A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans

Silvana Y Romero-Zerbo1,4,*, Alex Rafacho2,4,†, Adenis Díaz-Arteaga3,4, Juan Suárez1,4, Ivan Quesada2, Mónica Imbernon3,4, Ruth A Ross5, Carlos Dieguez3,4, Fernando Rodríguez de Fonseca1,4, Rubén Nogueiras3,4, Ángel Nadal2 and Francisco J Bermúdez-Silva1,4,6

1Fundación IMABIS, Hospital Carlos Haya de Málaga, Laboratorio de Medicina Regenerativa, Pabellón de Gobierno, sótano, Avenida Carlos Haya 82, 29010 Málaga, Spain
2Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Elche 03202, Alicante, Spain
3Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña) 15782, Spain
4CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela (A Coruña), Spain
5Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
6Neurocentre Magendie, U862 Inserm, Université Bordeaux 2, 146 rue Léo Saignat, 33077 Bordeaux, France

(Correspondence should be addressed to F J Bermúdez-Silva at Fundación IMABIS; Email: franciscoj.bermudez@fundacionimabis.org)

*(S Y Romero-Zerbo and A Rafacho contributed equally to this work)
†A Rafacho is now at Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil

Abstract

The cannabinoid CB1 receptor is a well-known player in energy homeostasis and its specific antagonism has been used in clinical practice for the treatment of obesity. The G protein-coupled receptor GPR55 has been recently proposed as a new cannabinoid receptor and, by contrast, its pharmacology is still enigmatic and its physiological role is largely unexplored, with no reports investigating its putative role in metabolism. Thus, we aim to investigate in rats the presence, distribution and putative physiological role of GPR55 in a key metabolic tissue, the endocrine pancreas. We found high Gpr55 mRNA content in pancreatic islets and considerable protein distribution in insulin-secreting b-cells. Activation of GPR55 by the agonist O-1602 increased calcium transients (P<0·01) and insulin secretion (P<0·001) stimulated by glucose. This latter effect was blunted in Gpr55 KO mice suggesting that O-1602 is acting, at least in part, through GPR55. Indeed, acute in vivo experiments showed that GPR55 activation increases glucose tolerance (P<0·05) and plasma insulin levels (P<0·05), suggesting an in vivo physiological relevance of GPR55 systemic stimulation. Taken together, these results reveal the expression of GPR55 receptors in the endocrine pancreas as well as its function at stimulus-secretion coupling of insulin secretion, suggesting a role in glucose homeostasis. In this context, it may also represent a new target for consideration in the management of type 2 diabetes and related diseases.

Journal of Endocrinology (2011) 211, 177–185

Introduction

The G protein-coupled receptor (GPCR) GPR55 has been recently proposed as a new cannabinoid receptor (Baker et al. 2006, Ryberg et al. 2007, Lauckner et al. 2008). This receptor was in silico identified from the expressed sequence tags database (Sawzdargo et al. 1999) and its low overall sequence homology with cannabinoid CB1 and CB2 receptors prevented its consideration as a putative cannabinoid receptor before. Recent pharmacological data have shown that certain cannabinoid compounds are able to activate GPR55 (Ryberg et al. 2007, Lauckner et al. 2008) and other non-cannabinoid lipid transmitters such as α-lysophosphatidylinositol (Oka et al. 2007, Yin et al. 2009). Whereas some of them were found to stimulate GTPγS binding in cells expressing GPR55, others were reported to increase intracellular calcium or stimulate RhoA activation via GPR55. Thus, it is thought that GPR55 could be enlarging the cellular repertoire of cannabinoid action. However, its pharmacology is still enigmatic and seems to change in an agonist-, tissue-, and assay-dependent manner (Ross 2009, Henstridge et al. 2010). Gpr55 mRNA is widely expressed throughout the central nervous system (CNS), including metabolically relevant areas such as the hypothalamus and also in several
peripheral tissues involved in energy homeostasis (Ryberg et al. 2007). Recent data have shown that the GPR55 receptor has a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain (Staton et al. 2008) and in bone physiology (Whyte et al. 2009). In this latter study, the GPR55 agonist O-1602 inhibited mouse osteoclast formation, an effect that was not seen in osteoclasts generated from GPR55−/− bone marrow macrophages. However, at present there is no data regarding the putative role of GPR55 in metabolism or glucose homeostasis.

