Regulation of thyroid hormone activation via the liver X-receptor/retinoid X-receptor pathway

Marcelo A Christoffolete*, Márton Doleschall1,*, Péter Egri1, Zsolt Liposits1, Ann Marie Zavacki2, Antonio C Bianco3 and Balázs Gereben1

Human and Natural Sciences Center, Federal University of ABC, Santo Andre-SP 09210-370, Brazil
1Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, Budapest H-1083, Hungary
2Division of Endocrinology, Diabetes, and Hypertension, Thyroid Section, Brigham and Women’s Hospital, Boston, Massachusetts MA 02115, USA
3Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida FL 33136, USA
(Correspondence should be addressed to B Gereben; Email: gereben@koki.hu)

(M A Christoffolete and M Doleschall contributed equally to this work)
(M Doleschall is now at Inflammation Biology and Immungenomics Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary)

Abstract

Thyroid hormone receptor (TR) and liver X-receptor (LXR) are the master regulators of lipid metabolism. Remarkably, a mouse with a targeted deletion of both LXRα and LXRβ is resistant to western diet-induced obesity, and exhibits ectopic liver expression of the thyroid hormone activating type 2 deiodinase (D2). We hypothesized that LXR/retinoid X-receptor (RXR) signaling inhibits hepatic D2 expression, and studied this using a luciferase reporter containing the human DIO2 (hDIO2) promoter in HepG2 cells. Given that, in contrast to mammals, the chicken liver normally expresses D2, the chicken DIO2 (cDIO2) promoter was also studied. 22(R)-OH-cholesterol negatively regulated hDIO2 in a dose-dependent manner (100 μM, approximately twofold), while it failed to affect the cDIO2 promoter. Truncations in the hDIO2 promoter identified the region −901 to −584 bp as critical for negative regulation. We also investigated if 9-cis retinoic acid (9-cis RA), the ligand for the heterodimeric partner of TR and LXR, RXR, could regulate the hDIO2 promoter. Notably, 9-cis RA repressed the hDIO2 luciferase reporter (1 μM, approximately fourfold) in a dose-dependent manner, while coexpression of an inactive mutant RXR abolished this effect. However, it is unlikely that RXR homodimers mediate the repression of hDIO2 since mutagenesis of a DR-1 at −506 bp did not interfere with 9-cis RA-mediated repression. Our data indicate that hDIO2 transcription is negatively regulated by both 22(R)-OH-cholesterol and 9-cis RA, which is consistent with LXR/RXR involvement. In vivo, the inhibition of D2-mediated tri-iodothyronine (T3) production by cholesterol/9-cis RA could function as a feedback loop, given that T3 decreases hepatic cholesterol levels.

Journal of Endocrinology (2010) 205, 179–186

Introduction

Thyroid hormone receptor (TR) and liver X-receptors (LXR) are the key regulators of lipid metabolism. Both these receptors prefer to bind to a direct repeat of the consensus DNA-binding site separated by a 4 bp spacing (DR-4), and thus can coordinateedly regulate gene expression through this motif (Wu & Koenig 2000, Kalaany & Mangelsdorf 2006). LXR can be activated by cholesterol, while tri-iodothyronine (T3) binding to TR has profound effects on the expression profile of thyroid hormone-dependent genes. Both the receptors can heterodimerize with retinoid X-receptor (RXR), and thus their signaling is also regulated by 9-cis retinoic acid (9-cis RA; Glass 1994, Willy et al. 1995, Castillo et al. 2004).

The DIO2 gene encodes type 2 deiodinase (D2), a tightly regulated oxidoreductase selenoenzyme that catalyzes thyroid hormone activation by converting thyroxine (T4) to T3, thus generating ligand for TR (Gereben et al. 2008). Remarkably, a mouse with a targeted disruption of LXRα and LXRβ (double LXR knockout (KO) mice) is resistant to western diet-induced obesity, and exhibits ectopic liver expression of D2 accompanied by increased expression of T3 target genes involved in fatty acid utilization (Kalaany et al. 2005). In this model, hepatic induction of D2 expression in LXR KO mice was dependent on dietary cholesterol, but not on SREBP-1c-mediated lipogenic pathways. Furthermore, it has been demonstrated that bile acids, the principal products of cholesterol catabolism, prevent obesity in wild-type mice, but not in D2 KO mice, by indirectly increasing D2
expression via the G-protein-coupled receptor TGR5 (GPBAR1; Watanabe et al. 2006).

