Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC

Wenpeng Dong1,2, Ye Jia3, Xiuxia Liu4, Huan Zhang5, Tie Li6, Wenlin Huang7, Xudong Chen8, Fuchun Wang6, Weixia Sun3 and Hao Wu2,6

1Dialysis Center, Daqing Oilfield General Hospital, Daqing, Heilongjiang, People’s Republic of China
2Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
3Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
4Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
5Operating theatre, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
6Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
7School of Science and Technology, Georgia Gwinnett College, Lawrenceville, Georgia, USA
8Gastroenterology Department No. 1, Jilin Central General Hospital, Jilin, Jilin, People’s Republic of China

Abstract

Oxidative stress contributes to the pathogenesis of diabetic nephropathy (DN). Nuclear factor erythroid 2-related factor 2 (NRF2) plays a key role in cellular defense against oxidative stress. NRF2 activators have shown promising preventive effects on DN. Sodium butyrate (NaB) is a known activator of NRF2. However, it is unknown whether NRF2 is required for NaB protection against DN. Therefore, streptozotocin-induced diabetic C57BL/6 Nrf2 knockout and their wild-type mice were treated in the presence or absence of NaB for 20 weeks. Diabetic mice, but not NaB-treated diabetic mice, developed significant renal oxidative damage, inflammation, apoptosis, fibrosis, pathological changes and albuminuria. NaB inhibited histone deacetylase (HDAC) activity and elevated the expression of Nrf2 and its downstream targets heme oxygenase 1 and NAD(P)H dehydrogenase quinone 1. Notably, deletion of the Nrf2 gene completely abolished NaB activation of NRF2 signaling and protection against diabetes-induced renal injury. Interestingly, the expression of Kelch-like ECH-associated protein 1, the negative regulator of NRF2, was not altered by NaB under both diabetic and non-diabetic conditions. Moreover, NRF2 nuclear translocation was not promoted by NaB. Therefore, the present study indicates, for the first time, that NRF2 plays a key role in NaB protection against DN. Other findings suggest that NaB may activate Nrf2 at the transcriptional level, possibly by the inhibition of HDAC activity.

Introduction

As one of the long-term complications of diabetes, diabetic nephropathy (DN) is the main cause of end-stage renal disease (Dronavalli et al. 2008). Thus, end-stage renal disease cannot be effectively prevented or treated. Therefore, there is an urgent need to develop effective methods to prevent or slow down the progression of DN.
Oxidative stress contributes to the pathogenesis and development of DN (Zhang et al. 2012, Keshari et al. 2014). Nuclear factor erythroid 2-related factor 2 (NRF2) has been identified as a governor of antioxidant and redox signaling. NRF2 activates the transcription of downstream antioxidant genes such as heme oxygenase-1 (Ho1) and NAD(P)H dehydrogenase quinone 1 (Nqo1) (Ruiz et al. 2013). The elevated antioxidants function as cellular scavengers for free radicals, thereby preventing the cells from oxidative damage. We and others have demonstrated the beneficial effects of NRF2 activation on the prevention of DN in mice (de Haan 2011, Zheng et al. 2011, Wu et al. 2015a). Administration of the NRF2 activator sulforaphane (SFN) prevented diabetic renal damage, whereas the deletion of the Nrf2 gene completely abolished this action of SFN (Zheng et al. 2011, Wu et al. 2015a). These studies demonstrate that NRF2 is the key factor through which SFN ameliorates DN.

Sodium butyrate (NaB) is known as an activator of NRF2 (Yaku et al. 2012, 2013, Liu et al. 2015). NaB significantly increases the expression of Nrf2 and its downstream antioxidant genes, glutathione S-transferase and Nqo1, in interstitial epithelial cells in a dose-dependent manner (Yaku et al. 2012, 2013). Moreover, a recent study by Khan and coworkers showed that NaB ameliorated oxidative damage and fibrosis in the kidneys of diabetic rats along with a decrease in histone deacetylase (HDAC) activity (Khan & Jena 2014). However, the mechanism by which NaB attenuates oxidative damage in DN or how much NRF2 contributes to this process remain unclear. Given that HDAC inhibition may facilitate the transcription of multiple genes, it is important to investigate which gene may play a key role in the protection of NaB against DN.