By contrast, the cannabinoid CB1 receptor is a well-known player in controlling energy balance (Pagotto et al. 2006). In fact, the endocannabinoid system (ECS), which comprises the cannabinoid receptors, the endogenous ligands and the enzymes responsible for synthesis and degradation of endocannabinoids, is present in all strategic tissues controlling energy balance (Cota & Woods 2005) and it has been involved in the pathogenesis of obesity (Di Marzo et al. 2009, Quarta et al. 2010). Besides its important role in the hypothalamus and brain reward system in controlling food intake, elements of the ECS are also expressed in key peripheral tissues controlling metabolism, i.e. liver, adipose tissue, muscle, and the endocrine pancreas. It is thought to have a modulatory role in several metabolic processes regulated by these tissues (Bermúdez-Silva et al. 2008, Osei-Hyiaman et al. 2008).

Elucidation of the relative contribution of peripheral vs CNS circuits in the metabolic changes induced by CB1 receptor antagonists is currently under intense research and recent articles point to an important role for peripheral tissues (Nogueiras et al. 2008). In fact, because of the adverse side effects found in the clinical use of Rimonabant (a CB1 antagonist/inverse agonist capable of crossing the blood–brain barrier) for the management of obesity complications, peripheral-restricted CB1 antagonists are becoming a hot-topic in the search for new drugs against obesity-related diseases (Bermudez-Silva et al. 2010). Indeed, some of these new kinds of drugs have recently shown promising results in animal studies (Tam et al. 2010). Interestingly, Rimonabant and AM251 (another CB1 antagonist/inverse agonist capable of crossing the blood–brain barrier) have been reported to activate GPR55, suggesting that some of the effects elicited by these drugs could be mediated by this receptor (Kapur et al. 2009, Henstridge et al. 2010). Given the important role of the ECS in the regulation of energy and glucose homeostasis, and the fact that other cannabinoid receptors are located and metabolically active in the endocrine pancreas (Bermúdez-Silva et al. 2008), we hypothesized that GPR55 might also be expressed in metabolically relevant tissues, such as the endocrine pancreas, playing a role in glucose homeostasis. In this study, we focused on the endocrine pancreas because of its preeminent role in metabolic and energy homeostasis through the secretion of insulin and glucagon.

Our findings show that GPR55 is expressed in the islets of Langerhans, both at the mRNA and protein level, specifically in insulin-secreting β-cells. Activation of GPR55 in pancreatic islets with the agonist O-1602 led to augmented intracellular calcium handling stimulated by glucose as well as increased glucose-stimulated insulin secretion (GSIS). O-1602 did potentiate GSIS in islets from Gpr55 WT mice, but this effect was blunted in islets from Gpr55 KO mice. Indeed, acute in vivo treatment with O-1602 resulted in enhanced glucose tolerance with concomitant increased plasma insulin levels. Taken together, these results reveal the expression of functional GPR55 receptors in the endocrine pancreas suggesting a role for this receptor in glucose homeostasis. In this context, GPR55 might represent a new target for consideration in the management of type 2 diabetes and related diseases.

Materials and Methods

Experimental animals

We carried out the experiments with male Wistar rats (3-month old) and GPR55 WT and KO mice (3-month old), in strict compliance with the European Communities directive 86/609/EEC regulating animal research. Rats were obtained from Charles River Laboratories, Inc. (Wilmington, MA, USA) and housed in groups of four in a room with controlled temperature (20 ± 2 °C) and humidity (55 ± 5%) in a 12 h light:12 h darkness cycle (lights on at 0800 h) with free access to water and standard food pellets. Food was withdrawn 12 h before the glucose tolerance test. GPR55 mice were kindly donated by Dr Ruth Ross (University of Aberdeen, Aberdeen, Scotland, UK) and individually housed in the same environmental and food conditions.