The molecular links between cholesterol and D2-catalyzed thyroid hormone activation are presently unclear. We hypothesized that the LXR/RXR signaling pathways inhibit hepatic D2 expression in mammals. In order to better understand the regulation of fat metabolism, we investigated the effect of the LXR/RXR pathway on D2 expression by characterizing the response of human DIO2 (hDIO2) promoter to both 22(R)-OH-cholesterol/LXR and 9-cis RA/RXR pathways in human hepatic HepG2 cells. Notably, while D2 is not normally expressed in the mammalian liver (Croteau et al. 1999), it is expressed in the chicken (Gereben et al. 1999). Given this contrast, we also cloned the chicken D2 (cDIO2) promoter, and studied its responsiveness to the LXR/RXR signaling pathways. Our results indicate that the hDIO2 promoter is potently down-regulated at the transcriptional level by both LXR and RXR ligands, while in contrast, the cDIO2 promoter is unaffected by 22(R)-OH-cholesterol treatment.

Materials and Methods

Cell culture and transfection

HepG2 cells of human hepatoma origin were maintained under standard conditions in DMEM supplemented with 10% FBS. To remove lipids for experiments with 22(R)-OH-cholesterol (Sigma), serum was double stripped as described (Larsen et al. 1986). The concentration of 22(R)-OH-cholesterol and 9-cis RA (Sigma) used in the treatments is described in the legends, and treatments were performed for at least 20 h. The vehicles for 22(R)-OH-cholesterol and 9-cis RA were ethanol and DMSO respectively. Transient transfection was performed using Lipofectamine (Invitrogen) according to the manufacturer’s instructions.

Constructs and mutagenesis

The human RXRα and LXRβ expression vectors were described earlier (Seol et al. 1995). The human RXRαΔ19C mutant lacks the last 19 amino acids (aa 444–462) and the AF-2 region, but retains heterodimerization (Zavacki et al. 1997). The 6.9 kb 5′ flanking region (FR) hDIO2 luciferase promoter constructs and their truncated forms were described previously (Zeold et al. 2006). PCR-based site-directed mutagenesis was used to mutate the DR-1 site in the hDIO2 5′FR. In short, overlapping PCR was used to generate the mutant cassette that was inserted between the PacI/NheI sites of the 6.9 kb 5′ FR hDIO2 luciferase constructs.

Cloning of the cDIO2 promoter

The GenBank no. AF125575 chicken D2 RNA sequence (Gereben et al. 1999) was aligned to the chicken genomic sequence to locate the DIO2 promoter in the chicken genome with DIO2 being identified on chromosome #5. A 5.79 kb cDIO2 5′ FR fragment was isolated using the Expand Long Template PCR System (Roche) with chicken genomic DNA as the template, and it was cloned into the pGemT vector. A 3.66 kb cDIO2 5′ FR was amplified on this template using the same kit and the following oligonucleotides: sense, TGGACATGGGATAATCCATC-TTCCTTGAAGCCTTTTATACATTC; antisense, GTTTTAGCTTGCTTCTCGTTTACATTACATT. The resulting fragment was cloned between the KpnI and Klenow blunted Nhel sites of the pGL3-basic vector, and was confirmed by sequencing (Promega).