Kelch-like ECH-associated protein 1 (KEAP1) sequesters NRF2 in the cytoplasm, restricting NRF2 from nuclear translocation and promoting its proteasomal degradation (Miyata et al. 2013). Several NRF2 activators such as SFN, curcumin and its analog, C66, enhance NRF2 function through the regulation of KEAP1 (Zhang & Hannink 2003, Hu et al. 2011, Esatbeyoglu et al. 2012, Wu et al. 2016). Thus, it is interesting to test the effect of NaB on the expression of Keap1, which might be a mechanism by which NaB enhances NRF2 function, in addition to the HDAC-inhibiting activity of NaB.

Therefore, this study aims to answer the following questions: (1) Is NRF2 required for NaB protection against DN in mice? (2) If required, how much does NRF2 contribute to the effect of NaB? (3) Is KEAP1 involved in NaB activation of NRF2 function in DN?

![Figure 1](https://example.com/figure1.png)

Figure 1: Deletion of the Nrf2 gene completely abolished NaB protection against diabetes-induced renal dysfunction. 8-week-old male C57BL/6 wild-type and Nrf2-knockout mice were induced to diabetes by streptozotocin. Blood glucose levels in (A) wild-type mice and (B) Nrf2-knockout mice were monitored at 0, 4, 8, 12, 16 and 20 weeks after the onset of diabetes. Kidney weight, tibia length, urinary albumin and creatinine levels were determined with the ratios of (C) kidney weight to tibia length and (D) urinary albumin to creatinine (UACR) was calculated. Data are presented as means ± s.d. (n=7). *P < 0.05 vs Ctrl; †P < 0.05 vs DM; ‡P < 0.05 vs wild-type DM. Lines: black, control (Ctrl); red, control treated with sodium butyrate (Ctrl/NaB); blue, diabetes (DM); green, diabetes treated with NaB (DM/NaB). Bars: white, Ctrl; light grey, Ctrl/NaB; dark grey, DM; black, DM/NaB.
Accordingly, C57BL/6 male Nrf2-knockout mice and their wild-type controls were induced to diabetes through injection of streptozotocin (STZ). The mice were then treated in the presence or absence of NaB for 20 weeks.

Materials and methods

Animal treatment

C57BL/6 wild-type (Nrf2+/+) and Nrf2-knockout (Nrf2−/−) mice were obtained by the breeding of heterozygotes (Nrf2+/-) (Zheng et al. 2011). All mice were housed in the Animal Center of Changchun University of Chinese Medicine at 22°C, on a 12:12-h light-darkness cycle with free access to rodent feed and tap water. The Institutional Animal Care and Use Committee at Changchun University of Chinese Medicine approved all experimental procedures for these animals. Consequently, this procedure was in accordance with the Guide for the Care and Use of Laboratory Animals by the US National Institutes of Health (2011, eighth edition).

Eight-week-old male mice received either sodium citrate or STZ (Sigma-Aldrich; 50 mg/kg daily, dissolved in 0.1 M sodium citrate, pH 4.5) through intraperitoneal injection for 5 consecutive days. One week after the last injection of STZ, fasting glucose levels (4-h fast) were measured. Mice with a fasting glucose level above 250 mg/dL were considered diabetic.

Diabetic and age-matched control mice were then given either a NaB diet or standard diet, as described in a previous publication (Gao et al. 2009). Briefly, NaB (PureOne Biotechnology, Shanghai, PRC) was blended into the diet using a food processor at 18 g at the proportion of 5%. The NaB-containing diet was pelleted and stored in a −20°C freezer until usage. On the supplemented diet, the mice received NaB at 5 g/kg/day (Gao et al. 2009) at the normal daily rate of caloric intake for a total period of 20 weeks.

Blood glucose levels were recorded on days 0, 28, 56, 84, 112 and 140 after the onset of diabetes. Urinary albumin and creatinine were recorded on day 140, after diabetes. The mice were then killed and their kidneys were harvested for analysis.

