Biobreeding rat islets exhibit reduced antioxidative defense and \(N\)-acetyl cysteine treatment delays type 1 diabetes

Marika Bogdani, Angela M Henschel\(^1\), Sanjay Kansra\(^1\), Jessica M Fuller\(^2\), Rhonda Geoffrey\(^1\), Shuang Jia\(^1\), Mary L Kaldunski\(^1\), Scott Pavletich\(^1\), Simon Prosser\(^1\), Yi-Guang Chen\(^1\), Åke Lernmark\(^3\) and Martin J Hessner\(^1\,*\)

Pacific Northwest Diabetes Research Institute, 720 Broadway, Seattle, Washington 98122, USA
\(^1\)The Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, and The Human and Molecular Genetics Center at the Medical College of Wisconsin; The Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
\(^2\)Department of Medicine, University of Washington, Seattle, Washington 98195, USA
\(^3\)Department of Clinical Sciences, Skåne University Hospital SUS, Lund University/CRC, Malmö, Sweden

*(MJ Hessner is now at Division of Endocrinology, Department of Pediatrics, Medical College of Wisconsin, 9000 West Wisconsin Avenue, Milwaukee, Wisconsin 53201, USA)

Abstract

Islet-level oxidative stress has been proposed as a trigger for type 1 diabetes (T1D), and release of cytokines by infiltrating immune cells further elevates reactive oxygen species (ROS), exacerbating \(\beta\) cell duress. To identify genes/mechanisms involved with diabetogenesis at the \(\beta\) cell level, gene expression profiling and targeted follow-up studies were used to investigate islet activity in the biobreeding (BB) rat. Forty-day-old spontaneously diabetic lymphopenic BB DR\(^{lyp/lyp}\) rats (before T cell insulitis) as well as nondiabetic BB DR\(^{C/C}\) rats, nondiabetic but lymphopenic F344\(^{lyp/lyp}\) rats, and healthy Fischer (F344) rats were examined. Gene expression profiles of BB rat islets were highly distinct from F344 islets and under-expressed numerous genes involved in ROS metabolism, including glutathione S-transferase (GST) family members (\(Gstm2\), \(Gstm4\), \(Gstm7\), \(Gstt1\), \(Gstp1\), and \(Gstk1\)), superoxide dismutases (\(Sod2\) and \(Sod3\)), peroxidases, and peroxiredoxins. This pattern of under-expression was not observed in brain, liver, or muscle. Compared with F344 rats, BB rat pancreata exhibited lower GST protein levels, while plasma GST activity was found significantly lower in BB rats. Gene expression profiles of BB rat islets were highly distinct from F344 islets and under-expressed numerous genes involved in ROS metabolism, including glutathione S-transferase (GST) family members (\(Gstm2\), \(Gstm4\), \(Gstm7\), \(Gstt1\), \(Gstp1\), and \(Gstk1\)), superoxide dismutases (\(Sod2\) and \(Sod3\)), peroxidases, and peroxiredoxins. This pattern of under-expression was not observed in brain, liver, or muscle. Compared with F344 rats, BB rat pancreata exhibited lower GST protein levels, while plasma GST activity was found significantly lower in BB rats. Systemic administration of the antioxidant \(N\)-acetyl cysteine to DR\(^{lyp/lyp}\) rats altered abundances of peripheral eosinophils, reduced severity of insulitis, and significantly delayed but did not prevent diabetes onset. We find evidence of \(\beta\) cell dysfunction in BB rats independent of T1D progression, which includes lower expression of genes related to antioxidative defense mechanisms during the pre-onset period that may contribute to overall T1D susceptibility.

Introduction

Type 1 diabetes (T1D) is an autoimmune disease characterized by immunocyte infiltration of the pancreatic islets (insulitis) and destruction of the insulin-secreting \(\beta\) cells. Diabetes in the biobreeding (BB) rat exhibits many
similarities to the human disease, including onset during puberty, insulitis, and lifelong dependency on exogenous insulin (Scott 1990, Crisa et al. 1992).

Diabetes in BB rats is polygenic (Wallis et al. 2009). The MHC (insulin-dependent diabetes mellitus locus 1, Iddm1) contributes the largest genetic risk as it does in humans and in the NOD mouse. In rats, this is the HLA-DQB1 homolog, RT1-B, specifically the RT1 u haplotype. In humans and in the NOD mouse. In rats, this is the HLA-DQB1 homolog, RT1-B, specifically the RT1 u haplotype (Colle 1990, Awata et al. 1995). The DR +/+ and DRlyp/lyp congeneric BB rat lines differ by the Iddm2 region (Jacob et al. 1992), where the T cell lymphopenia of the DRlyp/lyp rat arises from a single nucleotide deletion in the Gimap5 gene (Hornum et al. 2002, MacMurray et al. 2002). T1D develops spontaneously in 100% of DRlyp/lyp rats at ∼60 days of age and is elicited through a deficiency in CD4+CD25+ regulatory T (TREG) cells, as adoptive transfer of this population prevents T1D (Lundsgaard et al. 2005, Poussier et al. 2005). DR +/+ rats possess a wild-type Gimap5 and do not spontaneously develop T1D; however, it is possible to induce diabetes through depletion of TREG cells (Mordes et al. 1996, Zipris et al. 2003). Fischer (F344) rats, which normally possess the RT1b/RT1b MHC, do not develop T1D even after introgression of Iddm1 and/or Iddm2 (Jacob et al. 1992, Moralejo et al. 2003), indicating that they lack this additional susceptibility. Thus, predisposition for T1D independent of Iddm1 and Iddm2 exists in the BB rat that is phenotypically manifest upon loss of immune regulation.