Relative gene expression measurements

Six male Wistar rats (3-month-old) were anesthetized with 2,2,2-tribromoethanol (Merck), killed by decapitation and their spleen, adipose tissue, and liver were immediately dissected out, frozen on dry ice and stored at −80 °C. Another four rats were killed in the same way and their islets of Langerhans isolated by collagenase digestion method (described below), pooled and immediately frozen on dry ice and stored at −80 °C. Real-time quantitative PCR was used to measure relative mRNA levels of Gpr55 and β-actin, the latter being used as reference gene. Total RNA was extracted from visceral adipose tissue, liver, spleen, and islets according to manufacturer’s instructions. The total RNA was cleaned and concentrated with RNeasy mini kit (Qiagen GmbH) and 1 μg of this RNA was reversed transcribed into cDNA using a transcriptor reverse transcriptase kit (Roche Applied Science) according to manufacturer’s instructions. Negative control included RT reactions omitting reverse transcriptase. The obtained cDNA was used as the template for real-time quantitative PCR, which was performed in an iCycler system (Bio-Rad) using the FastStart Universal SYBR Green Mastermix (Roche Diagnostics). Primers for

Journal of Endocrinology (2011) 211, 177–185

www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 05/19/2019 05:53:26AM via free access
PCR were designed based on NCBI database sequences of rat Gpr55 and NM_031144.2 for rat β-actin and examined for specificity with BLAST software from NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Gpr55 forward: 5’-GGGATA-CAAGTGTCTTCCACAC-3’, Gpr55 reverse: 5’-AAAGGA-GACCAAGAGACGA-3’ (226 bp fragment) and β-actin forward: 5’-CAGGCGTGTTGTGTCCCTGTAC-3’, β-actin reverse: 5’-GCTGGTGTGGTGGTCAGCTGTA-3’ (203 bp fragment). Each reaction was run in duplicate and contained 2.5 μl cDNA template, 5 mM MgCl2, and 0.4 μM primers in a final reaction volume of 15 μl. Cycling parameters were 95 °C for 5 min to activate DNA polymerase, then 40 cycles of 95 °C for 10 s to denature DNA, annealing temperature for 15 s (63-3 °C for Gpr55 and 51-4 °C for β-actin) and a final extension step of 72 °C for 15 s in which fluorescence was acquired. To assess the specificity of the PCR product, melting curve analysis and 1% agarose gel electrophoresis were performed. Melting curve analysis of our samples showed that only a single product was amplified, displaying the same melting temperature as the standards. In addition, agarose gel electrophoresis showed a unique fragment of the expected molecular size. Gene expression of Gpr55 was normalized to the expression of the reference gene β-actin.

Quantification was carried out with a standard curve run at the same time as the sample with each dilution run in duplicate. The standards were a serially diluted, purified, and quantified PCR product.

Double immunofluorescence

Paraffin-embedded sections of rat pancreases were analyzed for the presence of GPR55 in pancreatic α (glucagon), β (insulin), and δ (somatostatin) cells by double immunofluorescence. Three adult Wistar rats (3-month-old) were deeply anesthetized with 2,2,2-tribromoethanol (300 mg/kg i.p.) and transcardially perfused with 0.1M PBS (pH 7.4), followed by 4% paraformaldehyde in PBS at 4 °C for 15–30 min. Rat pancreatic tissue was postfixed in 4% (w/v) buffered formaldehyde in 4% (w/v) buffered formaldehyde and embedded in paraffin. Blocks were cut into 5 μm thick sections using a Microm HM325 microtome (Leica Microsystems S.L.U., Barcelona, Spain). Sections were mounted on glass slides with a positively charged surface (Dako Diagnósticos, S.A. Barcelona, Spain) and air-dried. Paraffin sections from WT and KO GPR55 mice (3-month-old) were also processed following the same protocol to assess immunostaining specificity.

The sections were first dewaxed and antigen retrieval was achieved through incubation in distilled H2O containing 50 mM sodium citrate (pH 9) for 15 min at 80 °C, followed by washes in PBS. Sections were incubated overnight at room temperature with mouse anti-insulin (dilution 1:200; Sigma–Aldrich Quimica, S.A., Madrid, Spain; cat. no. Ab41515; rabbit polyclonal to GPCR GPR55; Immunogen: synthetic peptide conjugated to KLH derived from within residues 100–200 of human GPCR GPR55). After extensive washes in PBS, the sections were incubated for 2 h at room temperature in a secondary anti-mouse IgG–FITC antibody (dilution 1:200; Sigma–Aldrich Quimica, cat. no. F2012) and in a secondary anti-rabbit IgG–Cy3 antibody (1:300; Jackson ImmunoResearch Laboratories, West Grove, PA, USA, cat. no. 11-166-152). Finally, the sections were washed in PBS and analyzed under epifluorescence microscopy (Olympus Europa, Hamburg, Germany). High-resolution digital microphotographs were taken with an Olympus BX41 microscope equipped with an Olympus DP70 digital camera.