Figure 2

Deletion of the Nrf2 gene completely prevented NaB protection against the increase in glomerular area and mesangial matrix expansion in diabetic mice. (A) Periodic acid–Schiff (PAS) staining was performed to evaluate renal morphological changes. (B) Glomerular area and (C) mesangial matrix expansion were calculated from PAS staining. Bar = 50 μm. Data are presented as means ± s.d. (n = 7). *P < 0.05 vs Ctrl; † P < 0.05 vs DM. Bars: white, Ctrl; light grey, Ctrl/NaB; dark grey, DM; black, DM/NaB. Abbreviations are the same as Fig. 1. A full colour version of this figure is available at http://dx.doi.org/10.1530/JOE-16-0322.
Analysis of kidney function

A mouse albumin ELISA kit (Bethyl Laboratories, Montgomery, TX, USA) and a QuantiChrom Creatinine Assay Kit (BioAssay Systems, Hayward, CA, USA) were used to determine urine albumin and creatinine levels on spot urine sample. Urinary albumin to creatinine ratio (UACR) was calculated.

Western blot analysis

Western blot analysis was performed using kidney cortex as described in our previous study (Cai et al. 2005). The primary antibodies used were anti-binding immunoglobulin protein (BIP, Cell Signaling, 1:1000), anti-C/EBP homologous protein (CHOP, Cell Signaling, 1:1000), anti-connective tissue growth factor (CTGF, Santa Cruz Biotechnology, 1:500), anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH, Santa Cruz Biotechnology, 1:3000), anti-Histone H3 (Santa Cruz Biotechnology, 1:1000), anti-HO1 (Santa Cruz Biotechnology, 1:1000), anti-intercellular adhesion molecule-1 (ICAM-1, Santa Cruz Biotechnology, 1:500), anti-inducible nitric oxide synthase (iNOS, Cell Signaling, 1:1000), anti-KEAP1 (Santa Cruz Biotechnology, 1:500), anti-NQO1 (Santa Cruz Biotechnology, 1:1000), anti-NRF2 (Santa Cruz Biotechnology, 1:1000), anti-PAI-1 (Santa Cruz Biotechnology, 1:2000), anti-tumor necrosis factor alpha (TNF-α, Cell Signaling, 1:1000), anti- Transforming growth factor beta 1 (TGF-β1, Cell Signaling, 1:1000),

Figure 3

NaB completely lost its action in preventing from diabetes induce renal fibrosis in the absence of NRF2. Renal fibrosis was determined by calculating (A) Masson’s positive area from Masson's trichrome staining (B). To further evaluate the upstream signaling of fibrosis, (C) transforming growth factor beta 1 (TGF-β1), (D) connective tissue growth factor (CTGF) and (E) plasminogen activator inhibitor-1 (PAI-1) proteins were determined by Western blot. Bar = 50 μm. Data are presented as means ± s.d. (n=7). *P<0.05 vs Ctrl; †P<0.05 vs DM; ‡P<0.05 vs wild-type DM. Bars: white, Ctrl; light grey, Ctrl/NaB; dark grey, DM; black, DM/NaB. Abbreviations are the same as Fig. 1. A full colour version of this figure is available at http://dx.doi.org/10.1530/JOE-16-0322.
1:500), anti-vascular cell adhesion molecule-1 (VCAM-1, Santa Cruz Biotechnology, 1:500) and anti-3-NT (Millipore, 1:1000).

Real-time PCR

Quantitative RT-PCR was performed as described in our previous study (Wu et al. 2014). Primers for Nrf2, H2O1, Keap1, Gapdh and Nqo1 were all from Life Technologies.

Histologic staining

Kidney tissues were fixed immediately in 10% buffered formalin solution after harvesting, embedded in paraffin and sectioned into 5-µm-thick sections onto glass slides. The slides containing the samples were then prepared using periodic acid–Schiff (PAS) and Masson’s trichrome staining methods.

Isolation of nuclei

The renal nuclei were isolated using a nuclei isolation kit (Sigma-Aldrich), as described previously (Wu et al. 2016). Briefly, a kidney cortex (30mg) from each mouse was homogenized for 45s in 150µL of cold lysis buffer containing 0.5µL of dithiothreitol (DTT) and 0.1% Triton X-100. Post hoc, 300µL of cold 1.8M Cushion solution (Sucrose Cushion solution:Sucrose Cushion buffer:DTT = 900:100:1) was added to the lysis solution. The mixture was then transferred to a new tube preloaded with 150µL of 1.8M Sucrose Cushion solution followed by centrifugation at 13,000rpm for 45 min. As a result of the centrifugation, the nuclei were visible as a thin pellet at the bottom of the tube. The supernatant fraction, containing cytosolic components, was kept for analysis of cytosolic NRF2 (c-NRF2).

