β (CCL2) and α (CXCL10) chemokine modulations by cytokines and peroxisome proliferator-activated receptor-α agonists in Graves’ ophthalmopathy

Alessandro Antonelli, Silvia Martina Ferrari, Silvia Frascerra, Ilaria Ruffilli, Cinzia Pupilli, Giampaolo Bernini, Stefano Sellari-Franceschini, Stefania Gelmini, Ele Ferrannini and Poupak Fallahi

Abstract

No data are present in the literature about the effect of cytokines on the prototype β chemokine (C-C motif) ligand 2 (CCL2) or of peroxisome proliferator-activated receptor α (PPARα (PPARA)) activation on CCL2 and CXCL10 chemokines secretion in fibroblasts or preadipocytes in Graves’ ophthalmopathy (GO). We have tested the effect of interferon γ (IFNγ) and tumor necrosis factor α (TNFα) on CCL2, and for comparison on the prototype α chemokine (C-X-C motif) ligand 10 (CXCL10), and the possible modulatory role of PPARα activation on secretion of these chemokines in normal and GO fibroblasts or preadipocytes in primary cell cultures. This study shows that IFNγ alone, or in combination with TNFα, stimulates the secretion of CCL2 in primary orbital fibroblasts or preadipocytes from patients with GO at levels similar to those observed in controls. IFNγ and TNFα also stimulated CXCL10 chemokine secretion as expected. The presence of PPARα and PPARγ (PPARG) in primary fibroblasts or preadipocytes of patients with GO has been confirmed. PPARα activators were able to inhibit the secretion of CXCL10 and CCL2, while PPARγ activators were confirmed to be able to inhibit CXCL10 but had no effect on CCL2. PPARα activators were stronger inhibitors of chemokine secretions than PPARγ agonists. In conclusion, CCL2 and CXCL10 are modulated by IFNγ and TNFα in GO. PPARα activators inhibit the secretion of the main prototype α (CXCL10) and β (CCL2) chemokines in GO fibroblasts or preadipocytes, suggesting that PPARα may be involved in the modulation of the immune response in GO.

Introduction

Recent evidences have shown that CXC α-chemokines (Th1), especially CXCL9, CXCL10, and CXCL11, play an important role in the initial phases of autoimmune thyroid dysfunction (García-López et al. 2001, Antonelli et al. 2004, 2006a,b, 2007). We have recently demonstrated that the secretion of CXCL9, CXCL10, and CXCL11 in primary cultures of Graves’ ophthalmopathy (GO) fibroblasts and preadipocytes can be stimulated by interferon γ (IFNγ) and tumor necrosis factor α (TNFα; Antonelli et al. 2006c, 2009a), suggesting that GO retro-orbital cells participate in the self-perpetuation of inflammation by releasing chemokines (under the influence of cytokines) and inducing the recruitment of activated T cells in the orbit.

Furthermore, other studies have demonstrated recently a possible role for chemokine (C-C motif) ligand 2 (CCL2; also known as monocyte chemoattractant protein-1 (MCP1)) in GO. Hwang et al. (2009) showed that orbital fibroblasts from patients with GO overexpress CD40 and that CD154 (the ligand for CD40) upregulated the expression of CCL2. Furthermore, Chen et al. (2008) found that the expression of CCL2 was higher in the orbital fat of GO patients than in controls.

The peroxisome proliferator-activated receptors α (PPARα (PPARA)), PPARγ (PPARG), and PPARδ (PPARD) are ligand-activated nuclear receptors with a wide range of effects on metabolism, cell proliferation, and differentiation (Michalik et al. 2006). In addition, abundant evidence suggests that the PPARs are also important regulators of the immune system. Of considerable interest, ligands for PPARγ and PPARα have therapeutic activity in several rodent models of inflammatory and autoimmune diseases (Spencer et al. 1997, Delerive et al. 2000, Lovett-Racke et al. 2004, Okamoto et al. 2005, Lee et al. 2007, Oliveira et al. 2007), suggesting that they might have similar activity in human disease as well.