Promoter studies

Promoter studies using a luciferase reporter were performed as described previously (Fekete et al. 2004, Zeold et al. 2006). As internal controls, hGH and Renilla expression vectors (phRL-hβ actin–213 + 932) were used (Gereben et al. 2001, Zeold et al. 2006, Doleschall et al. 2007). The CRE was induced with the coexpression of the α-catalytic subunit of protein kinase A (PKA; Maurer 1989) as described (Gereben et al. 2001). Luciferase activity was determined using the Dual-Luciferase Reporter Assay System (Promega). Where indicated, an empty CDM8 expression vector was used in the control transfections. The results are expressed as Luciferase/hGH or Luciferase/Renilla ratios.

Statistical analysis

Results are presented as means ± S.D. Analysis was statistically preformed using an unpaired t-test, or one-way ANOVA followed by Newman–Keuls post hoc testing when multiple comparisons were made. P < 0.05 was considered statistically significant.

Results

Treatment with 22(R)-OH-cholesterol and 9-cis RA negatively regulated the hDIO2 promoter in HepG2 cells transfected with LXRβ and RXRα in a dose-dependent manner with approximately twofold suppression of transcriptional activity at a dose of 100 and 1 μM respectively (Fig. 1A). Treatment with 22(R)-OH-cholesterol alone in LXRβ-transfected HepG2 cells caused a similar effect (Fig. 1B). In contrast, a 3XDR-4 binding site containing luciferase promoter control construct was induced under similar conditions in the presence of only LXRβ by approximately threefold, while coexpression of LXRβ and RXRα induced the control by approximately fourfold (Fig. 1C). In the control experiments, we also tested the responsiveness of a pGL3-basic construct containing 880 bp of the mouse type 1 deiodinase (D1) promoter to 22(R)-OH-cholesterol and no change was observed, further
confirming the specificity of this repression of the hDIO2 promoter (data not shown).

Based on the markedly different hepatic expression of the human and chicken D2, we also cloned the cDIO2 promoter and tested its response to 22(R)-OH-cholesterol in the presence of LXRβ. The sequence of the cloned cDIO2 5'FR fragment has a low homology to hDIO2, and only the proximal ~160 bp can be aligned. However, this portion has both a putative CRE and a TATA box in the same position as the human promoter (Fig. 2A). Strikingly, coexpression of the cDIO2 promoter with PKA resulted in ~10-fold increase in promoter activity, but 22(R)-OH-cholesterol treatment in the presence of LXRβ did not suppress the promoter either with or without PKA coexpression (Fig. 2B).

A series of truncations of the hDIO2 promoter were used to map the region necessary for negative regulation by LXRβ and cholesterol (Fig. 3). Deletion of the region at −117 bp to −3.9 kb resulted in a sharp decrease in the overall promoter activity and a loss of 22(R)-OH-cholesterol responsiveness, despite the presence of the putative DR-4 at −4616 bp. A combined deletion of the regions between −6.9 to −2.1 kb and −912 to −117 bp also resulted in a similar effect. The activity of a construct containing −901 bp of the DIO2 5' FR was decreased by 22(R)-OH-cholesterol treatment, while a fragment containing −584 bp was unresponsive, indicating that the region between −584 and −901 bp plays an important role in the negative response to cholesterol.

We also studied whether 9-cis RA, the other ligand of LXR/RXR heterodimer, could also negatively regulate the hDIO2 promoter in a dose-dependent manner. One-micromolar 9-cis RA caused a superordinately fourfold suppression of hDIO2 transcription both in the absence and in the presence of PKA-mediated CRE stimulation (Fig. 4A and B). However, coexpression of an inactive RXRα mutant completely abolished the suppressive effect of 9-cis RA on the hDIO2 promoter (Fig. 4C). In the control experiments, we also tested the response of the 880 bp mouse D1 promoter pGL3-basic construct to 9-cis RA, and no change was observed (data not shown).

Site-directed mutagenesis of a putative DR-1 site at −506 bp in the 6.9 kb hDIO2 promoter construct did not interfere with the 9-cis RA-mediated suppression of hDIO2, suggesting that binding of a RXR homodimer at this site is not involved in this process (Fig. 5); however, we cannot rule out that signaling of RXR through another heterodimer complex is not involved. Deletion constructs containing −2.1 kb, −901 bp, and −584 bp of the hDIO2 promoter remained responsive to 9-cis RA-mediated suppression, although only the higher dose was effective. In addition, while the proximal −117 bp of the hDIO2 promoter had a low basal activity, this was suppressed by 9-cis RA treatment. Interestingly, 9-cis RA could also suppress the ~3.5 kb cDIO2 promoter, although basal activity of this reporter construct was very low.

