Guide for the Care and Use of Laboratory Animals. All experiments were approved by the Institutional Animal Care Committee of the Yokohama City University.

Treatments

Pituitaries of 3- to 5-month-old WT and IGF1KO mice were collected. To examine the ontogenic changes of PRL in WT and IGF1KO mice, pituitaries were collected from 5-, 10-, 15- and 20-day-old WT and IGF1KO mice. Two hours before killing, WT and IGF1KO mice were given a single injection of 1 mg/10 g body weight (BW) of 5-bromo-2’-deoxyuridine (BrdU, Sigma Chemical Co.) in saline.

PRL and GH immunohistochemistry

For PRL and GH immunohistochemistry, pituitaries were fixed in Bouin’s solution overnight, then dehydrated and embedded in paraffin. Each 4-μm thick section was mounted on silane (3-aminopropyl triethoxy-silane, Sigma Chemical Co.) coated glass slides. Sections were deparaffinized and hydrated through xylene and graded alcohol series. After washing in 0·1 M PBS (pH 7·4), sections were microwaved for 8 min in 1 M sodium citrate buffer (pH 6·0) for antigen retrieval. Endogenous peroxidase was blocked by 1% (v/v) H2O2 in H2O, and then the slides were washed in PBS. Sections were incubated with normal goat serum (VECTASTAIN Elite ABC kit, Vector Laboratories, Inc., Burlingame, CA, USA) for 20 min at room temperature to reduce nonspecific binding, then reacted with the rabbit polyclonal antibody to mouse PRL diluted with PBS (1:10 000, Biogenesis Ltd, Poole, UK) or to rat GH diluted with PBS (1:5000, Biogenesis Ltd) overnight at 4 °C. After washing in PBS, sections were incubated with biotinylated anti-rabbit IgG (1:500, Vector Laboratories Inc.) for 30 min. After washing in PBS, sections were incubated with ABC reagent (Vector Laboratories Inc.) for 30 min. Reaction products were visualized by using 3,3’-diaminobenzidine (DAB, Sigma Chemical Co). Negative control was prepared by incubation of sections with rabbit immunoglobulin fraction (DAKO Cytomation, Glostrup, Denmark) instead of the primary antibody. Finally, sections were counterstained with hematoxylin.

BrdU and PRL immunohistochemistry

For BrdU and PRL double-immunostaining, pituitaries were fixed in 10% (v/v) formalin neutral buffered solution (Wako Pure Chemical Industries, Ltd, Osaka, Japan) overnight as this fixative was better than Bouin’s solution for the double staining of BrdU and PRL, dehydrated and embedded in paraffin. Sections of 4-μm were mounted on silane coated glass slides. After deparaffinization, endogenous peroxidase was blocked by 0-3% (v/v) H2O2 in methanol for 30 min. For denaturation of DNA, sections were incubated in 2 M HCl for 20 min at room temperature, and immersed in 0·1 M borate buffer (pH 8·5) to neutralize pH. After washing in PBS, sections were digested with 0·1% (w/v) trypsin (Sigma Chemical Co.) in PBS for 30 min at 37 °C. After preincubation with 1% (w/v) BSA/PBS at room temperature to block nonspecific binding, sections were incubated with anti-BrdU antibody (1:15, Roche Molecular Biochemical) at room temperature for 60 min. Then, DAB with NiCl2 reaction was carried out. After washing in PBS, sections were immunostained using anti-PRL antibody (Biogenesis Ltd) as described above and counterstained with methylgreen (Chroma-Gesellschaft Schmid, Kongen, Germany).
In situ hybridization

For Gh mRNA in situ hybridization, pituitaries were fixed in 4% (w/v) paraformaldehyde overnight at 4 °C, embedded in paraffin and sectioned at 4-μm thickness. Sections were digested with 10 μg/ml proteinase K (Wako Pure Chemical Industries, Ltd) for 15 min at 37 °C, and then post-fixed with 4% (w/v) paraformaldehyde in PBS, followed by an acetylation treatment.

