Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells

Elena Grasselli1, Adriana Voci1, Laura Canesi1,3, Fernando Goglia2, Silvia Ravera1, Isabella Panfoli1, Gabriella Gallo1 and Laura Vergani1,3

1Dipartimento di Biologia, Università di Genova, Corso Europa 26, Genova 16132, Italy
2Dipartimento di Scienze Biologiche ed Ambientali, Università del Sannio, Benevento 82100, Italy
3Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma 00136, Italy

(Correspondence should be addressed to L Vergani at Dipartimento di Biologia, Università di Genova; Email: laura.vergani@unige.it)

Abstract

Iodothyronines influence lipid metabolism and energy homeostasis. Previous studies demonstrated that 3,5,3′,5-tetraiodothyronine (T2), as well as 3,3′,5′-triiodothyronine (T3), was able to both prevent and reverse hepatic steatosis in rats fed a high-fat diet, and this effect depends on a direct action of iodothyronines on the hepatocyte. However, the involvement of thyroid hormone receptors (TRs) in mediating the lipid-lowering effect of iodothyronines was not elucidated. In this study, we investigated the ability of T2 and T3 to reduce the lipid accumulation using the rat hepatoma FaO cells defective for functional TRs. The absence of constitutive mRNA expression of both TRα1 and TRβ1 in FaO cells was verified by RT-qPCR. To mimic the fatty liver condition, FaO cells were treated with a fatty acid mixture and then exposed to pharmacological doses of T2 or T3 for 24 h. Lipid accumulation, mRNA expression of the peroxisome proliferator-activated receptors (PPAR-α, -γ, -δ) the acyl-CoA oxidase (AOX), and the stearoyl CoA desaturase (SCD1), as well as fuel-stimulated O2 consumption in intact cells, were evaluated. Lipid accumulation was associated with an increase in triacylglycerol content, PPARγ mRNA expression, and a decrease in PPARδ and SCD1 mRNA expression. The addition of T2 or T3 to lipid-overloaded cells resulted in i) reduction in lipid content; ii) downregulation of PPARα, PPARγ, and AOX expression; iii) increase in PPARδ expression; and iv) stimulation of mitochondrial uncoupling. These data demonstrate, for the first time, that in the hepatocyte, the lipid-lowering actions of both T2 and T3 are not mediated by TRs.

Journal of Endocrinology (2011) 210, 59–69

Introduction

Thyroid hormones (THs) play a major role in lipid metabolism, with the liver representing one of their main target tissues. Other iodothyronines display some thyromimetic activities; among them, 3,5-tetraiodothyronine (T2) mimics several effects of 3,3′,5′-triiodothyronine (T3) on energy metabolism without inducing thyrotoxic effects (Cimmino et al. 1996, Lanni et al. 2005). Also T2, as T3, is able to stimulate both resting metabolic rate and mitochondrial activity in hypothryroid rats (Moreno et al. 1997). Moreover, when administered to rats receiving a high-fat diet, T2 was able to both prevent (Lanni et al. 2005, Grasselli et al. 2008) and reduce (Mollica et al. 2009) the development of liver steatosis. Once entering the cell, THs mostly bind to specific nuclear receptors (TRs) acting as ligand-dependent transcription factors (‘receptor-mediated’ effects). In humans and rodents, TRs are encoded by two genes, Thra and Thrb, each encoding different isoforms (Izumo & Mahdavi 1988, Lazar 1993). Actions of iodothyronines that are not initiated by binding to TRs are termed ‘non-receptor-mediated’ mechanisms (Cheng et al. 2010), and could involve specific membrane-associated binding sites coupled with activation of rapid signaling pathways, involving MAP kinases, phosphoinositole-3-kinase (PI3K), or Ca2+ mobilization (Bergh et al. 2005).

Similar to THs, the peroxisome proliferator-activated receptors (PPARs) play important roles in lipid homeostasis. In humans and rodents, PPARs are encoded under three isoforms α, γ, and δ that bind to free fatty acids (FFAs; Viswakarma et al. 2010), but only PPARδ binds to saturated FFAs (Xu et al. 1999). In the liver, PPARα is the master regulator of FFA oxidation, regulates the expression of acyl-CoA oxidase (AOX), and decreases FFA efflux (Martin et al. 1997). Also PPARδ is highly expressed in the liver, where it enhances FFA catabolism (Barish et al. 2006) and reduces steatosis (Shan et al. 2008). PPARγ is mainly expressed in adipose tissue (Schoonjans et al. 1996) but promotes lipid accumulation also in hepatocytes (Yu et al. 2003). Overall, PPARα and PPARδ function as catabolic regulators of energy, while PPARγ plays anabolic functions on lipid metabolism, even though an overlapping in their expression has been reported (Moreno et al. 1997).
Recent findings provide evidence for a cross talk between TH and PPAR signaling (Lu & Cheng 2010) that occurs mainly via genomic actions (Chu et al. 1995). However, since PPAR transcription is affected by kinase/phosphatase pathways (Burns & Vanden Heuvel 2007, Moreno et al. 2010), the cross talk may also involve ‘non-receptor-mediated’ actions. Moreover, PPARγ (Yao-Borengasser et al. 2008) and PPARδ (Qin et al. 2008) as well as T₃ (Waters et al. 1997) regulate transcription of the lipogenic enzyme stearoyl CoA desaturase (SCD1) that controls FFA composition of lipid droplets (LDs).

