Evidence for a role of sterol 27-hydroxylase in glucocorticoid metabolism in vivo

Isabelle Vögeli, Hans H Jung1, Bernhard Dick, Sandra K Erickson2, Robert Escher3, John W Funder4, Felix J Frey and Geneviève Escher

Department of Nephrology, Hypertension and Clinical Pharmacology, University Hospital Berne, CH-3010 Berne, Switzerland
1Department of Neurology, University Hospital Zurich, Zurich, Switzerland
2Department of Medicine, University of California, San Francisco, California, USA
3Department of Internal Medicine, Emmental Hospital, Burgdorf, Switzerland
4Prince Henry’s Institute, Clayton 3168, Victoria, Australia

Abstract

The intracellular availability of glucocorticoids is regulated by the enzymes 11β-hydroxysteroid dehydrogenase 1 (HSD11B1) and 11β-hydroxysteroid dehydrogenase 2 (HSD11B2). The activity of HSD11B1 is measured in the urine based on the (tetrahydrocortisol + 5α-tetrahydrocortisol)/tetrahydrocortisone ((THF + 5α-THF)/THE) ratio in humans and the (tetrahydrocorticosterone + 5α-tetrahydrocorticosterone)/tetrahydrodehydrocorticosterone ((THB + 5α-THB)/THA) ratio in mice. The cortisol/cortisone (F/E) ratio in humans and the corticosterone/11-dehydrocorticosterone (B/A) ratio in mice are markers of the activity of HSD11B2. In vitro agonist treatment of liver X receptor (LXR) down-regulates the activity of HSD11B1. Sterol 27-hydroxylase (CYP27A1) catalyses the first step in the alternative pathway of bile acid synthesis by hydroxylating cholesterol to 27-hydroxycholesterol (27-OHC). Since 27-OHC is a natural ligand for LXR, we hypothesised that CYP27A1 deficiency may up-regulate the activity of HSD11B1. In a patient with cerebrotendinous xanthomatosis carrying a loss-of-function mutation in CYP27A1, the plasma concentrations of 27-OHC were dramatically reduced (3.8 vs 90–140 ng/ml in healthy controls) and the urinary ratios of (THF + 5α-THF)/THE and F/E were increased, demonstrating enhanced HSD11B1 and diminished HSD11B2 activities. Similarly, in Cyp27a1 knockout (KO) mice, the plasma concentrations of 27-OHC were undetectable (<1 vs 25–120 ng/ml in Cyp27a1 WT mice). The urinary ratio of (THB + 5α-THB)/THA was fourfold and that of B/A was twofold higher in KO mice than in their WT littermates. The (THB + 5α-THB)/THA ratio was also significantly increased in the plasma, liver and kidney of KO mice. In the liver of these mice, the increase in the concentrations of active glucocorticoids was due to increased liver weight as a consequence of Cyp27a1 deficiency. In vitro, 27-OHC acts as an inhibitor of the activity of HSD11B1. Our studies suggest that the expression of CYP27A1 modulates the concentrations of active glucocorticoids in both humans and mice and in vitro.
Introduction

Sterol 27-hydroxylase (CYP27A1) encoded by the gene CYP27A1 is a NADPH-dependent mitochondrial enzyme, expressed in many tissues, which catalyses the hydroxylation of cholesterol to 27-hydroxycholesterol (27-OHC; Rosen et al. 1998). In the liver, CYP27A1 catalyses the first step of the alternative pathway of bile acid biosynthesis and intermediate reactions in the classical pathway initiated by CYP7A1 (Chen et al. 2005). In extrahepatic tissues, CYP27A1 plays a role in reverse cholesterol transport because its product 27-OHC is removed and carried to the liver, where it is converted to bile acids (Weingartner et al. 2010). 27-OHC is a key regulator of cholesterol homeostasis. It is one of the natural ligands for LXR, which upon activation enhances the ABCA-1-mediated cholesterol efflux (Oram & Lawn 2001), and is a negative feedback regulator of HMG-CoA reductase, the rate-limiting enzyme of cholesterol biosynthesis (Hall et al. 2001).