Oxidative stress is associated with many pathological states and has been implicated as a trigger for T1D (reviewed in Lenzen (2008)). Compared with other tissues, such as kidney or liver, islets possess lower levels of the antioxidant enzymes superoxide dismutase (SOD) and catalase (Lenzen 2008) and may be more susceptible to redox imbalances arising from overproduction of reactive oxygen species (ROS). Furthermore, the release of proinflammatory cytokines by infiltrating immune cells can elevate intra-islet ROS as exposure of rodent islets to interleukin 1β (IL1β) induces nitric oxide synthase (iNOS) expression and production of the free radical nitric oxide (Corbett et al. 1992, Eizirik et al. 1993). While cultured human islets express higher levels of antioxidant enzymes than do their rodent counterparts (Welsh et al. 1995), inherited deficiencies in antioxidant defense mechanisms may be relevant to T1D susceptibility as strain-dependent differences in islet sensitivity to IL1β (Reimers et al. 1996) and lower islet levels of catalase and SOD activity have been reported in BB relative to Wistar rats (Sigfrid et al. 2004).

Consistent with the concept that autoimmunity involves deficiencies in self-tolerance as well as target organ-specific factors, we have discovered that β cells of DRlyp/lyp and DR +/+ rats share an islet-level T1D susceptibility. This is reflected by the expression of the eosinophil and mast cell recruiting chemokine eotaxin, beginning by 40 days of age, providing a means for immunocyte recruitment and activation (Hessner et al. 2004, Geoffrey et al. 2006). Here, we further examine tissue-specific T1D susceptibility by comparing the islet transcriptomes of DR +/+ and DRlyp/lyp rats during the pre-onset period to those of F344 and F344lyp/lyp rats (Iddm2 introgressed onto the F344 background). We find BB rat islets under-express genes involved in metabolism of ROS, in particular numerous isoforms of glutathione S-transferase (GST), an important family of enzymes that participate in the detoxification of reactive electrophilic compounds by catalyzing their conjugation to glutathione. Administration of N-acetyl cysteine (NAC), a thiol compound that acts directly as a free radical scavenger and a precursor in glutathione synthesis, to DRlyp/lyp rats, decreased abundances of peripheral eosinophils, reduced severity of insulitis, and delayed but did not prevent diabetes onset.

Materials and methods

Animals and NAC treatment

BB (Biegl et al. 1998), F344, and F344lyp/lyp (Moralejo et al. 2003) rats were maintained at the Pacific Northwest Diabetes Research Institute, The University of Washington-Seattle, and The Medical College of Wisconsin. BB DR +/+ and DRlyp/lyp animals were propagated by mating DRlyp/+ breeders and genotyped as described (MacMurray et al. 2002), housed under specific pathogen-free conditions with standard light/dark cycles, and were fed a regular diet and water ad libitum. All federal (http://grants1.nih.gov/grants/olaw/references/phspol.htm) guidelines for use and care of laboratory animals were followed, and all protocols were approved by the respective Institutional Animal Care and Use Committees (IACUC).

DRlyp/lyp and DR +/+ rats were treated with NAC daily (200 mg/kg, i.p.; Sigma), dissolved in 0-9% sterile NaCl, and neutralized to pH 7 with 1 M NaOH beginning at weaning. Age-matched DRlyp/lyp and DR +/+ rats were sham-treated with equal volumes of 0-9% NaCl.
Animal phenotyping and tissue collection

Weight and blood glucose were measured from day 40 of age until DR/lyp/lyp rats developed T1D (blood glucose levels \(\geq 250 \text{mg/dl} \)) measured with an Ascensia Elite XL glucometer; Bayer). Animals underwent weekly oral glucose tolerance tests starting from 6 weeks of age. Following a 6-h fasting, glucose solution (2 g/kg body weight) was administered by gavage, followed by blood glucose measurements at 0, 15, 30, 60, 90, and 120 min. Plasma was separated from tail vein blood and stored at \(-20^\circ\text{C}\) until assayed for C-peptide by RIA (Linco, St Charles, MO, USA). At onset, DR/lyp/lyp and age-matched DR+/+ littermates were killed and pancreata were processed for histological analysis and measurement of insulin content.

Differential cell counts of peripheral blood were performed by an automated cell counter. Percentages of the different leukocyte populations were determined: 50 \(\mu\text{l}\) blood was incubated for 15 min in 10 ml red blood cell lysis solution, leukocytes were harvested by centrifugation, spread onto glass slides, stained with Giemsa–Grunwald solution, and percentages of lymphocytes, polymorphonuclear cells, and monocytes were determined (800–1200 total cells per sample).

Flow cytometric analysis of peripheral blood lymphocytes was accomplished as described (Fuller et al. 2006). T\(_{\text{REG}}\) were identified by surface staining with anti-CD4 (clone OX-35) and anti-CD25 (clone OX-39) followed by intracellular staining with anti-Foxp3 (clone FJK-16s) using an intracellular staining kit from eBioscience (San Diego, CA, USA).