The anti-steatotic effects of iodothyronines observed in vitro (Lanni et al. 2005, Grasselli et al. 2008) could not distinguish between their direct effects on the liver and the secondary effects due to upstream changes in endocrine or metabolic pathways. Subsequent in vitro experiments using primary rat hepatocytes overloaded with lipids demonstrated that T₂ and T₃ were able to directly reduce the excess fat (Grasselli et al. 2011). However, whether these effects were mediated by receptor-dependent or independent mechanisms has not been clarified yet.

In this study, we extended our in vitro model of steatosis to the rat hepatoma FaO cell line that is defective for functional TRs (Munoz et al. 1990). FaO cells have been widely employed for studies on FFA effects and PPAR activation (Konig & Eder 2006, Konig et al. 2008). In this study, FaO cells were used to verify whether the lipid-lowering effects of THs are mediated by TRs. In an attempt to investigate the possible molecular targets for the lipid-lowering effect of T₂ and T₃, the transcription of the different PPAR isoforms, as well as of the lipogenic (SCD1) and the lipolytic (AOX) enzymes, was assessed. Moreover, for both iodothyronines, the whole-cell respiration was evaluated in intact FaO cells.

Materials and Methods

Chemicals

All chemicals, unless otherwise indicated, were of analytical grade and were obtained from Sigma–Aldrich Corp.

Cell culture

Rat hepatoma cells (FaO) were supplied by European Collection of Cell Cultures (Sigma–Aldrich Corp.). FaO cell line is a well-differentiated liver cell line maintaining a number of hepatocyte-specific markers (Clayton et al. 1985, Lauris et al. 1986). Cells were grown in Coon’s modified Ham’s F₁₂ medium supplemented with 10% FBS (Euroclone, Milan, Italy), 100 U/ml penicillin, and 0·1 mg/ml streptomycin. Cells were maintained at 37 °C in a humidified atmosphere of 95% air and 5% CO₂. For experiments, FaO cells were seeded on collagenated Petri dishes (Grasselli et al. 2010) and used at 70–80% confluence. For treatments, cells were incubated in starvation medium supplemented with 0·25% BSA without FBS. Briefly, cells were treated with a mixture of oleate/palmitate (2:1 molar ratio, final concentration 0·75 mM, FFAs) for different periods of time (1, 3, and 6 h). After choosing the optimal conditions of exposure to FFAs, FFA-treated hepatocytes were incubated in the absence (FFAs) or in the presence of T₂ or T₃ at different concentrations (nominal concentrations ranging from 10⁻⁷ to 10⁻⁸ M) for 24 h (Demori et al. 1997). Both iodothyronines were added from stock solutions (10⁻³ M in 50 mM NaOH). As a negative control, hepatoma cells were cultured for the same time period with addition of the vehicle alone. At the end of treatment, hepatocytes were collected and stored at −80 °C until use. Cell viability, as assessed by trypan blue exclusion test, was not affected by exposure to FFAs or iodothyronines. For microscopical analyses, cells were grown and treated directly on collagen-coated glass slides (Falcon, BD, Milano, Italy).

To investigate whether the lipid-lowering effects of T₃ on FaO cells might depend on local, intracellular T₃-to-T₂ conversion, experiments with T₃ were repeated in the presence of 6-propylthiouracil (PTU), an inhibitor of type I deiodinase. PTU was prepared from stock solution (10⁻² M in 50 mM NaOH) and was added to the medium (at the dose of 10⁻⁴ M) contemporarily to T₃ (Demori et al. 2004).

Lipid quantification

In intact cells, neutral lipids were visualized using the soluble selective oil-red-O (ORO) dye according to Koopman et al. (2001). After staining, slides were examined by Nikon Eclipse E80i light microscope (Nikon, Japan). Densitometric analysis was performed with a custom-made routine on the Optimas 6.5 image analysis system (Optimas, Washington, DC, USA).

