Regulation of TRH neurons and energy homeostasis-related signals under stress

Patricia Joseph-Bravo, Lorraine Jaimes-Hoy and Jean-Louis Charli
Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. S10-3, Cuernavaca, Morelos 62250, Mexico

Correspondence should be addressed to P Joseph-Bravo
Email joseph@ibt.unam.mx

The authors and journal apologise for an error in the above paper, which appeared in volume 224 part 3, pages R139–R159. The error relates to the legend to Figure 2 on page R141.

The original legend to Figure 2 on page R141 stated ‘(A) The primary transcript is synthesized in the nucleus as prepro-TRH heterogeneous nuclear RNA (hnRNA) which contains two introns and five exons’. The correct legend should read ‘(A) The primary transcript is synthesized in the nucleus as prepro-TRH heterogeneous nuclear RNA (hnRNA) which contains two introns and three exons’. The correct Figure 2 is published in full below:

![Figure 2](image)

Figure 2
Schematic representation of TRH synthesis. (A) The primary transcript is synthesized in the nucleus as prepro-TRH heterogeneous nuclear RNA (hnRNA) which contains two introns and three exons. (B) After splicing, mature RNA is transported to the cytosol, binds to ribosomes, begins transcription of prepro-TRH mRNA, the leader sequence is cleaved, synthesis of pro-TRH continues with ribosomes linked to rough endoplasmic reticulum (RER) and precursor is transported inside the ER. (C) At the transGolgi pro-TRH may suffer a first cleavage by protein convertase 1 (PC1), proTRH is compartmentalized in secretory granules with the rest of processing enzymes: PCs cleave at the carboxy end of a pair of basic residues, a carboxypeptidase cleaves the basic residues leaving the immediate precursor of TRH: gln-his-progly (black squares) and cryptic peptides (green); pyroglutaminase converts gln to pyroglu and peptidylglycine-α-amidase (PAM) leaves the amino group of the glycine bound to the carboxyl end (forming the amide group) and cleaves the rest of the procarbox moieties. Processing occurs as the secretory granule is transported to the nerve terminal (Nillini 2010).