In humans, the importance of CYP27A1 in sterol homeostasis is illustrated by cerebrotendinous xanthomatosis (CTX), an autosomal recessive disease caused by a loss-of-function mutation in the CYP27A1 gene (Cali et al. 1991). The clinical features of CTX include early-onset cataracts, progressive neurological dysfunction, tendon xanthomas and, in some but not in all patients, increased incidence of premature atherosclerosis (Cali et al. 1991). Cyp27a1 gene knockout (KO) mice exhibit reduced bile acid elimination and pronounced hepatomegaly (Repa et al. 2000, Honda et al. 2001, Dubrac et al. 2005).

The intracellular concentrations of glucocorticoids are modulated by the 11β-hydroxysteroid dehydrogenase (HSD11B) enzyme. HSD11B type 1 (HSD11B1) preferentially catalyses the conversion of inactive 11-keto-glucocorticoids (cortisone (E) or 11-dehydrocorticosterone (A)) into active 11β-hydroxyglucocorticoids (cortisol (F) or corticosterone (B)) and by this mechanism modulates cell-specific glucocorticoid action (Edwards et al. 1988, Agarwal et al. 1989, Escher et al. 1997). HSD11B type 2 (HSD11B2) inactivates endogenous F into E (Funder et al. 1988). In mineralocorticoid target tissues, HSD11B2 protects mineralocorticoid receptors from excessive activation by glucocorticoids (Mune et al. 1995, Atanasov et al. 2007). The regulation of F metabolism into tetrahydrometabolites in the liver is catalysed by the enzyme 5α-reductase (Russell & Wilson 1994).

Recently, evidence has accumulated that the activity of HSD11B1 contributes to glucocorticoid effects in the development of the metabolic syndrome (Hermanowski-Vosatka et al. 2005). With the ultimate goal of treating and/or preventing the metabolic syndrome, an array of exogenous compounds inhibiting the activity of HSD11B1 have been synthesised (Boyle & Kowalski 2009), and the role of endogenous compounds including insulin, glucocorticoids, TNFα, and bile acids and their molecular mechanisms in the regulation of the expression and activity of HSD11B have been reported (Escher et al. 1997, Ackermann et al. 1999, Williams et al. 2000, Quattropani et al. 2001, Kostadinova et al. 2005, Balachandran et al. 2008, Ignatova et al. 2009). Thus, understanding the factors regulating the activity of this enzyme is of potential clinical importance.

The liver X receptor (LXR) family of nuclear receptors are ligand-activated transcription factors playing roles in the regulation of bile acid synthesis and metabolism, macrophage cholesterol efflux and lipid metabolism (Lehmann et al. 1997, Peet et al. 1998, Schwartz et al. 2000). A role for LXRs in endocrine regulation was proposed by Stulnig et al. (2002), who showed that the activation of LXRs by the agonist TO901317 down-regulates the expression and activity of HSD11B1 in adipocytes, an observation confirmed in hepatocytes (Liu et al. 2006).

Based on the interplay described between LXR and HSD11B1 and between 27-OHC and LXR, in this study, we aimed to determine whether glucocorticoid homeostasis might differ in CTX patients so that the activity of HSD11B1, estimated based on urinary glucocorticoid metabolite concentrations, may be increased when compared with those in healthy controls. To further investigate the involvement of CYP27A1 in glucocorticoid metabolism, we analysed plasma, urine and tissue samples of KO mice in which 27-OHC was deficient (Rosen et al. 1998, Dubrac et al. 2005).

Materials and methods

Ethics statement

The results reported for the CTX patient are parameters commonly used in routine diagnosis in our institution. The agreement in the University Hospital stipulates that results may be used anonymously for scientific purposes.