Intracellular triacylglycerol (TAG) content was quantified using the commercial GPO–PAP kit (Roche), as described previously (Grasselli et al. 2010). After lysis of cells and lipid extraction according to the manufacturer’s instructions, TAG content was assessed by spectrophotometric analysis. Values were normalized for the protein content determined by the bicinchoninic acid method using BSA as a standard (Wiechelman et al. 1988). Data are expressed as percent TAG content relative to controls.

Neutral lipids were also visualized by fluorescence microscopy using the selective Nile red (NR) dye (Koopman et al. 2001). Under non-saturating conditions, NR fluorescence is directly proportional to the amount of intracellular lipids. Cells grown on glass cover slips were rinsed twice with PBS and fixed with PBS containing 4% paraformaldehyde for 60 min at room temperature. After rinsing with PBS, cells were incubated with 1 µM NR in PBS for 15 min at room temperature. Then, cells were washed with PBS and mounted with 4',6-diamidino-2-phenylindole (DAPI). Slides were examined by Nikon Eclipse E80i light microscope (Nikon) equipped with the standard epifluorescence filter set up for DAPI and Texas Red. Images were acquired with an exposure time of 100 ms.

Journal of Endocrinology (2011) 210, 59–69

www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 01/12/2019 05:15:13AM via free access
RNA extraction and real-time RT-PCR

Total RNA was isolated from different hepatoma samples by the acid phenol:chloroform procedure using the TRIzol reagent according to the manufacturer’s instructions (Chomczynski & Sacchi 1987). First-strand cDNA was synthesized from 1 μg total RNA (Grasselli et al. 2010). To differentiate between amplification of cDNA and that of contaminating genomic DNA, we performed a preliminary DNase I digestion of RNA samples. Quantitative RT-PCR was performed in quadruplicate in a final volume of 25 μl containing 0·3 μM of each primer, 10 ng cDNA, 1× SYBR Green PCR Master Mix and was analyzed in 96-well optical reaction by Chromo4 System PCR apparatus using the thermal protocol described elsewhere (Grasselli et al. 2008, 2011). The primer pairs employed in this study are listed in Table 1. The quantification cycle (Cq) represents the cycle number at which the amount of amplified target reaches the fixed threshold (Bustin et al. 2009). The relative quantity of target mRNA was calculated as relative quantity of mRNA (fold induction) with respect to controls (Pfaffl 2001).

Expression of TRα1 and TRβ1 was also evaluated in RNA samples isolated from six male Wistar rats (aged 8 weeks) purchased by Harlan Italy (S. Pietro al Natisone, Italy). Animal maintenance and treatment were carried out as described elsewhere (Grasselli et al. 2008) according to the guidelines of the European Community Council for animal care and use.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (5′→3′)</th>
<th>Annealing temperature (℃)</th>
<th>Product length (bp)</th>
<th>Accession ID</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>F: GACCCCTTCATTGACCTCAAC</td>
<td>60</td>
<td>136</td>
<td>DQ403053</td>
<td>Grasselli et al. (2008)</td>
</tr>
<tr>
<td>GAPDH</td>
<td>R: CGCTCTGGAAGATGGTGAAGG</td>
<td>60</td>
<td>116</td>
<td>Y12882</td>
<td>Grasselli et al. (2010)</td>
</tr>
<tr>
<td>PPARγ</td>
<td>F: CGGATCTCCCGAGCTGTGACC</td>
<td>60</td>
<td>139</td>
<td>NM_013196</td>
<td>Grasselli et al. (2011)</td>
</tr>
<tr>
<td>PPARγ</td>
<td>R: GGCTCATATCTGTCCGTCTTC</td>
<td>60</td>
<td>96</td>
<td>AJ304640.1</td>
<td>Grasselli et al. (2011)</td>
</tr>
<tr>
<td>PPARα</td>
<td>F: AATGCGTACTGAAACTGAGGC</td>
<td>60</td>
<td>191</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Oxygraphic measurements

O2 consumption was assayed in intact native FaO cells permeabilized with 30 μg/ml digitonin by a thermostatically controlled oxygraph apparatus equipped with an ampermometric electrode (Unisense-Microrespiration, Unisense A/S, Denmark) that determines the μM of O2 of any solution. Oxymeter was connected to a PC running dedicated proprietary data logger software (MicOx, Unisense). An electromagnetic stirrer bar was used to mix the contents of the chamber. Additions were done by Hamilton syringes, through a rubber cup in a volume of no more than 0·05 ml. Electrode was equilibrated with the appropriate medium before each experiment, until the O2 consumption remained constant.