Immunohistochemical staining

Immunohistochemical staining was performed, as previously described (Wu et al. 2014), using an antibody against NRF2 (Santa Cruz Biotechnology, 1:100).

Morphometric analyses

Morphometric analyses were quantified using Image-Pro Plus 6.0 software (Media Cybernetics Inc, Bethesda, MD, USA). Selection of areas to photograph and scoring was done by people blind to the identity of the samples.

Quantitative analysis of lipid peroxides

Renal malondialdehyde (MDA) concentration was calculated following the instructions by a lipid peroxidation assay kit purchased from Sigma-Aldrich.

HDAC activity assay

HDAC activity was determined using a HDAC assay kit (BioVision) following the manufacturer’s protocol. Briefly, 25 µg of renal nuclear extract from each mouse was diluted to 85 µL of ddH2O in each well. 10 µL of HDAC activity was determined using a HDAC assay kit (BioVision) following the manufacturer’s protocol. Briefly, 25 µg of renal nuclear extract from each mouse was diluted to 85 µL of ddH2O in each well. 10 µL of
the 10× HDAC assay buffer was added to each well. 5μL of the HDAC fluorometric substrate was added to each well thereafter. After mixing thoroughly, plates were incubated at 37°C for 30 min. Reaction was then terminated by adding 10μL of lysine developer, followed by another 30-min incubation.

Statistical analysis

Seven mice per group were studied. The measurements for each group were summarized as means ± S.D. Image Quant 5.2 (GE Healthcare Bio-Sciences) was used to analyze Western blots. One-way ANOVA was performed for the comparisons among different groups. The statistical testing was then followed by post hoc pairwise comparisons using Tukey’s test with Origin 8.6 data analysis and graphing software (OriginLab, Northampton, MA, USA). A test is considered significant if P < 0.05.

Results

Deletion of the Nrf2 gene completely abolished NaB protection against diabetes-induced renal dysfunction

Diabetic mice developed significantly higher blood glucose levels from 0 to 20 weeks after the onset of diabetes in both wild-type (Fig. 1A) and Nrf2-knockout (Fig. 1B) mice. NaB did not alter blood glucose levels under both diabetic and non-diabetic conditions in both types of mice (Fig. 1A and B). In wild-type mice, NaB significantly reduced the ratio of kidney weight to tibia length which was, in turn, increased by diabetes (Fig. 1C, left panel). However, NaB completely lost this action in Nrf2-knockout mice (Fig. 1C, right panel). UACR, which indicates renal function, was determined in all mice (Fig. 1D). Both wild-type and Nrf2-knockout diabetic mice had significantly higher UACRs as compared to their relative controls (Fig. 1D). Moreover, deletion of the Nrf2 gene...
resulted in more severe diabetes-induced renal dysfunction compared with wild-type diabetic mice (Fig. 1D), which was in accordance with our previous studies (Wu et al. 2015b, 2016). Notably, NaB markedly decreased UACR that was elevated by diabetes in wild-type mice (Fig. 1D, left panel). However, the effect of NaB was completely abolished in the absence of Nrf2 (Fig. 1D, right panel). These results indicate that NRF2 plays a key role in NaB protection against diabetes-induced renal dysfunction.

Deletion of the Nrf2 gene completely prevented NaB protection against the increase in glomerular area and mesangial matrix expansion in diabetic mice

To test the effect of NaB on diabetes-induced renal pathological changes in wild-type and Nrf2-knockout mice, PAS staining was performed (Fig. 2A). Both wild-type and Nrf2-knockout diabetic mice had a significant increase in glomerular area and mesangial matrix expansion as compared to relative controls (Fig. 2B and C). Notably, NaB showed this efficacy in wild-type mice (Fig. 2B and C, left panels), but not in Nrf2-knockout mice (Fig. 2B and C, right panels). These results suggest that Nrf2 is required for NaB protection against diabetes-induced increase in glomerular area and mesangial matrix expansion.