About chemokines, it has been recently shown that fenofibrate represses interleukin 17 (IL17 (IL17a)) and IFNγ expression and improves colitis in Il10-deficient mice by inhibiting the expression of the gene-encoding chemokine.
(C-X-C motif) ligand 10 (CXCL10) and by repressing CXCL10 gene promoter activity in TNFα-treated HT-29 cells (Lee et al. 2007).

Treatment of fibroblasts and preadipocytes with PPARγ agonists (rosiglitazone and pioglitazone) at near-therapeutic doses significantly inhibited IFNγ-stimulated CXC chemokine secretion, strongly suggesting that PPARγ might be involved in the regulation of IFNγ-induced chemokine expression in human thyroid autoimmunity and GO (Antonelli et al. 2006c, 2009a). More recently, we have shown that CXCL9 and CXCL11 chemokines are modulated by PPARγ agonist secretion in Graves’ and normal thyrocytes (Antonelli et al. 2010). Furthermore, PPARγ has been found to be expressed in fibroblasts (Pasquali et al. 2004) and preadipocytes (Antonelli et al. 2012) in GO patients.

However, until now, to our knowledge, no data are present in the literature about the effect of cytokines on CCL2 in GO or of PPARγ activation on CCL2 and CXCL10 chemokine secretions in fibroblasts and preadipocytes in GO. Here, we have tested the effects of IFNγ and TNFα on CCL2 (the prototype Th2 chemokine) and the possible modulatory role of PPARγ activation on CCL2, and for comparison on the prototype Th1 CXCL10 chemokine, secretion in GO fibroblasts or preadipocytes in primary culture.

Materials and Methods

Fibroblast and preadipocyte cell cultures

Orbital adipose/connective tissue samples were obtained from five euthyroid patients (two on l-thyroxine after thyroidectomy) undergoing orbital decompression for severe GO during the inactive phase of the disease (all previously treated with antithyroid medication and systemic corticosteroids; none treated with orbital radiotherapy). All subjects gave their informed consent to the study, which was approved by the local Ethics Committee.

GO tissue explants were minced and placed directly in plastic culture dishes, to let preadipocyte fibroblasts proliferate, as described previously (Bahn et al. 1989). Cells were propagated in medium 199 with 20% v/v fetal bovine serum (FBS; Gibco; Invitrogen Ltd.), penicillin (100 IU/ml), and gentamicin (20 μg/ml) in a humidified 5% CO2 incubator at 37 °C and maintained with medium 199 containing 10% FBS and antibiotics. Orbital cells were grown (24 h) in the same medium containing vehicle (absolute ethanol, 0.47% v/v) without PPARγ agonists (5, 10, 50, and 100 μmol/l fenofibrate; 50, 100, 200, and 400 μmol/l gemfibrozil or ciprofibrate; Sigma–Aldrich Corp.) or PPARγ agonists (0, 1, 5, 10, and 20 μmol/l rosiglitazone; Glaxo SmithKline; or pioglitazone; Alexis Biochemicals, Lausen, Switzerland; Antonelli et al. 2012).

Supernatants were assayed by ELISA for CXCL10 and CCL2 concentrations. The experiments were repeated three times with the different cell preparations.

Cell cultures and PPARγ or PPARγ agonist treatment

Cell cultures were treated (24 h) with PPARγ agonists (0, 1, 5, 10, or 20 μmol/l rosiglitazone or pioglitazone) or PPARγ agonists (5, 10, 50, and 100 μmol/l fenofibrate; 50, 100, 200, and 400 μmol/l gemfibrozil or ciprofibrate). Control cultures were grown (24 h) in the same medium containing vehicle (absolute ethanol, 0.47% v/v) without PPARγ or PPARγ agonists. Some cultures were examined by phase contrast microscopy using an Olympus IX50 light microscope.

Lysis and homogenization of cell preparations were performed, and the sample was immediately assayed for its protein concentration by conventional methods (Antonelli et al. 2006c).