In experiments with control FaO cells, samples were incubated, at 25 ℃, in the following respiration solution: 120 mM NaCl, 2 mM MgCl2, 1 mM KH2PO4, 50 mM Tris-HCl, pH 7·4, and 25 μg/ml ampicillin (final volume 1·7 ml; Ravera et al. 2009). After 2 min, the respiratory substrates and inhibitors were added in the following order: 10 mM pyruvate and 5 mM malate, 0·19 mM ADP, 40 μM rotenone, 20 mM succinate, 0·08 mM ADP, and 50 μM antimycin A. Pyruvate and malate were used as respiratory substrates to stimulate the pathway I+III+IV, while succinate was used for the pathway II+III+IV. To observe the ADP-stimulated respiration rates, ADP was added after pyruvate and malate or succinate addition. Rotenone (inhibitor of complex I) and antimycin A (inhibitor of complex III) were used as respiratory chain inhibitors. The respiratory rates were expressed in μM O2/min per mg.

The oxidative phosphorylation efficiency (P/O ratio), measured as coupling O2 consumption with ATP production,
was calculated as the ratio between the amount of consumed ADP (nmoles) and the amount of O₂ (nmoles) consumed during the ADP-induced respiration.

In experiments with iodothyronines, T₂ or T₃ (10⁻⁶ or 10⁻⁵ M) was added to control FaO cells directly in the chamber before the respiratory substrates. Experiments with T₃ were repeated in the presence of the deiodinase inhibitor PTU (10⁻⁴ M) that was added before addition of iodothyronines and respiratory substrate. The same analyses were also carried out on lipid-loaded FaO cells.

Statistical analysis

Data on RT-qPCR are means ± s.d. of at least three independent experiments, and each measurement was performed in quadruplicate. Data on TAG are means ± s.d. of five independent experiments. The significance of the difference between groups was evaluated by using ANOVA followed by Bonferroni’s post hoc test. Significant differences were reported: C versus FFAs *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001; and FFAs versus THs #P ≤ 0.05, ##P ≤ 0.01, and ###P ≤ 0.001.

Results

Basal expression of TRα₁ and TRβ₁ in FaO cells

FaO cells have been reported to be deficient in functional TRα₁ and TRβ₁, and the absence of TRβ₁ mRNA was shown by northern blot analysis (Munoz et al. 1990). In this study, we verified the lack of constitutive expression of both TRα₁ and TRβ₁ in control FaO cells by RT-qPCR. Figure 1 shows the amplification curves of TRα₁ and TRβ₁ transcripts for both rat liver and FaO samples in comparison with the amplification curves of the reference gene GAPDH. The Cq value for TRα₁ in the rat liver was about 20, and in FaO cells, it was about 24, with a ΔCq over four cycles (Fig. 1A). Even larger difference was observed for TRβ₁, the most abundant TR isoform in the hepatic cell. The Cq value for TRβ₁ in the rat liver was about 19, while in FaO cells, it was about 28 with a ΔCq of about nine cycles (Fig. 1B). Exposure to different iodothyronines did not affect the level of TRα₁ and TRβ₁ transcripts in FaO cells (data not shown).

Effects of exogenous FFA-induced lipid accumulation in FaO cells

We first verified the time course of lipid accumulation in rat hepatoma FaO cells exposed to a FFA mixture (oleate/palmitate 2:1 molar ratio), according to the model of cellular steatosis’ described in human hepatoma HepG2 cells (Feldstein et al. 2004) and in primary rat hepatocytes (Feldstein et al. 2004, Grasselli et al. 2011). FFA exposure induced a rapid time-dependent increase in lipid accumulation, evaluated by densitometric analysis of ORO staining, reaching a plateau at 3–6 h (about threefold with respect to controls; P≤0.001; Fig. 2A). FFA treatment did not result in lipotoxicity at any time point, as observed by trypan blue exclusion test (data not shown).

Figure 1 Relative abundance of TRα₁ and TRβ₁ in FaO cells. Basal expression of the thyroid hormone receptors quantified in FaO cells by RT-qPCR with respect to the rat liver. (A) Amplification curves of TRα₁ and of the reference gene GAPDH in the rat liver and FaO cells. (B) Amplification curves of TRβ₁ and of GAPDH in the rat liver and FaO cells. X-axis, amplification cycle number. Y-axis, normalized fluorescence signal.