Digital images were mounted and labeled using Adobe PageMaker.

Western blot

Liver and spleen samples were homogenized in ice-cold lysis buffer containing 50 mMol/l Tris–HCl, pH 7.5, 1 mMol/l EGTA, 1 mMol/l EDTA, 1% Triton X-100, 1 mMol/l sodium orthovanadate, 50 mMol/l sodium fluoride, 5 mMol/l sodium pyrophosphate, 0-27 mol/l sucrose, 0.1% 2-mercaptoethanol, and Complete Protease Inhibitor Cocktail (one tablet per 50 ml; Roche Diagnostics). Homogenates were centrifuged at 11 000 g for 10 min at 4 °C, supernatants were removed, and aliquots were snap frozen in liquid nitrogen. Liver and spleen lysates (20 μg each lane) were subjected to SDS–PAGE on 8% polyacrylamide gels and electrotransferred on a PVDF membrane. Membranes were then blocked for 1 h in TBS–TWEEN (TBST: 50 mMol/l Tris–HCl, pH 7.5, 0.15 mol/l NaCl, and 0.1% Tween) containing 5% skimmed milk and probed for 16 h at 4 °C in TBST, 5% skimmed milk with 1/500 dilution of the antibody (anti-GPR55, Abcam). GPR55 was detected using HRP-conjugated-coupled streptavidin (Amersham Biosciences). Detection of proteins was performed by HRP-conjugated secondary antibodies and an enhanced chemiluminescence reagent (Amersham Biosciences).

Isolation of pancreatic islets and static secretion protocol

Pancreatic islets from rats, WT and KO GPR55 mice, were isolated by collagenase digestion method. Briefly, pancreas was inflated with Hanks solution containing (0.8 mg/ml collagenase, 5-6 mM glucose, and 0-05% BSA, pH 7-4), removed from the rat and kept at 37 °C for 10–20 min. After tissue digestion followed by three consecutive washes, the islets were collected manually, under a microscope, as described previously (Rafacho et al. 2010). For static incubation, groups of five islets were first incubated for 1 h at 37 °C in 1 ml Krebs-bicarbonate buffer solution of the following composition (in mM): 115 NaCl, 5 KCl, 2.56 CaCl2, 1 MgCl2, 24 NaHCO3, 15 HEPES, and 5-6 glucose.
supplemented with 0.05% BSA and equilibrated with a mixture of 95% O₂/5% CO₂, pH 7.4. The medium was then replaced with 1 ml fresh buffer containing one of the following: 3 mM glucose, 11 mM glucose, 11 mM glucose plus 10 μM GPR55 agonist O-1602, 11 mM glucose plus 1 μM O-1602 or 11 mM glucose plus 0.1 μM O-1602, and further incubated for 1 h. O-1602, which was supplied at 10 mg/ml in a solution of methyl acetate, was purchased from Tocris Bioscience (Bristol, UK). To obtain the final concentrations of O-1602 used in the experiments, the stock was diluted from 3.9 × 10⁴ to 3.9 × 10⁵. At these dilutions, methyl acetate did not affect insulin secretion or calcium levels (data not shown). Equal amounts of O-1602 diluent were added at 3 and 11 mM glucose conditions without O-1602. At the end of the incubation, the samples were put at 4°C for 15 min to stop insulin secretion and stored at −20°C for subsequent measurement of insulin content by RIA using a Coat-a-count (DPC, Los Angeles, CA, USA) as described previously (Rafacho et al. 2010) or ELISA kit, according to manufacturer's instructions (Mercodia, Uppsala, Sweden).