Animal experimentation was approved by the Ethical Committee for Animal Experiments of the Veterinary Administration of the Canton of Berne, Switzerland.
Table 1 Concentrations of plasma 27-OHC and urinary steroid metabolites in a patient with cerebrotendinous xanthomatosis (CTX). 27-OHC, F and E in the plasma were quantified by GC–MS. F and E and their corresponding tetrahydrometabolites THF, 5α-THF and THE, α-cortol, β-cortol, α-cortolone and β-cortolone in the urine were quantified by GC–MS. Control values were as those reported in previous studies (Odermatt et al. 2001, N’Gankam et al. 2002, Burkard et al. 2004).

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>CTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma 27-OHC (ng/ml)</td>
<td>90–140</td>
<td>3.8</td>
</tr>
<tr>
<td>F (ng/ml)</td>
<td>114±22</td>
<td>111</td>
</tr>
<tr>
<td>E (ng/ml)</td>
<td>23±7</td>
<td>ND</td>
</tr>
<tr>
<td>Urine (THF + 5α-THF)/THE</td>
<td>0.55–1.27</td>
<td>1.57</td>
</tr>
<tr>
<td>F/E</td>
<td>0.33–0.67</td>
<td>1.36</td>
</tr>
<tr>
<td>Cortol/cortolones</td>
<td>0.27–0.41</td>
<td>0.53</td>
</tr>
<tr>
<td>THF/5α-THF</td>
<td>0.70–5.29</td>
<td>4.2</td>
</tr>
</tbody>
</table>

ND, not detectable (detection limit <1 ng/ml).

Case report

The phenotype of the CTX patient has been described previously (Bartholdi et al. 2004). Neurologically, she had progressive spastic tetraparesis and neurocognitive problems. No tendon xanthomas were found, but she reported chronic diarrhoea. A 24-h urine sample and 10 ml of blood collected in EDTA tubes were obtained, and the concentrations of 27-OHC and urinary steroid metabolites were measured.

Mouse colonies

Cyp27a1 heterozygous (HET) males and females (a kind gift from Sandra K Erickson, Department of Medicine, University of California, San Francisco, USA) on a C57BL/6j genetic background were used to breed Cyp27a1 WT, HET and KO mice. Pups were genotyped at 3 weeks (for primers and PCR conditions, see Dubrac et al. 2005) and weaned at the age of 4 weeks. Males used for the experiment were maintained on standard rodent chow. Details of urine, blood and tissue collection are given in Supplementary Materials and methods, see section on supplementary data given at the end of this article.

Plasma and liver biochemistry

Plasma glucose, cholesterol, triglyceride, ALT, AST and insulin and liver triglyceride concentrations were measured using commercially available kits (for details, see Supplementary Materials and methods). The concentration of 27-OHC was measured by gas chromatography–mass spectrometry (GC–MS) as described previously (Burkard et al. 2004) with 100 ng 5α-cholestan-3β,6α-diol and 100 ng stigmasterol as standards.

Analysis of steroid metabolites by GC–MS

For both mouse and human samples, urinary steroids were extracted from 1.5 ml of urine samples and analysed by GC–MS as described previously (Ackermann et al. 1999, Odermatt et al. 2001, Escher et al. 2009). In human urine, the concentrations of tetrahydrocortisol (THF), 5α-tetrahydrocortisol (5α-THF), tetrahydrocortisone (THE), F, E, α-cortol, β-cortol, α-cortolone and β-cortolone were measured. In mouse urine, the concentrations of tetrahydrocortico-sterone (THB), 5α-tetrahydrocorticosterone (5α-THB), tetrahydrodehydrocorticosterone (THA), B and A were measured. The concentrations of glucocorticoid metabolites in the plasma (100–1000 μl) and renal and hepatic tissues (100 mg) were also measured. Following an extraction step with 10 vol of dichloromethane, steroids were extracted in the organic phase and derivatised. The detection limit was 1 ng/ml for plasma or urine and 1 ng/100 mg for tissues.