Effects of iodothyronines on lipid accumulation

Lipid-loaded FaO cells were then treated for 24 h with two different concentrations of T₂ or T₃ (10⁻⁶ and 10⁻⁵ M), as described previously for primary rat hepatocytes (Grasselli et al. 2011). As a preliminary experiment, the dose–response curves were assessed for both iodothyronines in the range of 10⁻⁷–10⁻⁵ M, and no significant effect on the TAG content was observed at the lowest dose (10⁻⁷ M) of both T₂ and T₃ (data not shown). The incubation time and doses of iodothyronines were in the range of those typically employed for in vitro experiments on gene expression (Ball et al. 1997, Grasselli et al. 2011) or lipid metabolism (Giudetti et al. 2005). Moreover, several studies reported that a concentration of 10⁻⁴ M T₃ was required to trigger non-genomic effects (Cheng et al. 2010) such as to increase IP₃ and Ca²⁺⁺ levels in BDL cholangiocytes (Fava et al. 2007).

Exposure of FaO cells to FFAs for 3 h resulted in a significant increase in TAG content with respect to controls.
The relative abundance of mRNA transcripts for PPARα, PPARγ, and PPARδ was assessed by RT-qPCR in control cells (Fig. 4A). The C_q values were about 22.3 for PPARα, 25.2 for PPARδ, and 27.7 for PPARγ, thus pointing at the following relative abundance of PPAR isoform mRNA in FaO cells: PPARα > PPARδ > PPARγ.

Lipid-loaded FaO cells did not show significant changes in PPARα mRNA expression (Fig. 4B). Treatment of lipid-loaded cells with the lowest dose of T2 significantly reduced mRNA expression of PPARα (about 0.4-fold induction with respect to control; -74% with respect to FFA samples; $P \leq 0.01$), whereas the decrease was not significant at the higher dose of T2. A similar decrease was observed with both doses of T3 (about 0.3-fold induction with respect to control at 10^{-6} M dose; -75% with respect to FFA samples; $P \leq 0.01$ and about 0.6-fold with respect to control at 10^{-5} M dose; -59% with respect to FFA samples; $P \leq 0.05$).

Different from PPARα, a significant increase in PPARγ mRNA expression was observed in FaO cells upon lipid loading (1.7-fold induction with respect to control; $P \leq 0.05$; Fig. 4C). The FFA-induced upregulation of PPARγ was abolished upon treatment of lipid-loaded cells with both T2 (about 0.6-fold induction at 10^{-6} M and about 0.8-fold at 10^{-5} M dose with respect to control; -64%, $P \leq 0.01$, and -55%, $P \leq 0.05$ respectively, with respect to FFA sample) or T3 (about 0.5-fold induction with respect to control at both doses, -70% with respect to FFA samples; $P \leq 0.01$; Fig. 4C).

An opposite trend was observed in the expression of PPARδ, whose mRNA level decreased upon exposure to FFAs (about 0.4-fold induction with respect to control; $P \leq 0.001$). Treatment of lipid-loaded cells with the highest dose of both T2 and T3 significantly increased PPARδ expression (about 0.9-fold induction for T2 and about 0.8-fold induction for T3 with respect to control; +122%, $P \leq 0.01$, and +103%, $P \leq 0.01$ respectively, with respect to FFA samples; Fig. 4D).

When the same treatments with iodothyronines were performed in control FaO cells, no significant effects could be appreciated in PPAR gene expression (data not shown).

Effects of FFAs and iodothyronines on PPAR expression

The relative abundance of mRNA transcripts for PPARα, PPARγ, and PPARδ was assessed by RT-qPCR in control cells (Fig. 4A). The C_q values were about 22.3 for PPARα, 25.2 for PPARδ, and 27.7 for PPARγ, thus pointing at the following relative abundance of PPAR isoform mRNA in FaO cells: PPARα > PPARδ > PPARγ.

Lipid-loaded FaO cells did not show significant changes in PPARα mRNA expression (Fig. 4B). Treatment of lipid-loaded cells with the lowest dose of T2 significantly reduced mRNA expression of PPARα (about 0.4-fold induction with respect to control; -74% with respect to FFA samples; $P \leq 0.01$), whereas the decrease was not significant at the higher dose of T2. A similar decrease was observed with both doses of T3 (about 0.3-fold induction with respect to control at 10^{-6} M dose; -75% with respect to FFA samples; $P \leq 0.01$ and about 0.6-fold with respect to control at 10^{-5} M dose; -59% with respect to FFA samples; $P \leq 0.05$).

Different from PPARα, a significant increase in PPARγ mRNA expression was observed in FaO cells upon lipid loading (1.7-fold induction with respect to control; $P \leq 0.05$; Fig. 4C). The FFA-induced upregulation of PPARγ was abolished upon treatment of lipid-loaded cells with both T2 (about 0.6-fold induction at 10^{-6} M and about 0.8-fold at 10^{-5} M dose with respect to control; -64%, $P \leq 0.01$, and -55%, $P \leq 0.05$ respectively, with respect to FFA sample) or T3 (about 0.5-fold induction with respect to control at both doses, -70% with respect to FFA samples; $P \leq 0.01$; Fig. 4C).