The cDNA fragment encoding a part of the mouse Gh was generated from total RNA prepared from the WT mouse pituitary by RT-PCR with a pair of primers (forward 5’ C T G G C T G C T G A C A C C T A C A A 3’ and reverse 5’ G C T A - G A A G G C A C A G C T G C T T 3’). These primers generate PCR products of 508 bp for the mouse Gh. The cDNA fragment was subcloned into pGEM-T Easy (Promega), sequenced and confirmed to be cDNA encoding a part of the mouse Gh. The probes were synthesized from subcloned plasmids using a PCR digoxigenin (DIG) synthesis kit (Roche) with a pair of primers (Roche) for 2 h at room temperature. After washing in DIG antibody diluted at 1:1000 for anti-DIG-AP, Fab fragments for 60 min, sections were incubated with the primary blocking reagent (DIG Luminescent Detection Kit, Roche) for 15 min at 37 °C overnight in a moist chamber. Finally, slides were post-fixed with 4% paraformaldehyde in PBS for 60 min at 4 °C and counterstained with methylgreen (Chroma-Gesellshaft, Schmid GmbH).

Real-time RT-PCR

For real-time RT-PCR, anterior pituitaries were separated from posterior and intermediate lobes, and homogenized in TRIzol (Invitrogen Corp). Total RNA from anterior pituitaries was purified using DNase I (Roche) to remove genomic DNA and cleaned up with an RNeasy total RNA kit (Qiagen). The amount and integrity of RNA were assessed by measurement of optical density (OD) at 260 and 280 nm. RNA (1 μg) was reverse transcribed into first strand cDNA using SuperScript II reverse transcriptase (Invitrogen Corp.) using oligo dT primer (Invitrogen Corp). Real-time PCR was carried out with a Smart Cycler II System with a total reaction volume of 25 μl consisting of 12.5 μl SYBR Green Master Mix (Takara Bio Inc., Otsu, Japan) for 2 h at 95 °C, then hybridized in a solution containing starting mRNA concentration. Pituitaries from 3 to 5 mice were pooled for each point and three independent experiments were carried out for each study.

Organ culture

Three-to-five pituitaries of 10-day-old WT and IGF1KO mice were placed on a 24-well culture plate with 200 μl serum-free DMEM/Nutrient Mixture F12 (1:1, phenol red free, Invitrogen Corp.) with or without 10−9 M E2 (Sigma Chemical Co.), 20 ng/ml IGF1 (Sigma Chemical Co.) or 50 ng/ml EGF (Sigma Chemical Co.) and 1 ng/ml BSA (Sigma Chemical Co.) and incubated at 37 °C in a humidified 5% CO2 atmosphere in air for 5 days. Serum-free DMEM/Nutrient Mixture F12 (phenol red free, 50 μl) was added in a well on day 3 of culture. After 5 days in culture, pituitaries were fixed in Bouin’s solution and immunostained for PRL cells and GH cells as described above.

To investigate cell proliferation, pituitaries of WT mice were incubated and then cultured medium containing 100 mg/ml BrdU was added to each treatment and incubated for 24 h. After a total of 48 h culture, each pituitary was fixed with 10% (v/v) formalin neutral buffer solution and PRL/BrdU double immunohistochemistry was performed as described above.

Table 1 Primer sequences used for real-time RT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward sequence (5’ → 3’)</th>
<th>Reverse sequence (5’ → 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prl</td>
<td>TCAAGAAGCCCCCGAAATACA</td>
<td>TCCCCATTTCCTTTGCTTCA</td>
</tr>
<tr>
<td>Pit1</td>
<td>TGAGGAGTCGGAGCTTGTGA</td>
<td>TCCGTTTCTCTTCTTCTTCT</td>
</tr>
<tr>
<td>Esr1</td>
<td>CTTAGCCAGCTGGCTTTCA</td>
<td>GCCCAAACCCTCTTGGCATTT</td>
</tr>
<tr>
<td>Drd2</td>
<td>CGACAGAGGGACCCGGTATAG</td>
<td>CTGTTGTCGAGGCTGTCA</td>
</tr>
<tr>
<td>Egf</td>
<td>ATGTCCTGGACAAACGGCTCT</td>
<td>ACAAGCTTGGCCGGTGTGA</td>
</tr>
<tr>
<td>Cyclophilin</td>
<td>CCATCCAGCCATTCAGTCTTG</td>
<td>AGGTCTCGGCATCTGGCATC</td>
</tr>
</tbody>
</table>

www.endocrinology-journals.org

Journal of Endocrinology (2009) 203, 231–240

Downloaded from Bioscientifica.com at 11/12/2018 05:42:51AM via free access
Cell count and data analysis