Next, we determined renal fibrosis in all mice. Thus, Masson’s trichrome staining was performed (Fig. 3A) with Masson’s positive area calculated (Fig. 3B). Protein levels of TGF-β1 (Fig. 3C), CTGF (Fig. 3D) and PAI-1 (Fig. 3E) were determined by Western blot. NaB significantly prevented from diabetes-enhanced renal Masson’s positive area, TGF-β1, CTGF and PAI-1 in wild-type mice (Fig. 3B, C, D and E, left panels). However, deletion of the Nrf2 gene completely blocked the actions of NaB (Fig. 3B, C, D and E, right panels). Therefore, Nrf2 is the key factor through which NaB prevents diabetic renal fibrosis.

NaB completely lost its action in preventing from diabetes-induced renal fibrosis in the absence of NRF2

Renal inflammation was determined by Western blot analysis of TNF-α (Fig. 4A), VCAM-1 (Fig. 4B) and ICAM-1 (Fig. 4C). Diabetes produced renal inflammation in both types of mice (Fig. 4A, B and C). Wild-type mice, but not Nrf2-knockout mice, were prevented from diabetes-induced renal inflammation by NaB (Fig. 4A, B and C). Therefore, the results of the mechanism suggest that NaB prevention of diabetes-induced renal inflammation is mediated by Nrf2.

NaB prevention of diabetes-induced renal inflammation was mediated by NRF2

Figure 7
NaB increased the expression of Nrf2 downstream antioxidant genes. Heme oxygenase 1 (Hmox-1) (A) protein and (B) mRNA, as well as NAD(P)H dehydrogenase quinone (Nqo1) (C) protein and (D) mRNA were all determined to evaluate Nrf2 function as a transcription factor for its downstream targets.
NaB significantly reduced the expression of renal apoptotic genes that was induced by diabetes

Renal apoptotic gene expression was tested by measuring protein levels of BIP (Fig. 5A) and CHOP (Fig. 5B). Diabetic kidney exhibited increased BIP and CHOP proteins, and this effect was almost completely prevented by administration of NaB (Fig. 5A and B, left panels). In contrast, Nrf2 gene deletion resulted in a complete abolishment of this protective effect of NaB (Fig. 5A and B, right panels). These findings indicate that NaB has the capacity to prevent from diabetes-induced expression of renal apoptotic genes.

NRF2 played a key role in NaB amelioration of diabetes-induced renal oxidative damage

Because NRF2 is the governor of the cellular antioxidant system (Kesic et al. 2011, Pendyala et al. 2011, Ruiz et al. 2013), it is important to test renal oxidative damage. MDA, iNOS and 3-NT, as indicators of oxidative damage (Sari et al. 2014), were determined in all mice (Fig. 6A, B and C). Diabetes significantly elevated renal MDA, iNOS and 3-NT in both types of mice (Fig. 6A, B and C). Furthermore, Nrf2 gene deletion led to a significant increase in MDA, iNOS and 3-NT compared with wild-type mice (Fig. 6A, B and C). Moreover, NaB markedly

Figure 8
NaB upregulated Nrf2 expression without increasing the proportion of Nrf2 nuclear translocation. Western blot assays were performed to determine (A) nuclear Nrf2 (n-Nrf2), (B) cytosolic Nrf2 (c-Nrf2) and (C) total Nrf2 (t-Nrf2). To test the effect of NaB on Nrf2 gene transcription, (D) Nrf2 mRNA was determined by RT-PCR. To further investigate the effect of NaB on Nrf2 translocation, (E) a comparison of the ratios of n-Nrf2/Histone H3 to t-Nrf2/GAPDH between the four groups was constructed. (F) Immunohistochemical staining was performed to observe the location of NRF2 expression in the kidneys of all mice. Data are presented as means ± s.d. (n = 7). *P < 0.05 vs Ctrl; †P < 0.05 vs DM. Bars: white, Ctrl; light grey, Ctrl/NaB; dark grey, DM; black, DM/NaB. Abbreviations are the same as Fig. 1. A full colour version of this figure is available at http://dx.doi.org/10.1530/JOE-16-0322.
NaB ameliorates diabetic nephropathy via NRF2

NaB increased the expression of Nrf2 downstream antioxidant genes

To evaluate NRF2 function, the expression of Ho1 and Nqo1, targets of NRF2 (Martin et al. 2004, He et al. 2009), was determined by Western blot and RT-PCR. In wild-type mice, NaB markedly elevated the expression of Ho1 and Nqo1 under both diabetic and non-diabetic conditions (Fig. 7A, B, C and D, left panels). However, the efficacies of NaB were completely blocked in Nrf2-knockout mice (Fig. 7A, B, C and D, right panels). Hence, NRF2 is the key factor through which NaB upregulates the expression of renal antioxidant genes.