An opposite trend was observed in the expression of PPARδ, whose mRNA level decreased upon exposure to FFAs (about 0.4-fold induction with respect to control; $P \leq 0.001$). Treatment of lipid-loaded cells with the highest dose of both T2 and T3 significantly increased PPARδ expression (about 0.9-fold induction for T2 and about 0.8-fold induction for T3 with respect to control; +122%, $P \leq 0.01$, and +103%, $P \leq 0.01$ respectively, with respect to FFA samples; Fig. 4D).

When the same treatments with iodothyronines were performed in control FaO cells, no significant effects could be appreciated in PPAR gene expression (data not shown).
Effects of FFAs and iodothyronines on mRNA expression of lipid metabolizing enzymes

The effects of different experimental conditions on the mRNA expression of AOX, the main enzyme in the peroxisomal β-oxidation, and of SCD1, a lipogenic enzyme converting saturated to monounsaturated FFAs, were also assessed. Lipid-loaded FaO cells did not show significant changes in AOX mRNA expression with respect to controls (Fig. 5A), but a significant reduction was observed in lipid-loaded cells exposed to the highest dose of T3 (about 0.8-fold induction with respect to control; −45% with respect to FFA samples; *P ≤ 0.05). No significant changes in the expression of AOX mRNA were observed with the lowest doses of both iodothyronines.

An opposite trend was observed in the expression of SCD1, whose mRNA level decreased upon exposure to FFAs (about 0.6-fold induction with respect to control; *P ≤ 0.05). Treatment of lipid-loaded cells with T2 or T3 did not modify significantly SCD1 expression with respect to FFA samples or controls (Fig. 5B).

The same treatments with iodothyronines were performed in control cells, but no significant effects could be appreciated (data not shown).

Influence of iodothyronines on hepatocyte O₂ consumption

Oxygen consumption in intact cells is mainly a reflection of mitochondrial respiration from glucose and FFAs to drive ATP production. To assess basal respiration of FaO cells, fuel-stimulated O₂ consumption in intact cells was evaluated. Figure 6 reports a typical amperographic tracing of ADP-stimulated respiration rate in permeabilized FaO cells (panel A). Resting respiration rate was assessed in the presence of complex I (malate/pyruvate) or complex II (succinate/rotenone) substrates, and maximal ADP-stimulated respiration was measured by adding saturating ADP concentration. As expected, in control hepatocytes, respiration rates decreased after addition of rotenone and antimycin A respectively. After ADP addition, the P/O ratio for pyruvate/malate showed a value of 2.54 ± 0.21 and for succinate of 1.54 ± 0.14 that are within the range of values reported for other cell types (Cocco et al. 2009).

Addition of T2 or T3 (at both 10⁻⁶ and 10⁻⁵ M doses) to control cells before the respiratory substrates prevented the ADP-induced transient stimulation of O₂ consumption (panels B and C), indicating that both iodothyronines effectively uncoupled previously well-coupled hepatocyte mitochondria. Oxygen consumption rates induced by the different respiratory substrates (panel E) confirm this apparent uncoupling.

Addition of PTU before the T3 incubations did not modify the amperographic tracing of ADP-stimulated respiration rate (Table 2), thus demonstrating that the effect of T3 on mitochondrial respiration does not depend on the conversion of T3 into T2.
The amperographic tracing of ADP-stimulated respiration rate in lipid-loaded FaO cells (panel D) showed that addition of ADP did not result in a significant increase in O₂ consumption. The lack of the ADP effect may reflect uncoupled mitochondrial respiration in lipid-loaded hepatocytes or a difficult access of ADP into the mitochondria of whole cells filled with LDs. With regard to this, a difficult access of all substrates into the mitochondria in the presence of TAG in excess was observed (not shown). Addition of T₂ or T₃ to lipid-loaded FaO cells resulted in a very high noise in the amperographic tracing that did not allow for the measurement of mitochondrial respiration (data not shown).

Discussion

In this study, a well-differentiated rat hepatoma cell line (FaO), previously reported to be deficient of functional TRs (Munoz et al. 1990), was used to investigate whether the direct effects of iodothyronines in reducing the excess lipid accumulation, previously observed in primary rat hepatocytes (Graselli et al. 2011), can depend on ‘non-receptor-mediated’ mechanisms. This ‘minimum deviation’ hepatoma cell line has been shown to secrete albumin, to maintain a number of other hepatocyte-specific differentiation markers, and to respond to hormonal stimulation as adult primary hepatocytes (Clayton et al. 1985, Lauris et al. 1986).