For PRL/BrdU and GH immunohistochemistry and in situ hybridization, five individual pituitaries were used. GH, PRL, and BrdU immunoreactive cells were counted under a light microscope with an X40 objective lens. Positive cells in 200 anterior pituitary cells were counted in six randomly chosen areas from transversal horizontal sections. Three different sections from each pituitary were chosen to avoid counting the same cells.

For multiple comparisons, treatment groups were compared using ANOVA followed by appropriate post hoc tests. Two-tailed Student’s t-test after application of F test was used for comparison of two mean values. A statistically significant difference was defined as \(P < 0.05 \).

Results

PRL and GH immunoreactive cells in the anterior pituitary of WT and IGF1KO adult mice

PRL and GH immunoreactivities were observed in the cytoplasm of anterior pituitary cells of 3- to 5-month-old WT and IGF1KO mice, respectively (Fig. 1A–D). Negative control incubating with rabbit immunoglobulin fraction showed no staining (Fig. 1E). These cells formed clusters and were distributed randomly in the anterior pituitaries in both WT and IGF1KO mice. The percentage of GH cells in pituitaries of IGF1KO mice was significantly higher as compared with that in WT mice (Fig. 2A). In contrast, the percentage of PRL cells in IGF1KO mice was significantly lower than that in WT mice (Fig. 2B). Some PRL cells in the anterior pituitaries both in WT and IGF1KO mice also showed positive staining for GH (somatolactotrophs, data not shown).

Gh mRNA expressing cells in the anterior pituitary of adult WT and IGF1KO adult mice

Stefaneanu et al. (1999) already demonstrated that Prl mRNA expressing cells were reduced in IGF1KO mice and the IGF1 administration to adult IGF1KO mice had no effect on the intensity or Prl RNA signal. Therefore, in this study, only Gh mRNA expressing cells were analyzed. Gh mRNA expressing cells were detected in the anterior lobe but not in the intermediate and posterior lobes of pituitaries of adult WT and IGF1KO mice, and no signal was detected in the negative controls in the anterior lobe by in situ hybridization (Fig. 3A and B). Gh mRNA expressing cells in IGF1KO mice were distinguishable, and the percentage of Gh mRNA expressing cells was significantly higher compared with that in WT mice (Fig. 3C).
BrdU and PRL double immunostaining in 5- to 20-day-old WT and IGF1KO mice

In the anterior pituitary of WT and IGF1KO mice, BrdU-labeled cells were observed between days 5 and 20 (Fig. 4A–D). The percentage of BrdU-labeled cells in WT mice was high at day 5 and it decreased from days 10 to 20 (Fig. 4E). PRL cells in WT mice conversely increased with age (Fig. 4 E). In the anterior pituitaries of IGF1KO mice, the percentage of BrdU-labeled cells was similar to that in WT mice at days 5–20 (Fig. 4 E). In IGF1KO mice, the percentage of PRL cells increased with age as seen in WT mice; however, the percentage of PRL cells in IGF1KO mice at day 20 was significantly lower than that in the age-matched WT mice (Fig. 4E). Furthermore, a few PRL and BrdU double positive cells were found in WT and IGF1KO mice at days 5–20, although, there was no difference in the percentages of double positive cells between WT and IGF1KO mice (data not shown).

GH immunostaining in 10- to 20-day-old WT and IGF1KO mice

In postnatal mice, GH immuno reactive cells were clearly distinguishable (Fig. 5A and B). The percentage of GH cells in IGF1KO mice had significantly increased as compared with that in WT mice through days 10–20 (Fig. 5C).