ELISA for CXCL10 and CCL2

Culture supernatants CXCL10 and CCL2 levels were assayed by a quantitative sandwich immunoassay using a commercially available kit (R&D Systems). The mean minimum detectable dose for CXCL10 was 1.35 pg/ml; the intra- and inter-assay coefficients of variation (CV) were 3·1 and 6·8% respectively. The mean minimum detectable dose for CCL2 was 4.6 pg/ml; the intra- and interassay CV were 4·6 and 5·7% respectively.

Orbital preadipocyte fibroblast cultures were plated in medium 199 with 10% FBS, grown to confluence, and subjected to either the differentiation protocol or the nondifferentiation conditions. Cells were washed, stained with filtered 0·21% Oil Red O and subsequently with Mayer’s hematoxylin solution (MHS–32; Sigma), and visualized using an Olympus IX50 light microscope and photographed at ×20 as previously reported (Antonelli et al. 2009a, 2012).

CXCL10 and CCL2 secretion assays

For CXCL10 and CCL2 secretion assays, cells were seeded in 96-well plates at a concentration of 30 000 cells/ml as previously reported (Antonelli et al. 2009a) and incubated (24 h) with IFNγ (500, 1000, 5000, and 10 000 IU/ml; R&D Systems, Minneapolis, MN, USA) and 10 ng/ml TNFα (R&D Systems), alone or in combination (Antonelli et al. 2012). After 24 h, the supernatant was collected and kept frozen at −20 °C until CXCL10 assay.

To establish how the PPARγ or PPARγ agonists affect IFNγ-induced chemokine secretion, cells were treated (24 h) with IFNγ (1000 IU/ml) and TNFα (10 ng/ml) in the presence or absence of increasing concentrations of PPARγ agonists (5, 10, 50, and 100 μmol/l fenofibrate; 50, 100, 200, and 400 μmol/l gemfibrozil or ciprofibrate; Sigma–Aldrich Corp.) or PPARγ agonists (0, 1, 5, 10, and 20 μmol/l rosiglitazone; Glaxo SmithKline; or pioglitazone; Alexis Biochemicals, Lausen, Switzerland; Antonelli et al. 2012).

Materials and Methods

www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 05/24/2019 03:25:36AM via free access
Table 1 Relative level of peroxisome proliferator-activated receptor α (PPARα) or PPARγ mRNA in fibroblasts from Graves’ ophthalmopathy (GO) or control fibroblasts by RT-PCR. The amount of target was normalized to the endogenous reference GAPDH mRNA (PPARα/GAPDH mRNA or PPARγ/GAPDH mRNA) and expressed as range of values (GAPDH) ranges from 0·4 to 0·9 and the expression of PPARγ from 0·1 to 0·2. The results obtained in control fibroblasts are summarized in Table 1. PPARα and PPARγ were expressed by RT-PCR more in GO fibroblasts than in controls. Similar results were present in preadipocytes (data not shown).

<table>
<thead>
<tr>
<th>GO fibroblasts</th>
<th>PPARα/GAPDH</th>
<th>PPARγ/GAPDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0·12–0·34</td>
<td>0·04–0·08</td>
<td></td>
</tr>
</tbody>
</table>

RT-PCR for PPARα and PPARγ

Total RNA (400 ng) was reverse transcribed using TaqMan RT reagents kit as previously reported (Antonelli et al. 2010). Primers and probes for PPARα and PPARγ were from Applied Biosystems (TaqMan Gene Expression Assay; Hs00231882_m1 and Hs00234592_m1 respectively).

The amount of target, normalized to the endogenous reference glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Pre-Developed TaqMan Assay Reagents; Applied Biosystems) and relative to a calibrator (quantitative PCR human reference total RNA), was given by 2^{ΔΔCt} calculation (Antonelli et al. 2010).