NaB upregulated Nrf2 expression without increasing the proportion of NRF2 nuclear translocation

As NRF2 is a transcription factor, it is important to measure the amount of NRF2 in the nucleus (nuclear NRF2, n-NRF2), which also reflects NRF2 function. NaB significantly increased n-NRF2 under both diabetic and non-diabetic conditions in wild-type mice (Fig. 8A, left panel). Similarly, NRF2 in the cytoplasm (c-NRF2), whole cell (total NRF2, t-NRF2) and Nrf2 mRNA were all increased by NaB (Fig. 8B, C and D, left panels). However, Nrf2 protein and mRNA were not detectable in Nrf2-knockout mice (Fig. 8A, B, C and D, right panels), and this confirmed the deletion of the Nrf2 gene. To investigate whether NaB promotes NRF2 nuclear translocation, we further constructed a comparison of the ratios of n-NRF2/Histone H3 to t-NRF2/GAPDH between the four groups (Fig. 8E). Hypothetically, this ratio could reflect the proportion of the nuclear translocated NRF2 in total NRF2. NaB did not alter the proportion of nuclear translocated NRF2 under either diabetic or non-diabetic conditions in wild-type mice (Fig. 8E, left panel). Hence, NaB may have no impact on NRF2 nuclear translocation. The fact that NaB increased NRF2 mRNA and did not promote NRF2 translocation to the nucleus sheds light on the regulation of NRF2 by NaB. Thus, the results indicate that this mechanism occurred predominantly at the transcriptional level. Immunohistochemical staining was performed to show the localization of NRF2 (Fig. 8F), which was observed preferentially in the glomeruli of wild-type mice (Fig. 8F, upper panel). Nrf2-knockout kidney did not show a positive staining of NRF2 (Fig. 8F, lower panel).

KEAP1 was not involved in NaB regulation of NRF2 function

KEAP1 is known to sequester NRF2 in the cytoplasm, restricting NRF2 from nuclear translocation and facilitating NRF2 ubiquitination (Miyata et al. 2013). KEAP1 protein and mRNA were elevated in both wild-type and Nrf2-knockout mice (Fig. 10A and B, right panels). However, KEAP1 mRNA was not increased by NaB in wild-type mice (Fig. 10B, left panel). Hence, NaB may have no impact on NRF2 nuclear translocation. The fact that NaB increased NRF2 mRNA and did not promote NRF2 translocation to the nucleus sheds light on the regulation of NRF2 by NaB. Thus, the results indicate that this mechanism occurred predominantly at the transcriptional level. Immunohistochemical staining was performed to show the localization of NRF2 (Fig. 8F), which was observed preferentially in the glomeruli of wild-type mice (Fig. 8F, upper panel). Nrf2-knockout kidney did not show a positive staining of NRF2 (Fig. 8F, lower panel).

KEAP1 was not involved in NaB regulation of NRF2 function

KEAP1 is known to sequester NRF2 in the cytoplasm, restricting NRF2 from nuclear translocation and facilitating NRF2 ubiquitination (Miyata et al. 2013). KEAP1 protein and mRNA were elevated in both wild-type and Nrf2-knockout mice (Fig. 10A and B, right panels). However, KEAP1 mRNA was not increased by NaB in wild-type mice (Fig. 10B, left panel). Hence, NaB may have no impact on NRF2 nuclear translocation. The fact that NaB increased NRF2 mRNA and did not promote NRF2 translocation to the nucleus sheds light on the regulation of NRF2 by NaB. Thus, the results indicate that this mechanism occurred predominantly at the transcriptional level. Immunohistochemical staining was performed to show the localization of NRF2 (Fig. 8F), which was observed preferentially in the glomeruli of wild-type mice (Fig. 8F, upper panel). Nrf2-knockout kidney did not show a positive staining of NRF2 (Fig. 8F, lower panel).