In humans and rodents, TRs are encoded by two genes. The *Thra* gene encodes three isoforms, but only TRα1 binds T₃ (Izumo & Mahdavi 1988, Lazar 1993). The *Thrb* gene encodes two variants, TRβ1 and TRβ2 (Weiss et al. 1998, Ye et al. 2003). A previous study using the cDNA microarray analysis of *TRβ* knockout mice treated with T₃ demonstrated that the expression of a large number of genes was induced by THs also in the absence of TRβ1 (Flores-Morales et al. 2002). In the liver, the TRα1 levels are much lower than those of TRβ1, and most actions of THs are mediated by the TRβ1 isoform. Therefore, as a first step of this study, we verified the absence of constitutive mRNA expression of both TRα1 and TRβ1 in FaO cells by comparing their mRNA levels with those recorded in the rat liver. The primer pair for TRα1 utilized in this study recognizes also the two truncated forms p43 and p28 that are synthesized by alternative translational initiation (Wrutniak-Cabello et al. 2001). While p43 acts as a mitochondrial transcription factor (Casas et al. 2009), p28 seems to be involved in the early mitochondrial T₃ influence (Wrutniak-Cabello et al. 2001). Our results confirm that in FaO cells, the level of mRNA transcripts for TRs is negligible when compared with that of the rat liver.

According to the model of ‘in vitro steatosis’ that we developed on primary rat hepatocytes, the lipid-loading protocol was extended with some modifications to FaO cells that were exposed for 3 h to an oleate/palmitate mixture (0.75 mM final concentration) that well mimics the plasmatic FFA levels of patients with the metabolic syndrome (Ferrannini et al. 1983, Vock et al. 2008). FFAs entering the hepatic cell are assembled in the cytosol into TAGs, representing the major component of neutral lipids (57% of total) that are stored under the form of LDs. When lipid-loaded FaO cells were treated with T₂ or T₃ for 24 h, the TAG content was reduced to values comparable with those observed in control cells. These results demonstrate that the lipid-lowering effect exerted by both T₂ and T₃ directly on the hepatic cell can occur also in the absence of TRs.

Many ‘non-receptor-mediated’ actions of THs have been described in a variety of cells involving different signal transduction systems and novel membrane-associated receptors (Davis et al. 2008, Davis 2010). A feature of ‘non-receptor-mediated’ mechanisms of iodothyronines is the plurality of TH derivatives, including T₂, or of functional analogs that may initiate specific actions and might have higher potency than T₃ (Cioffi et al. 2010b). The ability of THs to regulate energy utilization as well as their role in promoting mitochondrial uncoupling of substrate oxidation from ATP synthesis have been long recognized. T₂, as T₃, was shown to rapidly stimulate hepatic O₂ uptake when injected
in perfused livers (Horst et al. 1989), or added to mitochondria isolated from hypothyroid rats (Moreno et al. 2002). Similar effects of T₃ have been observed in hepatocytes isolated from hypothyroid animals (Nobes et al. 1990).

In this study, the effects of T₂ and T₃ on the O₂ consumption in hepatic cells that do not express TRs were evaluated. The results clearly indicate that addition of both iodothyronines to whole hepatocytes rapidly induced uncoupling of previously well-coupled mitochondria. To our knowledge, these data represent the first report of the uncoupling effect of T₂ and T₃ in whole hepatocytes in the presence of adequate fuel and O₂ that confirm previous reports, demonstrating the uncoupling effects of THs on isolated mitochondria (Goglia et al. 1999). The short-term effects of T₃, and particularly of T₂, on mitochondrial respiration could be due to allosteric interaction with cytochrome c oxidase (COX) Va subunit, as shown in isolated rat liver mitochondria (Goglia et al. 1994, Arnold et al. 1998). The Kadenback group showed that in mitochondria, intrinsic and extrinsic uncoupling mechanisms of oxidative phosphorylation may take place through COX (Ramas 2010). Moreover, T₃ was reported to stimulate in vitro the mitochondrial adenine nucleotide translocase 1 that catalyzes the exchange of ADP and ATP across the mitochondrial inner membrane (Sterling & Brenner 1995). Despite all these hypotheses, further investigations are needed to fully clarify the mechanisms involved in the uncoupling effect of T₂ and T₃.