Data analysis

Values are given as mean ± S.D. for normally distributed variables (in text), or mean ± S.E.M. (in figures), otherwise as median and (interquartile range). Mean group values were compared using ANOVA for normally distributed variables, otherwise by the Mann–Whitney U (two groups) or Kruskal–Wallis (three groups or more) tests. Proportions were compared by the χ² test. Post hoc comparisons on normally distributed variables were carried out using the Bonferroni–Dunn test.

Results

PPARα and PPARγ expression in GO fibroblasts and preadipocytes

PPARα and PPARγ mRNAs were detectable in all primary orbital fibroblast cells. According to RT-PCR results, the relative level of PPARα expression vs the reference gene (GAPDH) ranges from 0·4 to 0·9 and the expression of PPARγ from 0·1 to 0·2. The results obtained in control fibroblasts are summarized in Table 1. PPARα and PPARγ were expressed by RT-PCR more in GO fibroblasts than in controls. Similar results were present in preadipocytes (data not shown).

PPAR agonists and chemokines in GO fibroblasts and preadipocytes

CXCL10 was undetectable in the supernatants collected from primary GO fibroblast cultures. IFNγ dose dependently induced the CXCL10 release (ANOVA, P<0·001; Table 2); similar results were observed in preadipocytes (ANOVA, P<0·001). TNFα alone had no effect (chemokines remaining undetectable), while the combination of IFNγ and TNFα had a significant synergistic effect on the CXCL10 secretion both in fibroblasts (ANOVA, P<0·0001) and in preadipocytes (ANOVA, P<0·0001).

Treating GO fibroblasts or preadipocytes with rosiglitazone or pioglitazone, together with IFNγ and TNFα stimulation, CXCL10 release was dose dependently inhibited (ANOVA, P<0·0001) as expected (Antonelli et al. 2006c, 2009a).

By treating GO fibroblasts with fenofibrate (Fig. 1A), gemfibrozil (Fig. 1B), or cipofibrate (Fig. 1C), together with IFNγ and TNFα stimulation, CXCL10 release was dose dependently inhibited. Similar results were observed in preadipocytes, in which fenofibrate, cipofibrate, or gemfibrozil, dose dependently inhibited the IFNγ- and TNFα-stimulated CXCL10 release (ANOVA, P<0·0001; data not shown).

The inhibition of the CXCL10 chemokine secretion induced by PPARα agonists, at the highest dosage, was stronger than that induced by PPARγ activators both in fibroblasts (Fig. 2A) and in preadipocytes (Fig. 2B). However, the relative potency of the PPARα agonists on the inhibition of the CXCL10 chemokine was different for each compound.

CCL2 was detectable (546 ± 93 pg/ml) in the supernatants collected from primary GO fibroblasts and preadipocytes cultures (751 ± 106 pg/ml). IFNγ dose dependently induced CCL2 release in fibroblasts (CCL2: 546 ± 93, 723 ± 85, 970 ± 65, 1076 ± 131, and 1204 ± 171 pg/ml, respectively, with IFNγ: 0, 500, 1000, 5000, and 10 000 IU/ml; ANOVA, P<0·0001).

Table 2 In fibroblasts, from patients with Graves’ ophthalmopathy (GO), interferon γ (IFNγ) dose dependently induced the CXCL10 release (ANOVA, P<0·001); similar results were observed in preadipocytes (ANOVA, P<0·001). Tumor necrosis factor χ (TNFα) alone had no effect (chemokines remaining undetectable), while the combination of IFNγ and TNFα had a significant synergistic effect on the CXCL10 secretion both in fibroblasts (ANOVA, P<0·0001) and in preadipocytes (ANOVA, P<0·0001).