Discussion

The LXR/FXR/TGR5 system plays a key role in both the maintenance of cholesterol and lipid homeostasis (Houten et al. 2006, Kalaany & Mangelsdorf 2006). LXR and FXR coordinately regulate cholesterol and bile acid metabolism, with LXR being activated by oxysterols, while FXR is activated by the clearance products of cholesterol, bile acids. In addition, LXR also transcriptionally controls genes associated with hepatic lipogenesis including SREBP-1c, a key regulator of fatty acid and triglyceride synthesis. On the other hand, bile acids, acting through both FXR and TGR5, decrease triglyceride levels through a variety of mechanisms including the repression of SREBP-1c expression and modulation of fatty acid uptake and β-oxidation (Houten et al. 2006, Kalaany & Mangelsdorf 2006).
Thyroid hormones also play a crucial role in the regulation of body composition and lipid homeostasis (Baxter & Webb 2009). Recently, it has emerged that a key point in thyroid hormone action is the local generation of thyroid hormone by T4 to T3 conversion by D2 (Gereben et al. 2008). Thus, it is not surprising that local T3 generation by D2 can also be modulated by regulators of fat metabolism. Bile acids, via TGR5, have been shown to up-regulate D2 expression in brown adipose tissue, leading to resistance to diet-induced obesity (Watanabe et al. 2006). In addition, the double LXR KO mouse is resistant to western diet-induced obesity, and exhibits ectopic liver expression of D2 (Kalaany et al. 2005). Taken together as a whole, this suggests that bile acid-mediated pathways act to promote pathways associated with lipolysis, which would include the T3-generating D2. In contrast, sterols via LXR would promote lipogenesis and the down-regulation of factors such as D2.

To test this hypothesis, we investigated whether D2 was negatively regulated by the LXR/RXR pathway in HepG2 cells. The human LXRα and LXRβ share almost 80% amino acid identity in their DNA-binding domain and ligand-binding domain (Zhao & Dahlman-Wright 2010). In these studies, we used LXRβ, which is the more ubiquitously expressed LXR isoform (Annicotte et al. 2004). When cells were cotransfected with LXRβ, treatment with 22(R)-OH-cholesterol negatively regulated the hDIO2 promoter in HepG2 cells in a dose-dependent manner with approximately twofold suppression of transcriptional activity at 100 μM (Fig. 1A and B). While sequence analysis identified a putative DR-4 at K4616 bp of hDIO2 promoter that showed significant similarity to the LXR response element of ATP-binding cassette subfamily G member 1 (Varga & Su 2007), deletion of this element demonstrated that this DR-4 is not involved in the suppression of hDIO2 (Fig. 3). Notably, it has been recently shown that LXR response elements could be more diverse than previously thought and beyond the classical DR-4, and that DR-1 and inverted repeat 1 motifs may also bind to LXR (Varga & Su 2007). Deletion mapping further localized this negative regulation by 22(R)-OH-cholesterol to a region between K901 and K584 bp of the hDIO2 promoter, although no obvious LXR-consensus binding sequences could be identified in this region (Fig. 3). Although this region contains a functional binding site for the homeodomain-containing transcription factor TTF1/Nkx2.1 (−619 to −627; Gereben et al. 2001), it is presently not clear how Nkx2.1 could be involved in the demonstrated mechanism.
While numerous LXR target genes have been identified, our knowledge of LXR-suppressed genes is still rather limited (Baranowski 2008). It is known that LXR activation down-regulates hepatic enzymes essential for gluconeogenesis including phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase (Stulnig et al. 2002). In the murine intestine, LXR agonists decreased the expression of Niemann-Pick C1-like 1 protein, a critical player of intestinal cholesterol absorption (Duval et al. 2006).