Islet gene expression profiling

Islets were isolated from normoglycemic 40-day-old rats as described (Sweet et al. 2004) and total RNA was extracted with Trizol (Invitrogen). RNA (\(\sim 100\) ng) was amplified/ labeled (Affymetrix two-cycle cDNA synthesis kit, Affymetrix, Santa Clara, CA, USA) and then hybridized to the Affymetrix RG230 2.0 array as per the manufacturers’ protocol. Image data were quantified with Affymetrix RG230 2.0 array as per the manufacturers’ protocol and independently scored by an investigator unaware of the animals’ genotype as described (Fuller et al. 2009). Microarrays (SAM) software as described (Tusher et al. 2001). More stringent statistical criteria were not applied, as relevant genes and pathways would be investigated further by quantitative RT-PCR (qRT-PCR) and targeted follow-up studies. Ontological pathway analysis was performed with the Database for Annotation, Visualization, and Integrated Discovery (DAVID; Hosack et al. 2003). Hierarchical clustering was conducted with Genesis (Sturn et al. 2002).

Quantitative RT-PCR

Total RNA was extracted from brain, muscle, liver, or cultured cells using TRIzol reagent, and qRT-PCR for Gstm2, Gstm7, Gstt1, Sod2, Sod3, Ccs, Cd68, and FcER1 was performed as described (Pfaffl 2001, Wang et al. 2008). Primer designs and reaction performance parameters are provided in Table 1.

Rat insulinoma cell culture and cytokine exposure

RINm5f cells (ATCC, Rockville, MD, USA) were maintained in RPMI 1640 medium (Mediatech, Inc., Manassas, VA, USA) containing 10% fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA, USA) and Pen/Strep (Lonza, Walkersville, MD, USA). Medium was changed every 2–3 days and cells were subcultured as required. Cells were allowed to adhere overnight in medium containing 10% charcoal dextran-treated serum. The medium was changed and cells were stimulated with cytokines for 24 h: IL1\(\beta\) (2 ng/ml), IFN\(\gamma\) (30 ng/ml), and TNF\(\alpha\) (10 ng/ml) (R&D Systems, Inc., Minneapolis, MN, USA). Following treatment, medium was aspirated and cells were harvested for qRT-PCR.

Histological studies

Pancreata were processed for histology as described (Hessner et al. 2004, Bogdani et al. 2005, Geoffrey et al. 2006). Insulitis was evaluated in hematoxylin- and eosin-stained sections (five to seven sections per pancreas; 200–400 islets) and independently scored by an investigator unaware of the animals’ genotype as described (Fuller et al. 2009): Grade 0, no infiltration; Grade 1, leukocytes around ducts and vessels only; Grade 2, leukocytes around islets; Grade 3: leukocytes inside islets without change in \(\beta\) cell morphology; Grade 4, leukocytes inside islets with distorted \(\beta\) cell morphology or islets devoid of \(\beta\) cells. Consecutive sections were immunostained using antibodies targeting CD45 (leukocyte common antigen), CD3, CD4, CD8 (T cell subsets), CD45R (B-cells), and
CD68 (macrophages/monocytes); > 1000 cells/pancreas were counted; and percentages were determined. Pancreatic sections were also stained with anti-glucagon (Sigma) and anti-GST-mu (GSTM, Abcam, Cambridge, MA, USA) antibodies as described (Hessner et al. 2004, Geoffrey et al. 2006). Slides were imaged on a Nikon E600 system (Nikon USA, Melville, NY, USA). MetaMorph version 6.3r3 software (Universal Imaging, Buckinghamshire, UK) was used to trace the islet and to capture the fluorescence intensity within the tracing for a minimum of ten islets per section, one section per rat and n ≥ 4 rats per strain.

GST, glutathione reductase, and glutathione measurements

Assays for measurement of plasma GST activity, glutathione reductase levels, and glutathione levels were conducted as per the manufacturers’ instructions (Arbor Assays, Ann Arbor, MI, USA). All samples were analyzed in duplicate and results were analyzed using four-parameter logistic curve fitting.

Statistical analysis

Data are expressed as mean ± S.D. of n independent experiments unless otherwise noted. The statistical significance of differences in glycemic levels between experimental and control groups was calculated by the Kruskal–Wallis test. Changes in percentage of different cell populations and insulitis score were tested by the Mann–Whitney U test. P < 0.05 was considered significant. Survival was analyzed with the Kaplan–Meier method.

Results

Islet gene expression profiling

Given that β cells of 40-day-old BB rats show evidence of eotaxin expression, before detection of insulitis in DR/lyp/lyp rats (Hessner et al. 2004, Geoffrey et al. 2006), we compared the islet transcriptomes of normoglycemic 40-day-old DR/lyp/lyp and DR+/+ rats vs F344 and F344/lyp/lyp rats with the goal of identifying pathways/mechanisms associated with T1D susceptibility common to BB rats, independent of Gimap5 status. Hierarchical clustering of the significantly regulated probe sets illustrates the distinctiveness between these lineages at 40 days of age (Fig. 1A). Genes over-expressed and under-expressed in BB islets (n = 2084 and 2545 probe sets respectively; Supplementary Table 1, see section on supplementary data given at the end of this article) were independently evaluated for biological pathway enrichment using the DAVID annotation tool (Supplementary Table 2, see section on supplementary data given at the end of this article). Selected pathway terms that functionally discriminate the islet expression profiles between the BB and the F344 strains are tabulated in Table 2.