Enzymatic assays in mouse tissues

The activities of HSD11B1 and HSD11B2 in liver and kidney homogenates were measured. Details are given in Supplementary Materials and methods.

RNA extraction and real-time PCR

Total RNA was isolated from frozen tissues using a SV Total RNA Isolation System Kit (Promega Cat No Z3100).

Table 2 Baseline characteristics of WT, HET and KO mice. Data are presented as means±S.E.M.

<table>
<thead>
<tr>
<th></th>
<th>WT n=10</th>
<th>HET n=14</th>
<th>KO n=10</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>32.1±1.7</td>
<td>30.9±0.7</td>
<td>30.0±1.0</td>
<td>NS</td>
</tr>
<tr>
<td>Liver (g)</td>
<td>1.47±0.16</td>
<td>1.40±0.09</td>
<td>2.11±0.19</td>
<td>0.0017</td>
</tr>
<tr>
<td>27-OHC (ng/ml)</td>
<td>75±11</td>
<td>56±7</td>
<td><0.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>ALT (U/ml)</td>
<td>32±7</td>
<td>46±16</td>
<td>115±32</td>
<td>0.0247</td>
</tr>
<tr>
<td>AST (U/ml)</td>
<td>141±30</td>
<td>165±41</td>
<td>339±85</td>
<td>0.0402</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>9.6±1.1</td>
<td>8.9±0.7</td>
<td>8.6±0.7</td>
<td>0.0027</td>
</tr>
<tr>
<td>Insulin (mmol/l)</td>
<td>2.7±0.3</td>
<td>2.8±0.3</td>
<td>3.9±0.6</td>
<td>0.0001</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>2.5±0.2</td>
<td>2.2±0.2</td>
<td>1.6±0.1</td>
<td>0.0247</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>0.8±0.1</td>
<td>0.8±0.1</td>
<td>0.6±0.1</td>
<td>NS</td>
</tr>
<tr>
<td>Liver triglycerides (ng/g liver)</td>
<td>29±3</td>
<td>28±4</td>
<td>48±9</td>
<td>0.0355</td>
</tr>
</tbody>
</table>
RT was carried out with 2 µg RNA in a reaction mixture containing 100 units of SuperScript Reverse Transcriptase type II according to the manufacturer’s protocol (Invitrogen Cat No 18064-022). Real-time PCR was carried out using specific TaqMan Gene Expression Assays and 18S or β-actin as the housekeeping gene, using the ABI Prism 7500 Fast Sequence Detection System (version 1.4).

Western blot analysis
Liver homogenates of 20 µg were separated on a 12.5% SDS-polyacrylamide gel by electrophoresis, followed by immunoblotting with anti-HSD11B1 rabbit antiserum (kind gift from C Monder) at a dilution of 1:1000 in 2% non-fat dried milk. Bands were visualised using an enhanced chemiluminescence kit (Amersham Cat No RPN2106) and quantified by densitometry using Image J. For the internal standard, β-actin antibody (Santa-Cruz sc-47778) was used at a dilution of 1:3000 in 2% non-fat dried milk.

Effect of 27-OHC on HSD11B1 activity in vitro
For dose-dependent inhibition studies, CHOP cells were transfected as described previously (Escher et al. 2009) with a plasmid encoding HSD11B1. The cells were harvested 48 h following transfection and homogenised in sucrose buffer, enzymatic assays and TLC were then carried out as described above with increasing concentrations of 27-OHC.

To measure the direct effect of the expression of CYP27A1 on the activity of HSD11B1, CHOP cells were coin-transfected with a plasmid encoding HSD11B1 and CYP27A1 or pcDNA3. An enzymatic assay was carried out 48 h later by incubating the cells for 4 h at 37°C with 1 nmol [3H]-B. The percentage of conversion of B to A and the amounts of proteins were determined to calculate specific activity.