Measurement of intracellular \([Ca^{2+}]_i \)

Measurement of \([Ca^{2+}]_i\) was done according to Rafacho et al. (2010). Briefly, groups of isolated islets were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum, 11 mM glucose, 100 IU penicillin/ml, 100 mg streptomycin/ml, without phenol dye at 37°C in a 5% CO₂/air atmosphere for 4 h. Subsequently, they were washed twice in Krebs solution containing 5-6 mM glucose, 1% bovine albumin. They were then incubated for 2 h in the same medium with 4 μM fura-2/AM (Invitrogen) in a 5% CO₂-air atmosphere at room temperature. Islets were allowed to settle on poly-('/')[-]-lysine-treated coverslips to avoid their movement during perfusion. Islets were then transferred to a thermostatically regulated open chamber (37°C), placed on the stage of an inverted epifluorescence microscope (Zeiss, Axiovert 200), and perfused with Krebs-bicarbonate buffer without albumin at flow rate of 1.5 ml/min. The solution was continuously gassed with 95% O₂ and 5% CO₂ to maintain pH 7.4. Calcium records in whole islets of Langerhans were obtained by imaging intracellular calcium under the epifluorescence inverted microscope. Images were acquired every ~3 s with an extended Hamamatsu Digital Camera C4742-95 (Hamamatsu Photonics, Barcelona, Spain) using a dual filter wheel (Sutter Instrument Co., Novato, CA, USA) equipped with 340 and 380 nm, 10 nm bandpass filters (Omega Optics, Madrid, Spain). Data were acquired using ORCA software from Hamamatsu (Hamamatsu Photonics). Fluorescence changes are expressed as the ratio of fluorescence at 340 and 380 nm (F340/F380). Results were plotted using commercially available software (SigmaPlot, SPSS, Inc., Chicago, IL, USA). The area under the curve (AUC) of the \([Ca^{2+}]_i\) oscillations was calculated for a period of 10–15 min during glucose stimulus alone (control) and for a period of 15–20 min during glucose plus GPR55 agonists stimuli application. The AUC values were obtained from the whole area under calcium curve discounting the baseline values and then normalized per minute. These values were analyzed with OriginPro7 (Northampton, MA, USA).

Glucose tolerance test and plasma insulin levels

Glucose tolerance test was carried out by injecting an i.p. glucose load of 2 g/kg body weight (diluted in saline) in separate groups of rats. Thirty minutes before glucose load, animals received by i.p. administration the GPR55 agonist O-1602 (0.002, 0.02, or 0.2 mg/kg) or the vehicle (2% DMSO). Tail blood samples were collected before (0 min) and 15, 30, 60, and 120 min after glucose administration. Glucose was determined using a commercial glucometer (Accu-check, Roche Diagnostic). Plasma insulin levels were measured by an ELISA method according to manufacturer's instructions (Mercodia, Uppsala, Sweden).

Statistical analysis

Data are expressed as mean ± S.E.M. Comparisons were made by a two-tailed Student's t-test. A probability level of <0.05 was considered statistically significant. Statistical analyses were performed by GraphPad Prism Software (San Diego, CA, USA).

Results

Gpr55 mRNA levels in rat islets of Langerhans

To explore the quantitative abundance of Gpr55 transcript in rat islets of Langerhans we have measured by real-time quantitative PCR the expression level of Gpr55 mRNA in several tissues. Figure 1 shows relative Gpr55 expression for metabolically relevant tissues expressed in comparison to spleen abundance. The pancreatic islets have higher expression levels than other metabolic tissues, i.e. adipose and liver. In fact, islets of Langerhans show 60% Gpr55 expression level of the spleen, a control tissue known to highly express Gpr55.

Distribution of GPR55 protein in the endocrine pancreas

We examined whether the high gene expression levels of Gpr55 mRNA levels in pancreatic islets were being translated into protein. For this purpose double immunofluorescence with an antibody against GPR55 and a set of antibodies against the three main hormones secreted by the islets of Langerhans was performed. Figure 2A–C clearly shows that almost all insulin-secreting β-cells expressed GPR55 protein whereas both glucagon- and somatostatin-secreting α- and δ-cells, respectively, did not express this receptor (Fig. 2D–I). The antibody specificity was confirmed in islets from
Studies of the localization and expression of GPR55 were conducted. GPR55-null mice that displayed no immunostaining (Fig. 3A and B). Indeed, western blot analysis of protein extracts from liver and spleen from C57Bl/6 mice showed a band of the expected molecular size and two other fragments which probably reflect post-translational modifications of the receptor (Fig. 3C).