Table 1 Quantitative real-time RT-PCR performance parameters and primer designs

<table>
<thead>
<tr>
<th>Gene name</th>
<th>UniGene</th>
<th>Slopea</th>
<th>R2b</th>
<th>Ec</th>
<th>Primer sequenced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superoxide dismutase copper chaperone (Cc)</td>
<td>Rn.12311</td>
<td>-3.41</td>
<td>0.999</td>
<td>1.96</td>
<td>5'-GTGATGGCTCAGTACATCTGG-3'</td>
</tr>
<tr>
<td>Superoxide dismutase 2 mitochondrial, mRNA (Sod2)</td>
<td>Rn.10488</td>
<td>-3.45</td>
<td>0.9981</td>
<td>1.95</td>
<td>5'-CCCTCGAAGAAAGATGT-3'</td>
</tr>
<tr>
<td>Superoxide dismutase 3, extracellular (Sod3)</td>
<td>Rn.10358</td>
<td>-3.20</td>
<td>0.9973</td>
<td>2.05</td>
<td>5'-GGAAGATAGTAAGCTGCTCC-3'</td>
</tr>
<tr>
<td>Glutathione S-transferase, mu type 2 (Yb2) (Gstm2)</td>
<td>Rn.625</td>
<td>-3.47</td>
<td>0.9994</td>
<td>1.94</td>
<td>5'-AATTGCGCGAAGAATCTTC-3'</td>
</tr>
<tr>
<td>Glutathione S-transferase mu 7 (Gstm7)</td>
<td>Rn.6036</td>
<td>-3.17</td>
<td>0.9983</td>
<td>2.07</td>
<td>5'-CAAAGGAAAGACACCAAG-3'</td>
</tr>
<tr>
<td>Glutathione S-transferase theta 1 (Gstt1)</td>
<td>Rn.11122</td>
<td>-3.18</td>
<td>0.9979</td>
<td>2.06</td>
<td>5'-GATTCGTGTGAGGCGTTTG-3'</td>
</tr>
<tr>
<td>Cd68 molecule (Cd68)</td>
<td>Rn.12478</td>
<td>-3.56</td>
<td>0.9922</td>
<td>1.91</td>
<td>5'-GTACGATCAGGCCTGTAACG-3'</td>
</tr>
<tr>
<td>Fc fragment of IgE, high affinity 1, receptor for; y polypeptide (FcR1g)</td>
<td>Rn.201810</td>
<td>-3.38</td>
<td>0.9964</td>
<td>1.97</td>
<td>5'-CCCTCGAGCTCATGTGATTG-3'</td>
</tr>
</tbody>
</table>

aSlope of standard curve.
bLinear regression of standard curve.
cReaction efficiency, determined as previously described (Pfaffl 2001).
dTop sequence is forward primer, bottom is reverse.
Increased expression of antioxidant activity was observed in BB rats islets compared to lyp/lyp and F344 rats islets, suggesting a higher level of protection against ROS.

Figure 1

Gene expression profiling studies on BB vs Fischer islets at 40 days of age. Individual RNA extractions were prepared from islets of six rats per strain and a pool was created for each strain by an equal RNA contribution from each rat. Each RNA pool was then subjected to duplicate array analysis. 4629 regulated probe sets were identified (DR+/+ and DRlyp/lyp vs F344 and F344lyp/lyp; log2 ratio > 0.5, +/− 1-fold; P < 0.05 Student’s t-test), all of which were found in the estimates of differential expression obtained through a permutation test using SAM (FDR < 10%).

(A) Hierarchical clustering of 4629 probe sets that exhibited significant differences. (B) Expression levels for selected genes related to pathway terms ‘glutathione metabolism’ (indicated by *) and ‘antioxidant activity’ (indicated by †) as well as other genes (unmarked) related to ROS defense mechanisms. Tabulated are the gene symbol, Affymetrix probe set (indicated by †) as well as other genes (unmarked) related to ROS defense terms ‘glutathione metabolism’ (indicated by *) and ‘antioxidant activity’ (indicated by †).

Examination of GST expression in islets and other tissues

qRT-PCR of the independent islet RNA isolations from each rat used to generate the RNA pools for each strain in the array studies confirmed under-expression of Gstm2, Gstm7, Gstt1, Sod2, Sod3, and copper chaperone for SOD (Cc), a metallochaperone required for incorporation of copper into Sod1) in BB rat islets. Smaller expression differences were observed in day 40 liver, brain, and skeletal muscle of DRlyp/lyp and DR+/+ vs F344lyp/lyp and F344 rats (Fig. 2A).

Immunofluorescent staining was used to localize and examine relative GST protein levels in pancreatic sections of 5-week-old DRlyp/lyp, DR+/+, F344, and F344lyp/lyp rats. Consistent with the array and RT-PCR expression measurements, significantly lower fluorescence indicative of reduced protein GST protein levels was observed in islets of DRlyp/lyp and DR+/+ rats (Fig. 2B).
Table 2 Pathway analysis of probe sets differentially regulated by BB vs F344 islets. Genes over-expressed in the BB strains (n = 2084 probe sets) and those under-expressed in the BB strains (n = 2545 probe sets) were independently evaluated for biological pathway enrichment (GO molecular function and KEGG) using the DAVID annotation tool. Selected terms that functionally discriminate the islet expression profiles between the BB vs non-BB strains are shown, a complete tabulation is provided in Supplementary Table 2.