<table>
<thead>
<tr>
<th></th>
<th>Control IFNγ (0 IU/ml)</th>
<th>IFNγ (500 IU/ml)</th>
<th>IFNγ (1000 IU/ml)</th>
<th>IFNγ (5000 IU/ml)</th>
<th>IFNγ (10 000 IU/ml)</th>
<th>TNFα (10 ng/ml)</th>
<th>IFNγ (10 000 IU/ml) ± TNFα (10 ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO fibroblasts (CXCL10 pg/ml)</td>
<td>0</td>
<td>0</td>
<td>167 ± 62</td>
<td>410 ± 78</td>
<td>563 ± 94</td>
<td>591 ± 107</td>
<td>0</td>
</tr>
<tr>
<td>Preadipocytes (CXCL10 pg/ml)</td>
<td>0</td>
<td>0</td>
<td>92 ± 32</td>
<td>210 ± 54</td>
<td>361 ± 78</td>
<td>443 ± 81</td>
<td>0</td>
</tr>
</tbody>
</table>
in preadipocytes, in which fenofibrate, gemfibrozil, or ciprofibrate dose dependently inhibited the IFNγ- and TNFα-stimulated CXCL10 release (ANOVA, \(P<0.0001 \); data not shown).

The inhibition of the CCL2 chemokine secretion induced by PPARα agonists at the highest dosage in GO fibroblasts averaged 65% (Fig. 5A). Treating orbital fibroblasts (Fig. 5A) or preadipocytes (Fig. 5B) with rosiglitazone or pioglitazone,

\[
\begin{align*}
\text{CCL2 release} & \quad \text{IFNγ} \quad \text{TNFα} \\
\text{IFNγ} & \quad 0 \quad 500 \quad 1000 \quad 5000 \quad 10\,000 \\
\text{TNFα} & \quad 0 \quad 1 \quad 10 \\
\end{align*}
\]

\(\text{ANOVA, } P<0.001 \). TNFα alone had no effect on CCL2 release (with TNFα: 0, 1, and 10 ng/ml). The combination of IFNγ and TNFα had a significant synergistic effect on CCL2 secretion (ANOVA, \(P<0.0001 \); Fig. 3) in primary GO fibroblasts (Fig. 3A) and in preadipocytes (Fig. 3B).

Treating orbital fibroblasts with fenofibrate (Fig. 4A), gemfibrozil (Fig. 4B), or ciprofibrate (Fig. 4C), together with IFNγ and TNFα stimulation, CCL2 release was dose dependently inhibited. Similar results were observed

\[
\begin{align*}
\text{IFNγ} & \quad 0 \quad 1000 \quad 5000 \quad 10\,000 \\
\text{TNFα} & \quad 0 \quad 1 \quad 10 \\
\end{align*}
\]

\(\text{ANOVA, } P<0.0001 \); Fig. 3) in primary GO fibroblasts (Fig. 3A) and in preadipocytes (Fig. 3B).
together with IFNγ and TNFα stimulation, had no significant effect on the CCL2 release.

Rosiglitazone or pioglitazone, fenofibrate, ciprofibrate, or gemfibrozil alone had no effect and did not affect cell viability or total protein content (data not shown). The data obtained with orbital fibroblasts or preadipocytes were not significantly different from those obtained with control fibroblasts or preadipocytes (data not shown).

Discussion

This study shows that IFNγ alone, or in combination with TNFα, stimulated the secretion of the CC chemokine CCL2 in primary orbital fibroblasts or preadipocytes from patients with GO. IFNγ and TNFα stimulated the CXC chemokine secretion as expected. The presence of PPARα in primary fibroblasts or preadipocytes from patients with GO has been confirmed (Antonelli et al. 2012). PPARα activators inhibited the secretion of both CXC (CXCL10) and CC chemokines (CCL2), while PPARγ activators were confirmed to inhibit CXC chemokines but had no effect on CCL2. PPARα activators were stronger inhibitors of chemokine secretions than PPARγ agonists.

Recently, some studies have suggested a possible role for CCL2 in GO. Hwang et al. (2009) demonstrated that orbital fibroblasts from patients with GO overexpress CD40 and that CD154 (the ligand for CD40) upregulated the expression of...
CCL2. Furthermore, Chen et al. (2008) found that the expression of CCL2 was higher in GO orbital fat than in the orbital fat of controls and suggested that macrophage infiltration may play an important role in the pathogenesis of GO via overexpression of CCL2.