Real-time RT-PCR

To clarify the changes in expression of factors involved in PRL cell proliferation and differentiation in anterior pituitaries, mRNA expression of Prl, Pit-1, Esr1, Egf, and Drd2 was analyzed in WT and IGF1KO mice at days 10 and 20. mRNA expression of these genes showed no difference between WT and IGF1KO mice at days 10 and 20 (Fig. 6).

PRL and GH cells in organ-cultured WT and IGF1KO mouse pituitaries

Stefaneanu et al. (1999) report that PRL cell number and serum PRL levels in adult IGF1KO mice are not changed by IGF1 injections; therefore, we investigated the effects of IGF1, E2, and EGF on PRL production in pituitaries of WT and IGF1KO mice at day 10 using an organ culture system. After 5 days in culture with control medium, the percentage of PRL cells was not different between WT and IGF1KO mice.
mouse pituitaries (Fig. 7A and B). When pituitaries of WT and IGF1KO mice were cultured with IGF1, E2, or EGF, the percentage of PRL cells was significantly increased as compared with those in controls (Figs 7A, B, Q, R and 8). A combination of IGF1 and E2 treatment also caused a significant increase as compared with that in controls, but it was not an additive effect on pituitaries from both WT and IGF1KO mice (Figs 7A, B, Q, R and 8). Interestingly, when pituitaries of IGF1KO mice were cultured with E2 or EGF, the percentage of PRL cells was significantly lower than that in WT mice (Fig. 8).

The percentage of GH cells in pituitaries of WT mice was not different from those in IGF1KO mice after 5 days in culture (Figs 7C, D, G, H, K, L, O, P, S, T and 8). To elucidate whether an increase of PRL cell number was due to cell proliferation of PRL cells, BrdU-labeled cells were counted in pituitaries of WT mice after 2 days in culture. The number of BrdU-labeled cells was similar among treatments (data not shown).

Discussion

IGF1 has a crucial role in the increase in PRL cell number because these cells are reduced in female IGF1KO mice from day 10 to adult (Saitoh et al. 2005). In this study, the percentage of PRL cells was significantly lower in male IGF1KO mice at day 20 as compared with age-matched WT mice, but the percentage of BrdU-labeled cells was not different between WT and IGF1KO mice. Thus, some of the anterior pituitary cells in immature IGF1KO mice may not be able to differentiate into PRL cells in both sexes. PRL cells in the anterior pituitary proliferate and differentiate from late fetal ages to postnatal periods (Taniguchi et al. 2001). In this study, the percentage of BrdU-labeled cells was high at day 5 and decreased; however, PRL cells increased in number with age, suggesting that PRL is not synthesized during mitosis of progenitor cells, and differentiated cells begin to produce PRL from days 15 to 20. A similar phenomenon is also reported in rat anterior pituitaries (Taniguchi et al. 2001). However, BrdU- and PRL-labeled cells were also found during neonatal period, indicating that some differentiated PRL cells have the potential to proliferate.

GH cells and PRL cells are thought to originate from common progenitor cells. The progenitor cells express Pit-1 and Prop-1, which are essential for differentiation of PRL cells (Slabaugh et al. 1981, Simmons et al. 1990). PRL cells are also believed to be differentiated from GH-producing cells or somatolactotrophs that express GH and PRL. Borrelli et al. (1989) show that transgenic mice expressing HSV1-TK gene under the rat Gh promoter treated with FIAU results in the complete loss of somatotrophs and lactotrophs. Behringer et al. (1988) also show a severe decrease in lactotrophs in the anterior pituitary of rGh-DT-A transgenic mice which targeted diphtheria toxin-mediated destruction of GH producing cells. These results indicate that PRL cells arise from GH cells. However, in the adult rGh-Cre transgenic mice, only 10% of lactotrophs are derived from somatotrophs (Luque et al. 2007). In this study, GH cells in IGF1KO mice were already increased at day 10 because of the absence of the IGF1 negative feedback loop that suppressed GH production (Wallenius et al. 2007). An increase of GH cells may be due to the mass differentiation of progenitor cells to GH cells, in IGF1KO mice (Figs 7A, B, Q, R and 8). Interestingly, when pituitaries of IGF1KO mice were cultured with E2 or EGF, the percentage of PRL cells was significantly lower than that in WT mice (Fig. 8).
therefore, it may result in suppression of PRL cell differentiation in IGF1KO mice because PRL cells and GH cells are derived from the same origin. IGF1 may regulate the balance of GH cells and PRL cells during the immature period.