<table>
<thead>
<tr>
<th>Annotation category</th>
<th>Term</th>
<th>Count</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over-represented in BB (n = 2084 probe sets)</td>
<td>Protein serine/threonine kinase activity</td>
<td>64</td>
<td>1 x 10^{-8}</td>
</tr>
<tr>
<td>GO molecular function</td>
<td>Transcription regulator activity</td>
<td>125</td>
<td>6 x 10^{-6}</td>
</tr>
<tr>
<td>GO molecular function</td>
<td>Zinc ion binding</td>
<td>159</td>
<td>1 x 10^{-5}</td>
</tr>
<tr>
<td>GO molecular function</td>
<td>Transcription repressor activity</td>
<td>41</td>
<td>2 x 10^{-5}</td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>Wnt signaling</td>
<td>28</td>
<td>3 x 10^{-5}</td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>MAPK signaling</td>
<td>42</td>
<td>6 x 10^{-5}</td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>TGFβ signaling</td>
<td>16</td>
<td>2 x 10^{-3}</td>
</tr>
<tr>
<td>GO molecular function</td>
<td>SMAD binding</td>
<td>11</td>
<td>2 x 10^{-3}</td>
</tr>
<tr>
<td>GO molecular function</td>
<td>Guanyl-nucleotide exchange factor activity</td>
<td>19</td>
<td>4 x 10^{-3}</td>
</tr>
<tr>
<td>GO molecular function</td>
<td>GTPase regulator activity</td>
<td>35</td>
<td>7 x 10^{-3}</td>
</tr>
<tr>
<td>GO molecular function</td>
<td>MAP kinase activity</td>
<td>6</td>
<td>1 x 10^{-2}</td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>mTOR signaling</td>
<td>9</td>
<td>5 x 10^{-2}</td>
</tr>
<tr>
<td>Under-represented in BB (n = 2545 probe sets)</td>
<td>Oxidative phosphorylation</td>
<td>51</td>
<td>1 x 10^{-10}</td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>Fructose and mannose metabolism</td>
<td>15</td>
<td>3 x 10^{-4}</td>
</tr>
<tr>
<td>GO molecular function</td>
<td>Intramolecular oxidoreductase activity</td>
<td>15</td>
<td>4 x 10^{-4}</td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>Glutathione metabolism</td>
<td>17</td>
<td>1 x 10^{-3}</td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>Proteasome</td>
<td>17</td>
<td>1 x 10^{-3}</td>
</tr>
<tr>
<td>GO molecular function</td>
<td>NADH dehydrogenase activity</td>
<td>9</td>
<td>4 x 10^{-3}</td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>Pentose phosphate</td>
<td>10</td>
<td>9 x 10^{-3}</td>
</tr>
<tr>
<td>GO molecular function</td>
<td>Antioxidant activity</td>
<td>13</td>
<td>1 x 10^{-2}</td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>Pyruvate metabolism</td>
<td>13</td>
<td>2 x 10^{-2}</td>
</tr>
<tr>
<td>GO molecular function</td>
<td>Cytochrome c oxidase activity</td>
<td>8</td>
<td>3 x 10^{-2}</td>
</tr>
<tr>
<td>GO molecular function</td>
<td>NADH dehydrogenase (ubiquinone) activity</td>
<td>7</td>
<td>3 x 10^{-2}</td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>Galactose metabolism</td>
<td>9</td>
<td>3 x 10^{-2}</td>
</tr>
</tbody>
</table>

The P value defines the significance of the association of a particular biological process with the gene list analyzed.

Reduced plasma GST activity in BB rats

Significantly lower GST activity levels were detected in plasma of DR^{lyp/lyp} and DR⁺/+ rats compared with F344 and F344^{lyp/lyp} rats (Fig. 3A). To exclude the possibility that lower GST activity was due to a reduced ability to convert oxidized glutathione to reduced glutathione or a lower level of substrate, plasma glutathione reductase activity as well as total and free glutathione levels were measured. Neither glutathione reductase activity nor the percentage of free glutathione was significantly different between strains (Fig. 3B and C).

Inflammatory processes as a basis for reduced islet GST expression

As the under-expression of genes related to antioxidant defense was observed only in islets, we hypothesized that innate inflammatory processes may underlie reduced GST expression. DR⁺/+ rats do not develop insulitis nor T1D rats. By histological examination, DR^{lyp/lyp} islets are free of immune cell infiltrates at day 40 but not at time points after 60 days (Hessner et al. 2004). To exclude the possibility that macrophages and/or mast cells, at abundances difficult to capture in routine histological studies, were present in the day 40 islets used for the gene expression studies, we respectively performed qRT-PCR for CD68 and FcR1. Islets of 40-day-old DR^{lyp/lyp}, DR⁺/+, F344^{lyp/lyp}, and F344 islets expressed less CD68 and FcR1 transcript compared with normoglycemic day 60 DR^{lyp/lyp} islets. These differences reached statistical significance (P < 0.05) in comparisons between day 60 DR^{lyp/lyp} islets vs day 40 DR^{lyp/lyp} and DR⁺/+ islets. While not of the level observed in day 60 DR^{lyp/lyp} islets, significantly higher levels (P < 0.05) of CD68 transcript were observed when comparing day 40 F344 islets to day 40 DR^{lyp/lyp} and DR⁺/+ islets (Fig. 4A). These data are consistent with previous studies showing islets of day 40 DR^{lyp/lyp} and DR⁺/+ rats free of immune infiltrates (Hessner et al. 2004). Further, these results support that the observed gene
24-h cytokine treatment resulted in significant decreases in
Gstm2 (−3.3-fold, \(P<0.001\)), Gstm7 (−3.6-fold, \(P<0.001\)), and Sod3 (−4.3-fold, \(P<0.005\)) expression while Sod2 expression was increased (+13.1-fold, \(P<0.01\), Fig. 4B). Similar results were obtained when using the rat INS-1 cell line (data not shown). Given our previous early detection of inflammation in the BB rat (Kaldunski et al. 2010) and the sensitivity of Gst gene expression to cytokine exposure in RINm5F cells, it cannot be excluded that under-expression of GSTs in BB rat islets is the consequence of early pre-onset inflammatory processes. However, increased expression of Sod2 in response to IL1β, TNFz, and IFNγ suggests that β cell intrinsic factors also contribute to the overall under-expressed antioxidant genes.