NaB did not alter renal Kelch-like ECH-associated protein 1 (Keap1) expression, while significantly inhibited the activity of histone deacetylase (HDAC). We further determined renal Keap1 (A) protein and (B) mRNA, along with total HDAC activity in all mice. Data are presented as means ± s.d. (n = 7). *P < 0.05 vs Ctrl; †P < 0.05 vs DM. Bars: white, Ctrl; light grey, Ctrl/NaB; dark grey, DM, black, DM/NaB. Abbreviations are the same as Fig. 1.
wild-type and Nrf2-knockout diabetic mice (Fig. 9A and B). However, NaB showed no impact on Keap1 expression in the two types of mice under both diabetic and non-diabetic conditions (Fig. 9A and B). Therefore, KEAP1 was not involved in NaB regulation of NRF2 expression and function. This result is in accordance with the finding that NaB did not promote nuclear translocation of NRF2 (Fig. 8E).

NaB inhibited HDAC activity in the kidneys of both wild-type and Nrf2-knockout mice

NaB is an inhibitor of HDAC activity. Therefore, the effect of HDAC inhibition by NaB may facilitate transcription factors to bind the promoter region of the Nrf2 gene, which may consequently lead to Nrf2 gene transcription. To further confirm the inhibitory effect of NaB on HDAC activity, we determined the total HDAC activity in all mice. As shown in Fig. 9C, HDAC activity was markedly inhibited by NaB in both wild-type and Nrf2-knockout mice, under both non-diabetic and diabetic conditions. Thus, the activation of Nrf2 transcription (Fig. 8D) may be facilitated by NaB inhibition of HDAC activity.

Discussion

The present study explored the mechanism by which NaB ameliorates DN in mice. NaB showed a promising preventive effect on DN in C57BL/6 wild-type mice. By using Nrf2-knockout mice, we identified NRF2 to be the key factor through which NaB ameliorated DN. Given that Keap1 expression and NRF2 nuclear translocation were not altered by NaB, the present study indicates that NaB may upregulate Nrf2 expression and function at transcriptional level. This action may be facilitated by the inhibitory effect of NaB on HDAC activity (Fig. 10).

Although NaB was found be beneficial to several diseases (He et al. 2016, Li et al. 2016, Salimi et al. 2016, Subramanian et al. 2016), little is known about its protection against DN. To the best of our knowledge, there has been only one study that reported NaB protection against DN (Khan & Jena 2014). The study by Khan and coworkers showed that NaB ameliorated oxidative damage and fibrosis in the kidneys of diabetic rats along with a decrease in HDAC activity (Khan & Jena 2014). However, given that HDAC inhibition could have a positive effect on transcription of a variety of genes, it is not certain which gene activation plays a key role.
in the protective effect of NaB. In the present study, we observed the activation of Nrf2 gene expression by NaB (Fig. 8A, B, C and D, left panels), along with increased expression of NRF2’s downstream targets Ho1 and Nqo1 (Fig. 7A, B, C and D, left panels). Additionally, NaB ameliorated diabetes-induced renal oxidative damage, apoptosis, inflammation, fibrosis, pathological changes and renal dysfunction. Notably, these actions of NaB were completely abolished in the absence of Nrf2. Therefore, the results demonstrate that the activation of Nrf2, but not other genes, plays a key role in NaB protection against DN. The mechanism by which NaB-activated Nrf2 transcription may be its inhibitory effect on HDAC activity (Fig. 9C). The result of the inhibition could, in turn, facilitate transcription factors to bind the promoter region of the Nrf2 gene furthering its gene transcription (Fig. 10). Although NaB may facilitate the transcription of many genes by the inhibition of HDAC, the activation of Nrf2 gene transcription provided the predominant benefit in NaB protection against DN. Supporting this notion, SFN, another HDAC inhibitor, completely lost its function in ameliorating DN in the absence of Nrf2 (Wu et al. 2015b). This indicates that Nrf2 is the key factor in both NaB and SFN protection against DN.