Our results show that CCL2 chemokine was secreted basally by normal fibroblasts or preadipocytes such as those from GO, responded to IFNγ alone, and a synergistic action of IFNγ in combination with TNFα was observed inducing the secretion of the chemokine in primary fibroblasts or preadipocytes from patients with GO. This last result is unexpected because Th2 chemokines are poor responders to IFNγ, but it is in agreement with the results obtained by other studies on murine (Yama et al. 2009) and human fibroblasts (Struyf et al. 1998).

The fact that CCL2 can be produced by GO fibroblasts or preadipocytes, under the influence of cytokines such as IFNγ or TNFα (released by activated Th1 lymphocytes), suggests a possible role of these cells on recruitment of monocytes and T lymphocytes to the tissue from the blood in GO.

IFNγ and TNFα also stimulated CXC chemokine secretion as expected (Antonelli et al. 2006c, 2009a). These results, on the whole, are in agreement with the view that autoimmune disorders evolve from an initial Th1 phase to a later Th2 prevalent immune response with progression toward fibrosis (Romagnani 1997, Antonelli et al. 2008). For example, the early expression of CXCL10 and CCL2 suggests their involvement in the initiation and perpetuation of disease in severe granulomatous experimental autoimmune thyroiditis, which progresses to fibrosis (Chen et al. 2005).

PPARα has been confirmed to be expressed more in GO fibroblasts or preadipocytes than in controls. These results are in agreement with our data (Antonelli et al. 2012) and the ones obtained by Pasquali et al. (2004). In our studies, no significant adipocyte change was observed in fibroblasts after a 24 h incubation period with PPARα agonists as therapy for autoimmune disease (Antonelli et al. 2009). The effect of PPARα on CXC chemokines has been less deeply investigated. In the study by Lee et al. (2004, 2005), fenofibrate repressed the expression of the gene encoding CXCL10 and repressed CXCL10 gene promoter activity in TNFα-treated HT-29 cells. Our results are in agreement with a previous study that has demonstrated that CXCL9 and CXCL11 chemokines are modulated by PPARα agonists in Graves’ and normal thyocytes (Antonelli et al. 2010).

The results of this study shed new light on the effect of PPARα on CXC chemokines, demonstrating a powerful effect on the secretion of CXCL10 both in normal fibroblasts...
and in preadipocytes, such as in cells obtained by GO, inhibiting the stimulatory effect of IFNγ and TNFα on the secretion of these chemokines. Interestingly, the effect of PPARγ has been exerted at near-therapeutic doses as also suggested by the study of Lovett-Racke et al. (2004). The potency of the PPARγ agonist used is maximum on the secretion of CXCL10 reaching about a 60% of inhibition by fenofibrate, while about a 40–50% of inhibition was observed with the others. This may suggest that the different PPARγ agonist compounds may act through different pathways that remain to be explored.

In the study by Lee et al. (2007), fenofibrate repressed the expression of a CXCL10 promoter–luciferase construct, indicating that the repression of CXCL10 mRNA expression occurs at least partly by a transcriptional mechanism. TNFα-stimulated transcription of the CXCL10 gene is largely mediated by nuclear factor kB (NF-kB) binding to 2 kB binding sites located in the CXCL10 proximal promoter (Majumder et al. 1998). PPAR ligands repress transcriptional activation by NF-kB via a mechanism known as ligand-dependent transrepression (Delerive et al. 1999, Pascual et al. 2005); thus, NF-kB is a likely target for repression of CXCL10 transcription by fenofibrate.

Interestingly, however, in the study by Lee et al. (2007), all five chemokine genes tested are known to be activated by NF-kB, but two of these genes, CXCL8 (IL8) and CXCL1 (GRO1), were not repressed significantly by fenofibrate. This suggests that the promoter context and perhaps the presence or absence of corepressor complexes associated with promoters in the inactive state may determine which NF-kB-activated promoters are repressed by fenofibrate (Pascual et al. 2005).