Statistical analysis
To determine significant differences, one-way ANOVA was used, followed by Bonferroni post hoc tests for multiple comparisons or the Kruskal–Wallis test followed by Dunn’s multiple comparison tests.

Figure 1
Effect of Cyp27a1 deficiency on the excretion of urinary glucocorticoid metabolites in mice. Steroids were extracted from the urine samples of WT, HET and KO mice and analysed by GC–MS. The (THB+5α-THB)/THA ratio increased approximately fourfold in KO mice compared with that in WT mice, indicating an increased apparent HSD11B1 reductive activity (A). The B/A ratio (B) doubled in KO mice, indicating a reduced apparent HSD11B2 oxidase activity. The THB/5α-THB ratio, a measurement of hepatic 5α-reductase, decreased approximately sixfold in KO mice (C). There was a correlation between the (THB+5α-THB)/THA ratio measured in urine and liver size (P=0.0003) (circles represent WT mice, squares HET mice, and triangles KO mice) (D). Mouse urine sample number: n=9, 7, 6 for WT, HET and KO mice respectively. Means with whiskers (minimum and maximum) are presented. One-way ANOVA followed by Bonferroni post hoc tests for multiple comparisons was used to test statistical differences, with ***P<0.0001 and **P<0.001 for KO mice vs WT mice.
Results

Analysis of 27-OHC and glucocorticoid metabolites in the CTX patient

The concentration of 27-OHC in the plasma of the CTX patient was reduced (3.8 vs 90–140 ng/ml normal range in controls) (Burkard et al. 2004), reflecting the decreased activity of CYP27A1 (Table 1). To establish whether this decreased concentration of 27-OHC was mirrored by changes in glucocorticoid ratios reflecting the activity of HSD11B1, the concentrations of glucocorticoid metabolites in the plasma and urine were determined by GC–MS. In the plasma, the concentration of F was in the normal range when compared with that in the controls obtained from a previous study (N’Gankam et al. 2002), whereas E was undetectable (Table 1). In the urine, increased (THF + 5α-THF)/THE and cortol/cortolone ratios, indicating increased reductive activity of HSD11B1, and increased F/E ratios, reflecting diminished oxidative activity of HSD11B2, were observed. The THF/5α-THF ratio, a measure of the activity of 5α-reductase, remained unchanged (Table 1).

Phenotype changes in KO mice

Body weight remained unchanged, but liver size in KO mice was almost twice as large as that in WT or HET mice (Table 2). The weight of kidneys, spleen, lungs, testis and brain remained unchanged (data not shown). Plasma 27-OHC was undetectable in KO mice, but its concentration was not significantly reduced in HET mice (Table 2). Cyp27a1 deficiency led to an increase in the plasma concentrations of ALT and AST and to a decrease in the concentration of cholesterol and to lower glucose and higher insulin concentrations, whereas the concentrations of plasma triglycerides remained unchanged (Table 2), despite the accumulation of triglycerides in the liver of KO mice (Table 2).

Analysis of glucocorticoid metabolites in KO mice

The reductive activity of HSD11B1 assessed from the (THB + 5α-THB)/THA ratio increased fourfold in the urine of KO mice compared with that in the urine of WT or HET mice (Fig. 1A). The B/A ratio increased more than twofold, indicating an apparent decrease in the oxidative activity of HSD11B2 (Fig. 1B). The THB/5α-THB ratio, a marker of the activity of 5α-reductase, was markedly reduced in KO mice, indicating enhanced A-ring reduction of...
THB (Fig. 1C). The total amount of steroids excreted in 24 h remained unchanged (data not shown), and the \((\text{THB} + 5\alpha\text{-THB})/\text{THA}\) ratio was positively correlated with liver size (Fig. 1D). The \((\text{THB} + 5\alpha\text{-THB})/\text{THA}\) ratio was also significantly increased in the plasma, liver and kidney of KO mice (Fig. 2A, C and D), with no changes being observed in adrenals (data not shown). The B/A ratio was also increased in the plasma of KO mice (Fig. 2B) and remained unchanged in adrenals (data not shown). Both B and A were below the detection limit in the hepatic and renal tissues.

