RESEARCH

Thyroid hormones stimulate L-arginine transport in human endothelial cells

Marta Toral1, Rosario Jimenez1,2, Sebastián Montoro-Molina3, Miguel Romero1,2, Rosemary Wangensteen3, Juan Duarte1,2 and Félix Vargas2,4

1Departamento de Farmacología, Facultad de Farmacia, Granada, Spain
2Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
3Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
4Departamento de Fisiología, Facultad de Medicina, Granada, Spain

Correspondence should be addressed to J Duarte: jmduarte@ugr.es

Abstract

Thyroid hormone activity is associated with L-arginine metabolism and nitric oxide (NO) production, which participate in the cardiovascular manifestations of thyroid disorders. L-arginine transporters play an important role in activating L-arginine uptake and NO production. However, the effects of thyroid hormones on L-arginine transporters in endothelial cells have not yet been evaluated. The following methods were used. We measured L-arginine uptake, mRNA expression of L-arginine transporters, endothelial nitric oxide synthase (eNOS) mRNA and NO generation after the administration of T3, T4 and the T3 analog, 3,3′,5-triiodothyroacetic acid TRIAC in human umbilical vein endothelial cells (HUVECs). We also analyzed the role of αvβ3 integrin and of phosphatidylinositol-3 kinase (PI3K), mitogen-activated protein kinases (MAPKs: ERK1/2, p38 and SAPK-JNK) and intracellular calcium signaling pathways as underlying mechanisms. To this end, αvβ3 integrin was pharmacologically inhibited by tetraiodothyroacetic acid (TETRAC) or genetically blocked by silencing αv mRNA and PI3K, MAPKs and intracellular calcium by selective inhibitors. The following results were obtained. Thyroid hormones and the T3 analog TRIAC increased L-arginine uptake in HUVECs, the sodium-independent y+CAT isoforms, except CAT2b, sodium-dependent y+L system and sodium-independent system b0,+L-arginine transporters, eNOS mRNA and NO production. These effects were suppressed by αvβ3 integrin inhibition with TETRAC or αv integrin downregulation or by PI3K, MAPK or intracellular Ca2+ signaling inhibitors. In conclusion, we report for the first time that activation of L-arginine uptake by thyroid hormones is related to an upregulation of L-arginine transporters. This effect seems to be mediated by activation of αvβ3 integrin receptor and subsequent PI3K, MAPK and intracellular Ca2+ signaling pathways.

Introduction

L-arginine transporters are expressed in endothelial and epithelial cells and play a major role in activating L-arginine transport and nitric oxide (NO) synthesis, which regulates vascular tone and, therefore, arterial pressure (Pallone & Mattson 2002, Kakoki et al. 2004). The total intracellular concentration of L-arginine in endothelial cells is saturating for endothelial nitric oxide synthase (eNOS) and is consequently not limiting...
for NO production (Block et al. 1995), and it has been reported that cellular L-arginine transport may be more important than intracellular L-arginine levels for NO production (McDonald et al. 1997). Thus, the supply of L-arginine may become limiting and reduce NO formation in physiological and pathological states. In this context, endothelial dysfunction can be improved by the administration of L-arginine in many diseases, including hypertension, atherosclerosis, hyperglycemia, restenosis/postcoronary angioplasty and reperfusion injury (Creager et al. 1990, Chen & Sanders 1991, Harrison 1991, Weyrich et al. 1992, Wascher et al. 1997). The cellular uptake of L-arginine is mediated by carrier-mediated transporters and passive diffusion. The saturable transport is produced by Na⁺-independent transporters (system y⁺, B₀K⁺) and a Na⁺-dependent active transporter system, y⁺L (Closs 2002, Mann et al. 2003). System y⁺, composed of the cationic amino acid transporter (CAT) family of proteins (CAT-1, CAT-2A, CAT-2B, CAT-3 and CAT-4), is the major cationic amino acid transport system and accounts for ~60% of the transport of the intracellular supply of L-arginine for NOS (Verrey et al. 2004).

Thyroid hormone excess is associated with a hyperdynamic circulation, which is characterized by increased cardiac output, heart rate and pulse pressure and decreased peripheral resistance (Klein 1990, Vargas et al. 2006). Thyroxine generates a concentration-related blood pressure (BP) elevation in rodents (Moreno et al. 2005, Vargas et al. 2006), increases NOS activity in tissues responsible for BP control (Quesada et al. 2002), raises plasma nitrite/nitrate levels (Rodríguez-Gómez et al. 2003), and preserves vascular endothelial function (Vargas et al. 1995). In vitro, T₃ augmented eNOS activity in endothelial cells (Hiroi et al. 2006). BP was increased in thyroxine-treated rats by oral treatment with the nonspecific NO inhibitor N'-nitro-L-arginine methyl ester (L-NAME) and the iNOS inhibitor aminoguanidine, administered at concentrations without pressor effects in normal rats (Rodríguez-Gómez et al. 2003, 2005). Our group also reported that thyroid hormone levels modulate different L-arginine metabolic pathways and that changes in the abundance of eNOS and arginases I and II proteins in renal and cardiovascular tissues may be related to the hemodynamic and renal manifestations of thyroid disorders (Rodríguez-Gómez et al. 2016). Thus, chronic arginase inhibition with N[omega]-hydroxy-nor-L-arginine (nor-NOHA) prevented the increased systolic BP and heart rate and decreased proteinuria in hyperthyroid rats (Rodríguez-Gómez et al. 2015). All these observations support an association of thyroid hormone activity with L-arginine metabolism and NO production.