Effects of O-1602 on intracellular calcium handling in isolated islets

Isolated islets of Langerhans were loaded with the calcium-sensitive probe Fura-2 and intracellular calcium was monitored after pharmacological manipulation with the GPR55 agonist O-1602 to detect possible changes in the physiological response of islets. Figure 4A and B shows that the GPR55 agonist O-1602 had no effect on [Ca^{2+}], in basal conditions (3 mM glucose) at any of the three doses assayed in rat islets. As expected, the intracellular calcium levels were elevated in response to 11 mM glucose stimulation (Fig. 4D–I). Introduction of O-1602 at any dose (0.1, 1, or 10 μM) in the perfusion medium elicits a change in the oscillatory calcium pattern (Fig. 4D–I; n = 10–12 islets). Quantification of this response, by calculating the area under calcium trace both at glucose alone or glucose plus O-1602 stimuli (Fig. 4C), indicates that activation of GPR55 induced a significant increase in the intracellular calcium levels in rat islets at the three doses (n = 10–12 islets; P < 0.01).

Effects of O-1602 on GSIS

The stimulus-secretion coupling in β-cells was examined by ex vivo static secretion experiments after pharmacological activation of GPR55. The insulin secretion under 11 mM glucose in normal islets from rats was significantly increased compared with basal condition, as expected (Fig. 5A). Interestingly, in the presence of 0.1 μM O-1602, the GSIS at 11 mM glucose was enhanced by 88%, compared with 11 mM glucose alone (n = 12 wells, P < 0.001). The GSIS in the presence of 1 μM O-1602 was augmented by 34% compared with 11 mM glucose, although it was not statistically significant, and insulin response with 10 μM O-1602 was similar to that of 11 mM glucose (n = 12 wells). To assess whether the effect of O-1602 was mediated through the GPR55 receptor, we performed in vitro GSIS in isolated islets from both WT and KO Gpr55 mice. Figure 5B and C shows that 0.1 μM O-1602 significantly potentiated GSIS in islets from WT mice whereas O-1602 did not significantly alter GSIS in islets isolated from mice lacking Gpr55.

Effects of O-1602 on peripheral glucose tolerance

The effect of acute systemic administration of O-1602 on glucose homeostasis has been analyzed by measuring blood glucose levels during glucose tolerance test on normal fasted rats. Figure 6A shows that O-1602 induced a significant increase in glucose tolerance, as judged by the reduced blood glucose values at 15 min (for 0.2 mg/kg O-1602, P < 0.05), 30 min (for 0.2 mg/kg O-1602, P < 0.01), and 60 min (for 0.02 and 0.2 mg/kg O-1602, P < 0.05 and P < 0.01, respectively, n = 6–8 rats). No significant effect in glycemic values was observed with 0.002 mg/kg throughout the experiment. Thus, these data suggest a dose-dependent effect of GPR55 agonist on peripheral glucose tolerance. Quantification of this response by calculating the area under the glucose curve (AUC;
Figure 3 GPR55 immunohistochemistry and western blot in mice. (A and B) Distribution of GPR55 protein in pancreatic cells of WT and KO Gpr55 mice by immunofluorescence. Note there is a lack of staining in Gpr55-null mice (B). The figures are representative of several slices. Scale bars are included in each image. (C) Representative immunoblot of liver (L) and spleen (S) extracts from C57Bl/6 mice showing a band of the expected size (~37 kDa) and two other bands probably reflecting post-translational modifications of the receptor. Full colour version of this figure available via http://dx.doi.org/10.1530/JOE-11-0166.

Fig. 6B) revealed a significant effect at 0.2 mg/kg O-1602 concentration. To assess whether the increased glucose tolerance was concomitant to increased insulin secretion we also measured insulin in plasma after 0.2 mg/kg O-1602 injection. Figure 6C shows an increased insulin level 30 min after injection of the drug.