Assessment of HSD11B1 activity, protein and mRNA levels in mouse livers and kidneys

HSD11B1 and HSD11B2 activity were measured in liver and kidney homogenates and were independent of the \(\text{Cyp27a1}\) genotype (Fig. 3A and B). The concentration of HSD11B1 protein in liver homogenates was measured by western blot analysis, with \(\beta\)-actin as the internal control (Fig. 3C). The amount of HSD11B1 protein was correlated with liver size (Fig. 3D).

In hepatic tissue, the mRNA levels of \(\text{Hsd11b1}\) were similar across all three genotypes (Fig. 4A). The mRNA levels of hexose-6-phosphate dehydrogenase (\(\text{H6pd}\)), a known modulator of the activity of HSD11B1 (Bujalska et al. 2005, Walker et al. 2007), similarly remained unchanged (Fig. 4B), as were those of \(\text{Hsd11b1}\) and \(\text{Hsd11b2}\) in renal tissue of all three genotypes (Fig. 4C and D).

Inhibition of HSD11B1 activity by 27-OHC in vitro

The effect of 27-OHC on the activity of HSD11B1 was assessed in vitro in a lysate of CHOP cells transfected with a plasmid encoding HSD11B1. 27-OHC inhibited the activity of HSD11B1 in a dose-dependent manner (Fig. 5A). Similarly, the specific activity of HSD11B1 was significantly reduced in CHOP cells transfected with HSD11B1 when CYP27A1 was expressed (Fig. 5B).

Discussion

The regulation of the activities of HSD11B1 and HSD11B2 enzymes by different endogenous molecules, xenobiotics, and in various disease states has been described previously; it appears to be clinically relevant (Escher et al. 1997, 1998a,b, Fuster et al. 1998, Quattropani et al. 2001, Heiniger et al. 2003, Kostadinova et al. 2005, Ignatova et al. 2009, Konopelska et al. 2009). Herein, we report a
novel player, 27-OHC, which regulates the activity of these key enzymes, thereby determining the intracellular availability of glucocorticoids. As a confirmation of our hypothesis, and schematised in Fig. 6, we showed a diminished production of 27-OHC in the CTX patient, and this diminished production of 27-OHC enhanced the LXR-driven inhibition of HSD11B1 activity. As a result, the conversion of inactive into active glucocorticoids increased, reflecting the increased activity of HSD11B1, indicated by the absence of E in the plasma and elevated urinary (THF+5α-THF)/THE and cortol/cortolone ratios. Combined with an increased F/E ratio, an apparent indicator of a reduced activity of HSD11B2, an overall increase in the concentrations of active glucocorticoids was found in the urine of the CTX patient studied.

Similarly, in the absence of circulating 27-OHC, KO mice have an increased (THB+5α-THB)/THA ratio not only in the urine but also in the plasma, liver and kidney. With an increased B/A ratio in the plasma and urine,
the tissues of KO mice are clearly exposed to increased levels of active glucocorticoids.

In vitro, 27-OHC inhibited the activity of HSD11B1 in a dose-dependent manner, and the over-expression of CYP27A1 led to a reduced activity of HSD11B1 (Fig. 5), indicating that 27-OHC itself acts as an inhibitor of the activity of HSD11B1 (Fig. 6).

Similar changes observed in the steroid ratios occur as a consequence of a reduced production of bile acids (Cali et al. 1991, Peet et al. 1998, Rosen et al. 1998, Dubrac et al. 2005). It has been shown that the removal of a biliary obstruction in patients with cholestasis with a subsequent decrease in the concentrations of bile acids in the plasma had similar impacts on the urinary ratios of (THB+5α-THB)/THE (Quattropani et al. 2001). CTX patients including our patient are classically treated with chenodeoxycholic acid (CDCA), a substance known to inhibit the activities of HSD11B1 and HSD11B2 (Ackermann et al. 1999). This treatment could explain the different level of increase in the urinary ratio between the CTX patient and the KO mice. Without treatment with bile acids, KO mice exhibited a fourfold increase in the (THB+5α-THB)/THE ratio, whereas the (THF+5α-THF)/THE ratio was only modestly increased in our CTX patient who received CDCA treatment.