Delay of BB rat T1D through treatment with NAC

Given the evidence for deficiencies in islet antioxidant capacity in BB rats during the pre-onset period relative to Fischer rats, we tested the effectiveness of the glutathione precursor NAC in delaying diabetes onset in DRlyp/lyp rats. Treatment with NAC resulted in a modest but significant delay in onset relative to sham-treated controls (\(P=0.033\), Fig. 5A).

No differences in growth rate, weight, or organ weight (kidney, spleen, thymus, adrenal gland, and thyroid; \(P>0.05\)) were observed between NAC- and sham-treated DRlyp/lyp rats. NAC- and sham-treated DRlyp/lyp rats showed similar progressive weight gain that abruptly ceased a few days before diabetes onset; both groups exhibited a slight increase in blood glucose levels in the 2 days preceding the disease onset, being between 150 and 200 mg/dl, followed by levels > 250 mg/dl (Fig. 5B). NAC treatment did not influence blood glucose levels in DR+/+ rats, which remained within the normal range values as in nontreated DR+/+ rats (data not shown).

As under-expression of antioxidant genes is evident in both BB sub-strains, OGTT, at days 42, 49, 56, and 63, was used to assess the effect of NAC treatment on islet function in DRlyp/lyp and DR+/+ rats. While DR+/+ animals remained glucose tolerant at all time points, NAC- and sham-treated DRlyp/lyp rats gradually became glucose intolerant. These data, aligned to diabetes onset (Fig. 5C), show that all DRlyp/lyp rats were glucose tolerant at −4 to −2 weeks. At −1 week, both NAC- and sham-treated DRlyp/lyp rats exhibited higher blood glucose levels than DR+/+ rats (\(P<0.05\)). While blood glucose levels were lower in NAC-vs sham-treated DRlyp/lyp rats at 30 through 90 min after the glucose challenge at −1 week, the
NAC treatment did not affect peripheral GST levels in lyp/lyp rats. The effect of NAC on circulating eosinophil cell abundance was not associated with a reduction in the proportion of islets possessing eosinophils in the peri-islet inflammation nor with the number of eosinophils present in these infiltrates (data not shown).

Effect of NAC on circulating leukocytes and insulitis

Flow cytometry and differential counts found DRlyp/lyp rats characterized by lymphopenic (Crisa et al. 1992, Groen et al. 1996, Greiner et al. 1997), possessing <15% the normal T cell count relative to DR+/+ rats. NAC treatment did not alter the abundances of T cells nor the relative abundances of lymphocytes, neutrophils, basophils, and monocytes (data not shown). It is well documented that DRlyp/lyp rats exhibit eosinophilia and islet eosinophil infiltration before diabetes onset (Kurner et al. 1986, Maruta et al. 1989, Eastman et al. 1991, Hessner et al. 2004). The eosinophilia is one of the several DRlyp/lyp phenotypes that parallels immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX), a human disorder that arises through mutations to Fork/FoxP3, a transcription factor required for TREG cell development, and is characterized by autoimmunities that include diabetes (Geoffrey et al. 2006). An increase was observed in the proportion and the number of circulating eosinophils in both the NAC- and the sham-treated DRlyp/lyp rats in the 4 weeks before diabetes onset; however, it was significantly less in the NAC-treated group (Fig. 6A).

Pancreata of NAC- and sham-treated DRlyp/lyp rats at onset, as well as age-matched NAC- and sham-treated DR+/+ rats, were histologically evaluated. Inflammatory cells were scarce or absent in DR+/+ pancreata but were present in both the exocrine and the islet tissue of NAC- and sham-treated DRlyp/lyp rats. Nearly all islets of NAC- and sham-treated DRlyp/lyp rats exhibited insulitis; however, the severity differed between the two groups. Grade 4 insulitis was observed in 58 and 82% of NAC- and sham-treated DRlyp/lyp islets (Fig. 6B) respectively. More islets (34%) in the NAC-treated DRlyp/lyp rats were of Grade 2 or 3 inflammation compared with only 9% of the islets in the sham-treated DRlyp/lyp rats. The effect of NAC on the circulating eosinophil cell abundance was not associated with a reduction in the proportion of islets possessing eosinophils in the peri-islet inflammation nor with the number of eosinophils present in these infiltrates (data not shown).