To our knowledge, the negative regulation of the hDIO2 gene represents the first link between T3 generation and LXR/RXR signaling.

In the liver, D1 is expressed abundantly, but due to its high \(K_m \) for T4, its contribution to circulating T3 in euthyroid humans is considered to be minimal (Maia et al. 2005).

It has also been suggested that hepatic D1 might contribute to local T3 generation in the liver (St Germain et al. 2009), and thus the local regulation of the DIO1 gene via the LXR/RXR pathway could be important. However, we did not find any evidence in HepG2 cells that the DIO1 gene could be regulated via this pathway.

While the hDIO2 promoter was down-regulated by the LXR/22(R)-OH-cholesterol pathway (Fig. 1A and B), this suppression was not observed with the cDIO2 promoter (Fig. 2B). This finding is in accordance with observations that D2 is not normally expressed in the mammalian liver (Croteau et al. 1996), while the chicken liver has D2 expression and activity (Gereben et al. 1999). Although the cDIO2 5' promoter fragment that was tested was shorter than the hDIO2 promoter (3.7 vs 6.9 kb of 5' FR),

Figure 3 Mapping of cholesterol-mediated suppression of the hDIO2 5'FR. HepG2 cells were transiently transfected with 6.9 kb 5'FR-hDIO2-Luc and its truncated forms as indicated along with 10 ng LXR. Luc/hGH ratios are shown as arbitrary units. Experiments were repeated three times. Mean \(\pm S.D. \); * \(P < 0.05 \) versus vehicle by t-test. The DR-1 at \(-506 \) bp (AGGACC tACGTCA; indicated by \(\Delta \)) and DR-4 at \(-4616 \) bp (TGACTT tttt TGACCA; indicated as \(\Delta \)) are putative, and were determined using NHR SCAN (Sandelin & Wasserman 2005) supplemented with manual analysis.

Figure 4 9-cis Retinoic acid negatively regulates hDIO2 in a dose-responsive manner. HepG2 cells were transiently transfected with 6.9 kb 5'FR-hDIO2-Luc, empty CDM8 vector as a control, and (A) wild-type RXR\(\alpha \), (B) wild-type RXR\(\alpha \) plus PKA, or (C) mutant RXR\(\alpha \) plus PKA. Luc/hGH ratios are shown as arbitrary units. Experiments were repeated three times. Mean \(\pm S.D. \); * \(P < 0.01 \), ** \(P < 0.001 \) versus vehicle by ANOVA followed by the Newman–Keuls post hoc test.
the 22(R)-OH-cholesterol-responsive region in the hDIO2 promoter was mapped between −901 and −584 bp, which would also have been included in the 3.7-kb cDIO2 reporter construct. In both chickens and humans, the liver is the major site of cholesterol synthesis (Hermier 1997), and thus further studies will be required to elucidate the potential physiological consequences of the differential sensitivity of the two DIO2 promoters to 22(R)-OH-cholesterol-mediated repression between these species.

LXR/RXR forms a ‘permissive heterodimer’ that can be independently activated by ligands of either heterodimerization partner (Willy et al. 1995). We also demonstrated that the RXR/9-cis RA pathway strongly represses the hDIO2 promoter in HepG2 cells (Fig. 4). This is in agreement with previous findings that the RXR-specific retinoid LG268 suppressed D2 expression in the mouse pituitary and the TαT1 cell line (Sharma et al. 2006). However, we were unable to clearly define the region responsible for the negative regulation of the hDIO2 promoter using deletion mapping, since despite a drastic loss of basal activity, a construct containing −117 bp of the hDIO2 promoter was still repressed by 9-cis RA treatment unlike the pGL3-basic backbone vector. Furthermore, mutagenesis of a putative DR–1-binding site at −506 site in hDIO2 promoter did not interfere with 9-cis RA-mediated suppression, indicating that either this site is not functional, or RXR homodimers, which prefer the DR–1 motif, are not involved in the observed suppression (Fig. 5). Notably, while the cDIO2 promoter could not be suppressed with 22(R)-OH-cholesterol, its expression was decreased with 9-cis RA (Figs 3 and 5). Taken together, our data with regard to both deletion mapping of the 22(R)-OH-cholesterol and 9-cis RA and the responsiveness of the hDIO2 and cDIO2 promoters, and the fact that 22(R)-OH-cholesterol will only repress the hDIO2 promoter but not the cDIO2 promoter while both are negatively regulated by 9-cis RA, might suggest that these two modes of repression are independent of one another.