In addition to repressing TNFα-mediated activation of the CXCL10 promoter, fenofibrate also repressed activation of the promoter by IFNγ. This repression very likely acts via IFN response factor-containing complexes that bind to the IFN–stimulated response element of the CXCL10 promoter after stimulation with IFNγ (Majumder et al. 1998).

PPARγ ligands show an inhibitory action on CXC chemokines, confirming the results of our previous studies (Antonelli et al. 2006c, 2009a). However, the relative potency of PPARγ agonists on the inhibition of the secretion of CXC chemokines is higher than that of PPARγ ligands. This could suggest that PPARγ agonists may act, at least in part, through different pathways than PPARγ agonists (Marx et al. 2000, Schaefer et al. 2005, Lombardi et al. 2008, Antonelli et al. 2009b).

The effect of PPARγ agonists on CCL2 has been investigated but not in GO cells. In fact, PPARγ activators suppress lipopolysaccharide-stimulated Cdl2 transcription and release in activated rat glia (Lee et al. 2005). Furthermore, PPARγ activators inhibit CCL2 expression induced by high glucose concentration in human endothelial cells (Dragomir et al. 2006).

The results of this study show a potent inhibition (more than 60%) of the cytokine-stimulated CCL2 secretion by PPARγ agonists both in normal and in GO cells. Interestingly, PPARγ agonists show no effect on the secretion of CCL2 in GO cells. This discrepancy is in agreement with the results of other studies on different cells (Nie et al. 2005). The different effects of PPARγ and PPARα agonists on the secretion of chemokines in GO cells may be, at least in part, explained by the different pathways involved.

Recently, it has been demonstrated that rosiglitazone was associated with an increased risk of stroke, heart failure, and all-cause mortality in elderly patients (Graham et al. 2010), and the European Medicines Agency (EMA) recommended on September 2010 that rosiglitazone be suspended from the European market. More recently, the EMA extended the review of safety to pioglitazone (Moynihan 2011). Even if these arguments cannot be automatically translated in GO field, they do not actually advise PPARγ agonists for the therapy of GO.

The presence of PPARγ in GO fibroblasts or preadipocytes and the immunomodulatory effect of PPARγ agonists on the production of Th1 and Th2 chemokines suggest that PPARγ may be involved in the modulation of the immune response both in normal and GO cells, probably by interaction with endogenous ligands. A therapeutic use of PPARγ agonists in GO remains to be explored, but it is suggested by the fact that their effect on chemokines has been exerted at near-therapeutic doses. Despite anti-inflammatory actions of PPARγ, its proadipogenic functions in the orbit might worsen the disease, contraindicating the use of these agents in GO (Pasquali et al. 2004). Thus, further studies are necessary to establish whether in active GO the anti-inflammatory effects of PPARγ activation can be exploited without the risk of expanding retrobulbar fat mass, for example, combining PPARγ agonists and non-steroidal anti-inflammatory drugs or glucocorticoids that may synergize to exert their anti-inflammatory action.

In conclusion, this study shows that CCL2 is modulated by IFNγ and TNFα in GO. PPARγ activators are able to inhibit the secretion of the main prototype α (CXCL10) and β (CCL2) chemokines in GO fibroblasts or preadipocytes, suggesting that PPARγ may be involved in the modulation of the immune response in GO.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

References

www.endocrinology-journals.org

Romagnani S 1997 The Th1/Th2 paradigm. Immunology Today 18 263–266. (doi:10.1016/S0167-5699(97)80019-9)

Schaefer KL, Denevich S, Ma C, Cooley SR, Nakajima A, Wada K, Schlezing J, Sherr D & Saubermann LJ 2005 Intestinal antiinflammatory effects of thiazolidinedione peroxisome proliferator-activated receptor-gamma ligands on T helper type 1 chemokine regulation include nontranscriptional control mechanisms. Inflammatory Bowel Diseases 11 244–252. (doi:10.1097/01.MIB.0000160770.94199.9b)

Received in final form 23 February 2012
Accepted 28 February 2012
Made available online as an Accepted Preprint 29 February 2012