Several factors may be related to PRL cell proliferation and/or differentiation, including E₂, IGF1, and EGF. E₂ stimulates PRL cell proliferation (Wiklund et al. 1981, Amara et al. 1987) and E₂ also induces transdifferentiation of PRL cells from GH cells via somatolactotrophs (Behringer et al. 1988, Borrelli et al. 1989, Goda et al. 1998). Furthermore, EGF plays a role in cell proliferation and differentiation in the mouse anterior pituitary (Schwarz 2000). EGF induces the expression of dopamine receptor and transdifferentiation into lactotroph-like cells in the GH3 cell line (Missale et al. 1991) and PRL cell differentiation in the MtT/S cell line (Goda et al. 1998). Ben-Jonathan et al. (2009) show that the ability of EGF to stimulate Prl gene expression and release is mediated

<table>
<thead>
<tr>
<th>PRL cells</th>
<th>GH cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>IGF1KO</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Control</td>
<td>IGF1</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>E₂</td>
<td>IGF1</td>
</tr>
<tr>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>O</td>
<td>P</td>
</tr>
<tr>
<td>EGF</td>
<td>E₂ + IGF1</td>
</tr>
<tr>
<td>Q</td>
<td>R</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
</tr>
</tbody>
</table>

Figure 7 Immunohistochemical staining of PRL in the organ-cultured anterior pituitaries from WT (A, E, I, M, and Q) and IGF1KO (B, F, J, N, and R) mice, and GH in the organ-cultured anterior pituitaries from WT (C, G, K, O, and S) and IGF1KO (D, H, L, P, and T) mice. Control (A–D), IGF1 (E–H), E₂ (I–L), EGF (M–P), and IGF1 + E₂ (Q–T) treatments. Control, BSA; IGF1, 20 ng/ml insulin-like growth factor 1; E₂, 10⁻⁴ M 17β-estradiol; EGF, 50 ng/ml epidermal growth factor.
Roles of IGF in mouse PRL cells

by Erk1/2-induced phosphorylation of Esr1 in GH3 cells, which express both Esr1 and Esr2 (Mitchner et al. 1999). Thus, E2 and EGF can share a common pathway in the control of Pit gene expression. IGF1 also converts GH cells into PRL cells in the MtT/S cells (Inoue & Sakai 1991). Hypothalamic dopamine inhibits PRL production and cell proliferation (Freeman et al. 2000, Ben-Jonathan & Hnasko 2001). In this study, the differentiation of PRL cells was stimulated by IGF1, E2 or EGF in the anterior pituitary of IGF1KO mice in vitro. In addition, the percentage of PRL cells in IGF1KO mice stimulated by E2 or EGF was significantly lower than that in the WT mice, suggesting that IGF1 mediates E2 or EGF action partially. In addition, Esr1, Egf, and Drd2 mRNA were not different between WT and IGF1KO mice at days 10 and 20, in spite of a decrease in PRL cell number at day 20. This fact suggests that deletion of IGF1 does not affect the expression of these genes.

Pit-1 mRNA level was not changed in pituitaries from both WT and IGF1KO mice, suggesting that IGF1KO mice may have the same population of progenitor cells. Interestingly, the Pit mRNA level in IGF1KO mice was similar to that in WT mice at days 10 or 20. However, Pit mRNA expressing cells in adult IGF1KO mice are decreased (Stefaneanu et al. 1999), suggesting that IGF1 is responsible for PRL protein synthesis rather than PRL transcription in immature male IGF1KO mice.