KEAP1 sequesters Nrf2 in the cytoplasm, promoting its proteasomal degradation (Miyata et al. 2013). Thus, application of small molecules that can either modify the structure of KEAP1 to release Nrf2 or reduce cytoplasmic KEAP1 can be used to activate Nrf2 function. SFN modifies specific cysteine residues in KEAP1, enabling Nrf2 to escape from KEAP1-mediated ubiquitination and degradation (Zhang & Hannink 2003). As a result, Nrf2 translocates into the nucleus to activate transcription of downstream antioxidant enzymes (Zhang & Hannink 2003, Hu et al. 2011). Curcumin is also known as an activator of Nrf2. Like SFN, curcumin disrupts the binding between KEAP1 and Nrf2, leading to the release of Nrf2 (Esatbeyoglu et al. 2012). However, the fact that curcumin downregulates Keap1 expression (Soetikno et al. 2013) challenges the notion that curcumin only modifies the KEAP1-NRF2 complex. In our previous study, we demonstrated that the curcumin analog, C66, decreased Keap1 mRNA and protein via the upregulation of microRNA-200a (Wu et al. 2016). Therefore, in addition to disruption of KEAP1-NRF2 complex, the decreased expression of Keap1 may also account for Nrf2 induction by curcumin (Wu et al. 2016). Nevertheless, unlike SFN, curcumin and C66, NaB had no impact on Keap1 expression (Fig. 9A and B) and Nrf2 nuclear translocation (Fig. 8E) under both diabetic and non-diabetic conditions.

The present study indicates a different regulatory mechanism of Nrf2 expression by NaB from that by SFN, curcumin and C66. We, therefore, speculate that NaB treatment produced excessive Nrf2 (Fig. 8A, B and C, left panels) that surpassed the neutralizing ability of KEAP1. Hence, NaB might solely regulate Nrf2 expression at the transcriptional level, which may be facilitated by the inhibition of HDAC activity (Fig. 10).

Both NRF2 activators and NaB have been applied in clinical trials. Although bardoxolone methyl, a NRF2 activator, was terminated in a phase III study due to heart complications (Hall & Bhalla 2014), Nrf2 remains a viable drug target as evidenced by the approval of BG-12 (dimethyl fumarate) in treatment of multiple sclerosis (Gold et al. 2012). NaB has also been used in clinical trials. NaB improved the efficacy of oral mesalazine in active ulcerative colitis (Vernia et al. 2000); reduced inflammation in stool of the patients with shigellosis, along with an improvement in rectal histopathology (Raqib et al. 2012); reduced the frequency of abdominal pain in patients with irritable bowel syndrome (Banasiewicz et al. 2013) and reduced the frequency of diverticulitis episodes (Krokowicz et al. 2014). Thus, there is a potential use of NaB, the NRF2 activator, in the prevention of DN. Although evidence shows that NaB functioned predominantly through the activation of Nrf2 in the mouse model of this study, more animal studies are needed before the potential application of NaB in humans.

Taken together, the present study demonstrates, for the first time, that NRF2 plays a key role in NaB protection against DN. Furthermore, this study indicates that NaB regulates Nrf2 expression at the transcriptional level, possibly through the inhibition of HDAC activity. Therefore, the present study may provide a basis for the future study or application of NaB.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This work was supported in part by Norman Bethune Program of Jilin University (2015438) and National Natural Science Foundation of China (81600573) to H W; National Natural Science Foundation of China Grant (81400725), Jilin University Bethune Foundation Grant (2015201) and Natural Science Foundation of Jilin Province (20160101030JC) to W S; and National Basic Research Program of China (2014CB543100) to W J.

Acknowledgements
The authors thank Tanya B Hanson for proofreading this article.
References

de Haan JB 2011 Nrf2 activators as attractive therapeutics for diabetic nephropathy. *Diabetes* 60 2683–2684. (doi:10.2337/db11-1072)

He X, Kan H, Cai L & Ma Q 2009 Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. *Journal of Molecular and Cellular Cardiology* 46 47–58. (doi:10.1016/j.yjmcc.2008.10.007)

Khaneja E & Jena G 2014 Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-beta1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. *Food and Chemical Toxicology* 73 127–139. (doi:10.1016/j.fct.2014.08.010)

Received in final form 23 October 2016
Accepted 25 October 2016
Accepted Preprint published online 31 October 2016