Both the mammalian (Gereben & Salvatore 2005) and the cDIO2 5′FRs are cAMP sensitive (Fig. 2). A cross-talk between the LXR– and cAMP-mediated gene expression has been suggested (Kalaany & Mangelsdorf 2006). However, we did not find any evidence that the effects of the LXR/RXR pathway on DIO2 expression were modulated by PKA (Figs 1B, 2B and 4B).

LXRβ expression is ubiquitous, leading to the conclusion that the suppression of D2-mediated T3 generation via LXR/RXR might not be confined to the liver. Further studies are required to understand the potential importance of this pathway in different tissues. For example, brain should be considered as an important target for future studies of this pathway based on the fundamental importance played by D2 in the brain T3 content (Gereben et al. 2008), and on the findings demonstrating cholesterol and RA synthesis in brain tissue (Wagner et al. 2002, Dietschy & Turley 2004). Furthermore, 22(R)-OH-cholesterol and 9-cis RA have also been shown to modulate specific LXR/RXR targets in the brain such as the ATP-binding cassette transporter A1 (Koldamova et al. 2003).
In conclusion, the hDIO2 promoter appears to be an LXR/RXR target gene, since it can be negatively regulated by either 22(R)-OH-cholesterol or 9-cis RA. Moreover, the repression of this promoter appeared to map to a region between −584 and −901 bp for 22(R)-OH-cholesterol and before −117 bp for 9-cis RA, although no classical binding sites with LXR/RXR heterodimers or RXR/RXR homodimers could be defined. Furthermore, these effects are independent of a known strong activator of DIO2 gene transcription, cAMP. Previous studies demonstrated that the LXR double KO mice on a western diet exhibit resistance to diet-induced obesity along with ectopic hepatic D2 expression; T3 decreases hepatic cholesterol levels, and CYP7a1, the rate-limiting enzyme in hepatic bile acid synthesis, is positively regulated by both LXR and TR (Lehmann et al. 1997, Gullberg et al. 2000). Taking these findings together, it can be speculated that in vivo the cholesterol/9-cis RA-mediated inhibition of D2-catalyzed T3 production could function as a negative feedback loop.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by the Medical Research Council (ETT Grant 02-121/2009), Hungarian Research Fund Grant OTKA K81226, NIH DK65055 and NIH DK076117.

References

Gullberg H, Rudling M, Forrest D, Angelins B & Vennstrom B 2000 Thyroid hormone receptor beta-deficient mice show complete loss of the normal cholesterol 7α-hydroxylase (CYP7A) response to thyroid hormone but display enhanced resistance to dietary cholesterol. Molecular Endocrinology 14 1739–1749.

Kalayny NY & Mangeldsdorf DJ 2006 LXRs and FXR: the yin and yang of deiodinase-regulated thyroid hormone signaling. Endocrine Reviews 29 899–938.

Seol W, Choi HS & Moore DD 1995 Isolation of proteins that interact with free access 278 Downloaded from Bioscientifica.com at 01/02/2019 04:34:33PM via free access D2 regulation via LXR/RXR · M A CHRISTOFFOLETE, M DOLESCHALL and others 185

Wu Y & Koenig RJ 2000 Gene regulation by thyroid hormone. Trends in Endocrinology and Metabolism 11 207–211.

Received in final form 9 February 2010
Accepted 22 February 2010
Made available online as an Accepted Preprint 22 February 2010