At diabetes onset, macrophages (CD68+) made up the majority (>90%) of the inflammatory cells present in the exocrine tissue and penetrating the NAC- and sham-treated DRlyp/lyp islets. T cells (CD3+, CD4+, and CD8+) were present but were very few in number while B-cells...
Discussion

β Cells of lymphopenic and non-lymphopenic BB rats exhibit eotaxin expression by 40 days of age, before development of insulinitis in DRhylp/lyp rats (Geoffrey et al. 2006). Eotaxin expression by β cells is a means of recruiting eosinophils, mast cells, and other immune cells that bear the receptor CCR3 to the islet. Given that, generally, healthy tissues do not express immune cell recruiting chemokines that promote inflammation, we have considered eotaxin expression a sign of underlying pathology in BB rats. Furthermore, β cell expression of eotaxin correlates with the ability of the BB lineage to develop T1D (either spontaneously in the DRhylp/lyp rat or through induction protocols in the DR+/+ rat). Therefore, we examined islet transcriptomes at day 40 to capture a time after evidence of islet dysfunction, but before evidence of insulitis and/or robust adaptive immunity, to identify factors in the BB rat that may contribute to T1D susceptibility at the β cell level.

Comparison of the day 40 islet transcriptomes of DRhylp/lyp and DR+/+ to F344hylp/lyp and F344 rats found the two lineages highly distinct. Confirming our previous studies, eotaxin transcript (Ccl11) was found more abundant in BB vs F344 islets (1.7-fold, P=0.033). Other transcripts consistent with immune cell recruitment/activation were differentially regulated in BB rat islets, including the neutrophil chemoattractant Cxcl1 (2.6-fold, P=0.016) and the IL22 antagonist Il22ra2 (−2.74-fold, P=0.002). Extending observations of lower catalase and SOD expression in BB rat islets (Pisani et al. 1988, Sigfrid et al. 2004), gene expression related to multiple ROS defense mechanisms was significantly under-represented in BB vs F344 islets, in particular members of the GST superfamily. This raises the question whether the lower antioxidant gene expression is a consequence of islet-level pathological/inflammatory processes and/or genetic control.

CD68 and FccR1 transcript levels were not different between day 40 DRhylp/lyp and DR+/+ islets and found lower in day 40 BB islets compared with day 40 F344 and F344hylp/lyp islets. Thus, greater numbers of infiltrated macrophages and mast cells were not co-isolated with the day 40 BB rat islets. While these and histological studies are consistent with an absence of insulitis at day 40, we cannot exclude that co-isolated resident myeloid cells, if any, possessed different activities between the two lineages. Further, we cannot exclude the possibility that activity of immunocytes at the islet periphery, lost during isolation, may be responsible for under-expression of antioxidant genes in BB islets. We found that cytokine treatment of RINm5F cells reduced expression of Gstm2, Gstm7, and Sod2, but the level of GstT1 was not altered. Consistent with other reports, we also found that cytokine treatment of RINm5F cells increased Sod2 expression (Borg et al. 1992, Rieneck et al. 2000, Cardozo et al. 2001, Sigfrid et al. 2004). Taken together, these results suggest that both β cell intrinsic and extrinsic factors (such as innate immune cell-mediated inflammation) contribute to reduced expression of antioxidant genes in BB vs F344 islets.
Lower total plasma antioxidants have been reported in first-degree relatives of T1D patients (Rocic et al. 1997), supporting a possible genetic basis for under-expression of antioxidant genes that remains to be elucidated in humans and BB rats. Gstm2, Gstm4, and Gstm7 are targets of NRF2 (NFE212) (nuclear factor E2 p45-related factor 2) (Malhotra et al. 2010), a transcription factor that activates genes in response to oxidative stress (Chen & Kong 2004). Although we did not observe differential expression of Nrf2 or its negative regulator Keap1 in the array studies, Park7, a positive regulator of Nrf2 (Clements et al. 2006), was significantly under-expressed in BB rat islets. It is noteworthy that the four mu-class GSTs (Gstm2, Gstm4, Gstm5, and Gstm7) map to Iddm3 (cytoband 2q34 (Jacob et al. 1992, Klaff et al. 1999)), a region syntenic to Idd18.2 in mouse and the 1p13.3 T1D susceptibility region in human, and in crosses between DRlyp/lyp and F344 rats, a single F344 allele at Iddm3 has been sufficient for T1D protection, suggesting the presence of a recessive diabetes susceptibility trait at this locus.

Consistent with other animal studies that associate augmented antioxidant reserve/defense with amelioration of T1D (Prasad 2000, Piganelli et al. 2002, Szabo et al. 2002, Delmastro & Piganelli 2011), treatment of DRlyp/lyp rats with NAC delayed diabetes onset. Reported dosages of NAC vary widely, with our literature searches revealing dosages as high as 1 g/kg per day being administered to adult Wistar rats (Ozaras et al. 2003). Our optimization studies revealed that a dosage 400 mg/kg per day was not well tolerated by weanling rats, which showed slower weight gain during the first week of the NAC administration. While mild toxicity and/or off target effects cannot be completely excluded, at the 200 mg/kg per day NAC dosage, DRlyp/lyp rats were not different from the controls from 21 days of age, when the treatment was started, for either blood glucose or weight gain through at least 46 days of age. The NAC and saline-treated nonlymphopenic/nondiabetic BB control rats were not different in any of the parameters analyzed at any age (45–230 days). As reviewed (Delmastro & Piganelli 2011), ROS potentially acts at multiple levels of diabetogenesis: an islet-level autoimmune trigger, activating innate immune cells and initiating insulitis, promoting T cell-mediated adaptive immune responses, and impairing FOXP3 expression, thereby suppressing T REG activity in autoimmune disorders (Brahmachari & Pahan 2010). NAC treatment reduced the severity of the insulitic lesion in DRlyp/lyp rats but did not increase the frequency of T REG cells, nor did it alter the level of Foxp3 expression in these immune regulators (data not shown). NAC treatment