Discussion

GPR55 is a novel receptor that can be activated by certain cannabinoid ligands and the bioactive lipid 1-α-lyso-phosphatidylinositol. The pharmacology of GPR55 is controversial perhaps due to tissue-specific differences or could depend on the agonist or functional assay employed (Ross 2009, Henstridge et al. 2010). Indeed, despite its high expression in some organs such as the adrenals, CNS, and spleen, little is known about the physiological role of this receptor. Experiments conducted in GPR55-null mice have suggested a role of GPR55 in the modulation of pain (Staton et al. 2008) whereas a more recent article suggested that it also plays a role in bone mass (Whyte et al. 2009). However, its putative role on energy homeostasis has not yet been reported. In a first attempt to address this question we have studied the functional expression of GPR55 in the endocrine pancreas, a key tissue involved in modulating energy balance mainly through the secretion of the opposing hormones insulin and glucagon.

Our mRNA expression study shows that Gpr55 is expressed in rat islets of Langerhans. Furthermore, our data showing the relative expression of Gpr55 in other tissues such as spleen, liver, and adipose fit well with the previously mRNA expression reported for this receptor (Ryberg et al. 2007). In line with the high Gpr55 mRNA expression in isolated islets, we detected significant protein distribution by double immunofluorescence that was specifically located in rat insulin-secreting β-cells. Islets from Gpr55 WT mice also displayed GPR55 protein but to a less extent than rats, probably reflecting different cellular distribution. By contrast, islets from Gpr55 KO mice showed no immunostaining. Western blot analysis revealed a band of the expected size together with two other bands probably reflecting post-translational modifications of the receptor. Importantly, the activation of GPR55 by the pharmacological agonist O-1602
in isolated islets induced changes in glucose-induced intracellular calcium oscillations, whereas O-1602 had no effect on [Ca\(^{2+}\)]\(_i\) at 3 mM glucose. The modulation of calcium handling in response to GPR55 activation occurs similarly with all agonist concentration tested. These observations support a role for these receptors in pancreatic \(\beta\)-cell physiology and fit with the high mRNA and protein distribution found in these cells. Since calcium entry is a process that couples the stimulus-secretion within pancreatic \(\beta\)-cells we investigated the GSIS in response to GPR55 activation.

Notably, only the lower agonist concentration, 0.1 \(\mu\)M O-1602, was able to induce a significant increase in GSIS, compared with that of control islets (11 mM glucose alone). Thus, when properly activated, GPR55 signals may somehow activate the GSIS in islets from Gpr55 KO mice (C). (A) 0.1 \(\mu\)M O-1602 potentiates GSIS in rat islets. Data are means \(\pm\)S.E.M. of 12 wells (six wells in two different experiments from three different rats); \(\text{*P}<0.001\) vs 3 mM glucose; \(\text{**P}<0.001\) vs 11 mM glucose. Unpaired Student's \(t\)-test. (B) 0.1 \(\mu\)M O-1602, but not higher doses, potentiates GSIS in islets from Gpr55 WT mice. Data are means \(\pm\)S.E.M. of 12 wells (six wells in two different experiments from four different mice); \(\text{*P}<0.001\) vs 3 mM glucose. Unpaired Student's \(t\)-test. (C) None of the assayed doses of O-1602 potentiates GSIS in islets from Gpr55 KO mice. Data are means \(\pm\)S.E.M. of 12 wells (six wells in two different experiments from four different mice); \(\text{*P}<0.001\) vs 3 mM glucose. Unpaired Student's \(t\)-test.

Figure 6 Glucose tolerance test and plasma insulin. Fasted (12 h) normo-glycemic and normo-weight rats were i.p. administered with three different GPR55 agonist O-1602 concentrations (0.002, 0.02, and 0.2 mg/kg, b.w.) 30 min before glucose load (2 g/kg, b.w.). (A) Pretreatment with the GPR55 agonist O-1602 induced a dose-dependent response with increased glucose tolerance at higher doses. (B) Quantification of this response showed that 0.2 mg/kg O-1602 significantly decreases area under glucose curve suggesting increased glucose tolerance in vivo. Data are means \(\pm\)S.E.M. of 7–8 animals per group; \(\text{*P}<0.05\) 0.2 mg/kg vs vehicle-treated animals. \(\text{*P}<0.05\) 0.02 mg/kg vs vehicle-treated animals. Unpaired Student's \(t\)-test. (C) Plasma insulin levels of normo-glycemic and normo-weight rats i.p. administered with 0.2 mg/kg O-1602 30 min before glucose load (2 g/kg, b.w.). Plasma insulin was increased in O-1602-injected animals 30 min after glucose load. Data are means \(\pm\)S.E.M. of 7–8 animals per group; \(\text{*P}<0.05\) vs vehicle-treated animals.