Besides the activity of HSD11B1, the total levels of glucocorticoids excreted and the enzyme 5α-reductase are also important determinants of the F/E and (THF+5α-THF)/THE ratios. In this study, the amount of steroids excreted in the urine was in the same range for the three groups of mice and within control values in the CTX patient (data not shown). By contrast, the activity of 5α-reductase remained unchanged in the CTX patient, but it was decreased in KO mice (Table 1 and Fig. 1C), a finding that may reflect a difference between humans and mice as to the phenotypic expression of CYP27A1 depletion, i.e. hepatic steatosis in KO mice and its absence in the CTX patient. A recent study (Ahmed et al. 2012) has shown...
an increased 5α-THF/THF ratio in patients with steatosis compared to controls, a finding in line with the reduction of the THB/5α-THB ratio in KO mice.

The role of endogenous glucocorticoids in the pathogenesis of the metabolic syndrome and individuals suffering from Cushing’s syndrome is well established, as well as their involvement in hepatic triglyceride accumulation (Dourakis et al. 2002). In non-alcoholic fatty liver disease, one of the manifestations of the metabolic syndrome, increased clearance and decreased hepatic regeneration of cortisol have been proposed as protective mechanisms to decrease the local availability of glucocorticoids (Ahmed et al. 2012). The clinical implication of the increased availability of glucocorticoids in our CTX patient could be of interest. Given the glucocorticoid-responsive element in the promoter sequence of CYP27A1 (Tang et al. 2008), an increased concentration of cortisol might contribute substantially to the residual activity of CYP27A1.

In this study, we found that KO mice have increased circulating and tissue glucocorticoid concentrations (Fig. 2A) that could, at least in part, explain their hepatomegaly. Taken together, our results indicate that the reduction of 27-OHC production by CYP27A1 and its effect on HSD11B1 activity enhance tissue concentrations of glucocorticoids and could, to a certain extent lead to the development of steatosis. The administration of 27-OHC to LDL receptor KO mouse has been shown to reduce the accumulation of lysosomal cholesterol and hepatic inflammation in the liver (Bieghs et al. 2013). If reduced 27-OHC concentrations are found in the circulation of patients with fatty liver, enhancement of the activity of CYP27A1 might then be a viable therapeutic option.

The changes in glucocorticoid ratios observed in KO mice were not regulated at the level of HSD11B1 mRNA or protein in the liver (Figs 3C and 4), and the specific activities of HSD11B1 and HSD11B2 were similarly not changed (Fig. 3A and B). Thus, we might speculate that the increased (THB+5α-THB)/THA ratio observed in the urine, plasma and liver is solely due to i) increased liver mass, ii) increased hepatic capacity to regenerate active glucocorticoids via HSD11B1, iii) decreased bile acid production, and/or iv), direct or indirect inhibition of HSD11B1 activity via the activation of LXR by 27-OHC.

In conclusion, we showed that in vivo the reduced activity of CYP27A1 increases the concentrations of active glucocorticoids in humans and mice, and that in vitro 27-OHC inhibits the activity of HSD11B1. It is the first evidence that not only xenobiotics but also enzymatic activity is involved in the regulation of HSD11B1 activity. In addition, hepatomegaly and hepatic steatosis in KO mice may also be a consequence of the increased availability of glucocorticoids.

Chapman KE, Walker EA & Stewart PM 2005 Hexose-6-phosphate dehydrogenase – tissue specific protector of the mineralocorticoid receptor.

Received in final form 31 July 2013
Accepted 16 August 2013