Figure 5
Treatment of DRlyp/lyp rats with NAC. (A) Longitudinal monitoring of DRlyp/lyp rats i.p. treated with 200 mg/kg per day NAC (n=19, dashed line) or sham-treated controls (n=20, solid line). Treatment was initiated at weaning and continued through onset. Dosage was based on previous NAC administration to rats (Tanaka et al. 1999) and the fact that higher doses attenuated weight gain in BB rats. NAC-treated rats survived 71±11 days (range 54–230), while sham-treated controls survived 61±6 days (47–72) (P=0.033, log-rank test). The sham-treated rats exhibited a similar age of onset compared with completely untreated colony-mates (n=202) monitored over the past 5 years (59±6 days, P>0.5). At 60 days of age, the percentage of diabetes-free DRlyp/lyp rats was 70 and 38% in the NAC- and sham-treated groups respectively and 40 and 8% at 70 days of age. None of the NAC-treated DRlyp/lyp rats developed diabetes before 50 days of age, while 15% of the sham-treated rats did so. (B) Mean daily blood glucose values in NAC-treated (dashed line) and sham-treated (solid line) DRlyp/lyp rats during the last week before diabetes onset were not significantly different. (C) Weekly OGTTs were performed on NAC- and sham-treated DRlyp/lyp and DR+/+ rats before diabetes onset. Mean values ±s.o. are plotted. Purple line: DR+/+sham; green line: DR+/+NAC; red line: DRlyp/lyp-sham; blue line: DRlyp/lyp-NAC. *P<0.05 relative to DR+/+ rats (Kruskal–Wallis test).
cytokines by inhibiting NF-κB activation and blocking production of survival factors (Martinez-Losa et al. 2007). Therefore, it is plausible that eosinophil survival was similarly modulated in the NAC-treated Drlyp/lp rats. While a direct role for eosinophils remains to be proven in both BB rat and human T1D, recently eosinophils of T1D patients were found to express high levels of myeloid α-defensins and myeloperoxidase, suggesting that eosinophils could contribute to the innate inflammatory state that may underlie the development of diabetes (Neuwirth et al. 2012). In our study, it is possible that the modest benefit of systemic NAC administration observed here arose through action at the level of the β cell or immunomodulation or both.

Notably, in the array studies, trypsin 1 (Prss1) and chymotrypsin (Cela2a and Ctrb1) transcripts exhibited decreased abundance in the Drlyp/lp and Dr+/+ compared with the F344 and F344/lp/lp islet pools, possibly indicating different exocrine contamination in the preparations. Islets of Langerhans consist of α cells (15–20% of total cells, produce glucagon), β cells (65–80% of total cells, produce insulin and islet amyloid polypeptide), δ cells (3–10% of total cells, producing somatostatin), pancreatic polypeptide cells (3–5% of total cells, producing pancreatic polypeptide), and epsilon cells (<1% of total cells, producing ghrelin) (Elayat et al. 1995). Although interrogated by the array, transcripts for glucagon, insulin 1, insulin 2, islet amyloid polypeptide, somatostatin, pancreatic polypeptide, and ghrelin were not differentially expressed. The concordant results of the follow-up RT-PCR studies on antioxidant enzymes (which utilized the six independent islet RNA isolations for each strain), the GST protein staining and plasma GST studies, and the NAC administration to Drlyp/lp rats suggest that potentially modest differences in exocrine contamination of the islet preparations did not negatively influence the outcome of the study and each result independently supports that deficiencies in antioxidative defense exist in the BB rat.

While day 40 BB rat islets under-express genes related to ROS defense, they express a broader transcriptional signature consisting of both pro-survival/repair and apoptotic pathways (such as under-expression of Akt1, Pde1, Akt2, and Perp; and overexpression of Hsf2, Ccar1, and Bclaf) suggestive of underlying dysfunction. In pursuing the hypothesis that β cell dysfunction is a prerequisite for T1D in BB rats, these day 40 analyses, before insulitis in Drlyp/lp rats, serve as justification for longitudinal studies aimed at defining how and when this state arises and determining its mechanistic basis.
Supplementary data

This is linked to the online version of the paper at http://dx.doi.org/10.1530/JOE-12-0385.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by National Institute of Allergy and Infectious Diseases Grants (grant numbers R01AI078713 (M J H) and P01AI42380 (Å L) and DK17047 (DERC Islet Core, The University of Washington)); Juvenile Diabetes Research Foundation International (grant number 1-2008-1026 (M J H)); and The Children's Hospital of Wisconsin Foundation.

Author contribution statement

M B, A M H, Å L, and M J H conceived, designed, interpreted results, and drafted/edited manuscript; S K, J M F, R G, S J, M L K, S P, and Y-G C acquired data and conducted analyses and revised manuscript. All authors approve the content of this manuscript.

Acknowledgements

The authors thank Dr Paul Robertson and Dr Lydia Bryan for logistic support.

References

Received in final form 8 October 2012
Accepted 30 October 2012
Accepted Preprint published online 30 October 2012