www.endocrinology-journals.org
In an attempt to evaluate the in vivo relevance of GPR55 activation, we performed a glucose tolerance test after acute i.p. injections with increasing doses of the GPR55 agonist O-1602 and we also measured plasma insulin levels. In agreement with our findings in intracellular calcium changes and insulin secretion in vitro, GPR55 activation was found to increase glucose tolerance with concomitant increase in plasma insulin levels. Our experiments indicate that glucose tolerance was dose-dependently improved with O-1602. In general, it is difficult to compare in vitro and in vivo concentrations and their dose-dependence effects, because during in vivo treatment the target tissues may face different levels of the tested agents that are difficult to control. In addition, in vivo there are other tissues that can be interfering with the studied effect. In fact, the lack of changes in plasma insulin levels 15 min after glucose load, a time when there is increased glucose tolerance, suggest that O-1602 is also acting on other tissues potentiating glucose tolerance. Thus, our results suggest that in vivo O-1602 increases glucose tolerance, with part of this effect being due to enhanced insulin secretion.

Given that the CB1 antagonist AM251 has also been reported to be a GPR55 agonist (Lauckner et al. 2008), our results also suggest that the increased glucose tolerance previously reported in rats after AM251 treatment (Bermúdez-Silva et al. 2006, Bermúdez-Silva et al. 2007) could be, at least partially, mediated through GPR55. Furthermore, given that Rimonabant has also been reported as being capable of activating the GPR55 receptor (Lauckner et al. 2008), some of the beneficial effects on glucose metabolism reported after Rimonabant treatment, that has been attributed to CB1 blocking (Hildebrandt et al. 2003), could be mediated, at least partially, through GPR55 activation.

In conclusion, herein we identify a high Gpr55 mRNA content in pancreatic islets and large protein distribution in rat insulin-secreting β-cells. When activated, GPR55 increases calcium transients and insulin secretion stimulated by glucose. Accordingly, in vivo experiments have also shown that GPR55 activation increases glucose tolerance and plasma insulin levels, suggesting a role for this receptor in the acute pancreatic-mediated response to high glycemic levels. These findings may have therapeutic implications, as specific activation of GPR55 could be a new strategy to fight against hyperglycemia and the associated deleterious effects.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This study has been supported by European Union FP7 (grant HEALTH-F2-2008-225713 REPROBESITY); Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (project grants PI 07/0880, PI 10/2308, PI 07/1226, BFU2005-01052, BFU2008-01492, BFU2010-21773 and SAF2009-07049; grant Red de Trastornos Adictivos UE-FEDER RD 06/0001/0000; and Centro de Investigación Biomédica en Red Fisopatología y Nutrición UE-FEDER CIBEROBIN), Consejería de Salud de la Junta de Andalucía, grant 0232/2008 and Xunta de Galicia, grant 2010/14. F J-B-S is the recipient of a research contract from the National System of Health (Instituto de Salud Carlos III; CP07/00263) and of a BAE from Instituto de Salud Carlos III BA09/00866. J S is the recipient of a postdoctoral research contract ‘Sara Borrell’ from the National System of Health (Instituto de Salud Carlos III; CP08/00203). CIBERDEM and CIBERObn are an initiative of Instituto de Salud Carlos III.

Acknowledgements

The authors thank Dr Daniela Kota (Magendie Neurocentre, U862 Inserm, Bordeaux, France) for kindly revising the manuscript and Samantha James for revising the English style of the manuscript.

References

Bermúdez-Silva FJ, Viveros MP, McPartland JM & Rodríguez de Fonseca F 2010 The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning? Pharmacology, Biochemistry, and Behavior 95 375–382. (doi:10.1016/j.pbb.2010.03.012)

Johns DG, Behin DJ, Walker DJ, Ao Z, Shapland EM, Daniels DA, Riddick M, Dowell S, Staton PC, Green P et al. 2007 The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects. British Journal of Pharmacology 152 825–831. (doi:10.1038/bjp.2007.419)

Received in final form 5 August 2011
Accepted 31 August 2011
Made available online as an Accepted Preprint 1 September 2011