IGF1 injection to IGF1KO mice shows no effect on the percentage of Pit mRNA expressing cells (Stefaneanu et al. 1999), which is in conflict with the result in this study. The discrepancy between these studies may be due to differences in the age of the mice used. In the anterior pituitary of day 10 mice, PRL cells are undergoing differentiation and progenitor cells may still exist, while percentages of PRL cells in adult mice are maximally increased. Therefore, IGF1 can stimulate the differentiation of these progenitor cells in WT and IGF1KO mice at day 10 but not in the adult.

A combination of IGF1 and E2 increased the percentage of PRL cells, but it was not an additive effect. Several reports show that E2 inhibits IGF1 action which induces proliferation of PRL cells in primary culture of rat pituitary (Kawashima et al. 2002, Gutiérrez et al. 2005). However, an antagonistic effect of estrogen was not observed in this study, it may be due to the use of pituitaries from the developmental period of mice. Arroba et al. (2005) show that E2 utilizes IGF1 receptor to stimulate PRL cells and activates MAPK cascade. This may be one of the reasons that an additive increase was not observed in E2 and IGF1 treatments because of the sharing the same signaling pathway. Another possibility is the limit of progenitor cells in number, the percentage of PRL cells can reach a plateau even after a combination of IGF1 and E2 treatment. In addition, the percentage of PRL cells in our data was higher than that in the previous report (Stefaneanu et al. 1999), therefore, it is necessary to confirm the percentage of cells producing both GH and PRL in the next study.

GH cells in the pituitaries of WT and IGF1KO mice were increased after 5 days in culture with the control medium. Since Gh gene expression is suppressed by IGF1 at the pituitary level (Goodyer et al. 1984, Yamashita & Melmed 1986), the hypothalamic level (Abe et al. 1983, Tannenbaum et al. 1983) and somatostatin from the hypothalamus (Sugihara et al. 1999, Morishita et al. 2003), GH cells can be increased when the pituitary is released from suppression. However, addition of IGF1 did not decrease GH cell number in vitro, suggesting that IGF1 suppresses GH synthesis through the hypothalamus or somatostatin at day 10. Similarly, PRL cells did not increase in control medium, indicating that PRL cell differentiation is not inhibited by the factors from the hypothalamus and stimulative factors induce differentiation from progenitor cells to PRL cells at this age.

In conclusion, IGF1 is essential for PRL cell differentiation, but not proliferation. In IGF1KO mice, the number of PRL cells is low due to the increase of GH cells from the same progenitor cells. IGF1 is a mediator of E2 and EGF signaling in pituitary cells. Thus, IGF1 plays a crucial role for PRL cell development by regulating differentiation of progenitor cells and mediating actions of E2 and EGF.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was partially supported by a Grant-in-Aid for Scientific Research on Priority Areas (A) (T S), Grants-in-Aid for Encouragement of Young Scientists (T S) and Scientific Research (B) (T I) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, a Grant for Support of the Promotion of Research at Yokohama City University.
S H and T S), a Grant for Support of the Collaborative Study at NIBB (T S), and a Health Sciences Research Grant from the Ministry of Health, Labor and Welfare, Japan (T I).

Acknowledgements

We thank Dr Argiris Efstratiadis (Columbia University) and the late Dr Matthew Hardy (Population Council) for supplying the IGF1 knockout mice. Authors are grateful to Dr Raphael Guzman, Department of Molecular Cell Biology and Cancer Research Laboratory of University of California, Berkeley, for his critical reading of this manuscript.

References

Borrelli E, Heyman RA, Arias C, Sawchenko PE & Evans RM 1989 Cell Biology and Cancer Research Laboratory of University of California, Berkeley, for his critical reading of this manuscript.

LeRoith D, Werner H, Beitner-Johnson D & Roberts CT Jr 1995 Molecular and cellular aspects of the insulin-like growth factor 1 receptor. Endocrine Reviews 16 143–163.

Received in final form 28 July 2009
Accepted 20 August 2009
Made available online as an Accepted Preprint 20 August 2009