In addition to the short-term effects on mitochondria, THs are known to exert pleiotropic effects on lipid metabolism. In the liver, THs stimulate enzymes regulating both lipogenesis and lipolysis. Since PPARs also play a crucial role in lipid metabolism, the transcription profiles of the three subtypes, PPARα, PPARγ, and PPARδ, were evaluated in FAO cells in different experimental conditions. Our results showed that all the three subtypes were constitutively expressed in rat FAO hepatoma cells, with higher expression of PPARα and PPARδ compared with PPARγ. Excess lipid accumulation in FAO cells resulted in upregulation of PPARγ mRNA, whereas that of PPARα was unaffected. These data are in line with the role of PPARγ in promoting lipid storage (Gavrilova et al. 2003, Schadinger et al. 2005). Moreover, in HepG2 cells, expression of PPARα was increased by palmitate (Ricchi et al. 2009). Therefore, the absence of PPARα upregulation in lipid-loaded FaO cells may depend on the excess oleate versus palmitate (2:1) in the FFA mixture, and this excess oleate may also explain the decrease in the transcription of SCD1 observed in lipid-loaded FaO cells, since this enzyme synthesizes oleic acid. On the other hand, the downregulation of PPARδ observed in lipid-loaded FaO cells fits well with previous reports showing an opposite regulation of PPARδ and PPARγ in ob/ob mice (Roberts et al. 2009).
Indeed, PPARδ was shown to increase the synthesis of high-density lipoproteins, to inhibit LD formation in the liver, and to enhance FFA catabolism and energy uncoupling in adipose tissue and muscle (Wang et al. 2003, Nagasawa et al. 2006). Therefore, the concomitant downregulation of PPARδ and upregulation of PPARγ in lipid-loaded FaO cells may sustain inhibition of FFA oxidation and secretion, and promote their storage into LDs. Overall, the differential transcription pattern of the three PPAR subtypes suggests that, in our in vitro model of hepatic steatosis, the hepatocyte did not activate markedly β-oxidation pathways (through PPARα- and PPARδ-mediated mechanisms), as confirmed by the lack of significant changes in the expression of their downstream lipolytic gene AOX, but induced the storing of excess fat in LDs (probably through PPARγ-mediated mechanisms).

Treatment of lipid-enriched FaO cells with iodothyronines leads to a decrease in TAG content. Accordingly, the FFA-induced upregulation of PPARγ was abolished following incubation with either T2 or T3 that also decreased the mRNA expression of PPARα and upregulated the expression of PPARδ. In the light of the role of PPARδ in promoting synthesis of high-density lipoproteins, FFA catabolism and energy uncoupling, and inhibiting LD formation, our data indicate that in lipid-loaded hepatocytes, both iodothyronines may act by stimulation of FFA catabolism and energy uncoupling, at the same time decreasing LD formation. Moreover, the decrease in intracellular lipid content induced by both T2 and T3 could be coupled with changes in the synthesis of lipoproteins and in the rate of lipid exocytosis, and experiments are in progress to investigate this mechanism.

We wish to underline that our study showing that T2 is as effective as T3 in reducing the fat excess in lipid-loaded FaO cells may be of great interest since it supports the possible utilization of T2 as a pharmacological tool in the treatment of dysmetabolic syndromes such as NAFLD, also in the light of its lack of thyrotoxic effects (Cimmino et al. 1996, Cioffi et al. 2010a).

In conclusion, this study demonstrates that the lipid-lowering effect of iodothyronines in FaO rat hepatoma cells occurs via non-receptor-mediated mechanisms that seem to involve both a short-term action by stimulation of mitochondrial O2 consumption and a long-term action by differential transcriptional effects on PPARs that could in turn activate pathways promoting mitochondrial oxidation and/or lipid exocytosis.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by research grants from MIUR-COFIN 2008 (Prot. 20089SR25X_002), Compagnia San Paolo (Torino), and University of Genoa.

Author contribution statement

All authors contributed to this work significantly. E G followed all the experimental activities and carried out the RT-qPCR experiments; A V and L C followed the activities of hepatoma cell culture and treatments, supervised all the experimental activities, and revised the manuscript; G G and F G supported the experimental design and revised the manuscript; S R and I P performed the oxygraphic measurements; L V carried out the planning of the study, analyzed the data, and wrote the manuscript; G G provided funding, laboratory facilities, and project oversight.

Acknowledgements

We thank Giulia Vecchione for her collaboration in experimental activity. A special thanks to Dr Giorgio Filosa for his help with TAG content assessment, and to Prof. Emilia Fugassa for her critical reading of the manuscript and for the constant support and encouragement.

References

Davis PJ 2010 New insights into thyroid hormone actions and lipid metabolism. *Current Opinion in Endocrinology, Diabetes, and Obesity* 17 395. (doi:10.1097/MED.0b013e3283e2f05)

Lipid-lowering effects of iodothyronines · E. Graselli and others

Received in final form 6 April 2011
Accepted 24 April 2011
Made available online as an Accepted Preprint 20 April 2011