L-arginine transport is regulated by NO donors (Ogonowski et al. 2000), NOS agonists (Bogle et al. 1991), inflammatory factors (Simmons et al. 1996), cellular membrane potential (Zharikov et al. 1997), free radicals (Patel et al. 1996) and pharmacological and vasoactive agents (Bogle et al. 1991, Grupper et al. 2013). It is affected in several diseases, including acute and chronic kidney diseases (Schwartz et al. 2002, Martens et al. 2014), intrauterine growth retardation (Casanello et al. 2009, Grupper et al. 2013), diabetes (Simmons et al. 1996) or obesity (Rajapakse et al. 2014). Hormones such as insulin (González et al. 2011) or collectrin (Malakauskas et al. 2007) also modulate L-arginine transport; however, the role of thyroid hormones has not yet been evaluated, despite their important participation in L-arginine metabolism and in NOS activity and function. Therefore, the objectives of this study were to evaluate the effects of thyroid hormones on L-arginine transporters and other variables in human umbilical vein endothelial cells (HUVECs) and to examine the contributions of β1 integrin and of phosphatidylinositol-3 kinase (PI3K), mitogen-activated protein kinase (MAPK) and intracellular calcium mobilization signaling pathways as underlying mechanisms.

Material and methods

Culture of HUVECs

Endothelial cells were isolated from human umbilical cord veins using a previously reported method with some modifications (Jiménez et al. 2010). Cells were cultured in medium 199 supplemented with 20% FBS, 2mM penicillin/streptomycin, 2mM amphotericin B, 2mM glucose, 10mM HEPES, 30μg/mL endothelial cell growth supplement and 100mg/mL heparin in a humidified 5% CO₂ atmosphere at 37°C. All cells used in experiments from passages 2 to 5 were previously starved in serum-free medium for 2h.

HUVECs were incubated with a vehicle control (final concentration of 0.04N NaOH), the thyroid hormone 3,3',5-triiodo-L-thyronine (T₃, 10nM and 100nM), L-thyroxine (T₄, 10nM and 100nM) (diluted to its final concentration from 10⁻⁴M stock, using the vehicle as diluent) and thyroid hormone analogue 3,3',5-triiodothyroacetic acid (TRIAC, 10nM and 100nM), for 2 and 6h. In some experiments, cells were co-incubated with thyroid hormones and tetraiodothyroacetic acid
Characterization of L-arginine transport system in HUVECs

Confluent cultures of HUVECs were prepared in 6-well plates. To determine the transporters for L-arginine supplied to the cells, HUVECs were incubated in an uptake buffer (in mM: 25 HEPES, 1.8 CaCl₂, 5.4 KCl, 140 choline chloride, 0.8 MgSO₄ and 5 glucose) containing 20nM L-[³H]arginine for periods of 0min, 2 and 6h. In some experiments, 50µM of unlabeled L-arginine was included in the solution to determine that the transporters measured were the expected. L-arginine uptake was stopped by addition of ice-cold uptake buffer, and cells were washed three times with 1 mL of this buffer. After the final wash, cells were lysed by addition of 125 µL 0.5% SDS in 0.1 N NaOH. Cellular lysates were added to 4mL of Ecoscint-A scintillation fluid, and scintillation spectroscopy (Beckman Instruments) was used to determine the amount of L-[³H]arginine, considered to represent the cellular transport of L-arginine as previously described (Ogonowski et al. 2000).

RT-PCR analysis

For RT-PCR analysis, total RNA was extracted from HUVEC by homogenization and converted to cDNA using standard methods. PCR was performed with a Technne Techgenethermocycler (Technne, Cambridge, UK). Quantitative real-time RT-PCR was applied to analyze mRNA expression, and the sequences of sense and antisense primers used for amplification are reported in Table 1. Preliminary experiments were carried out with various amounts of cDNA to determine non-saturating conditions of PCR amplification for all genes studied. Under these conditions, the relative quantification of mRNA was assessed by the SYBR Green based-RT-PCR method. The efficiency of the PCR reaction was determined by using a dilution series of a standard tissue sample. Quantification was performed with the ΔΔCt method. The housekeeping genes β-actin was used for internal normalization.

Transfection of αvβ3 siRNAs

Confluent HUVECs were transfected with αv-specific siRNA (pooled, validated siRNA from Dharmacon, Lafayette, CO, USA) or a scrambled siRNA to serve as a negative control, using Lipofectamine RNAiMAX (Invitrogen Life Technologies) for 48h, as previously described (Quintela et al. 2014).

Quantification of NO released by DAF-2

NO released by HUVECs was quantified with the NO-sensitive fluorescent probe diaminofluorescein-2 (DAF-2), as previously reported (Quintela et al. 2014). Briefly, cells were incubated as described earlier. After this period, TH-treated and un-treated cells were washed with PBS and pre-incubated with L-arginine (100µM in PBS, 5 min, 37°C). Next, DAF-2 (0.1µM) was incubated for 2min, and the calcium ionophore calimycin (A23187, 1µM) was then added for 30min, followed by measurement of the fluorescence intensity (arbitrary units, AU) with a spectrofluorimeter (Fluorostart, BMG Lab technologies, Offenburg, Germany). The autofluorescence was subtracted from each value. In some experiments, L-NAME (100µM) was added 15min before the addition of L-arginine. The difference between the fluorescence signal without and with L-NAME was considered as the NO production.

Western blotting analysis

Cells underwent the siRNA procedure for 48h followed by Western blotting, running HUVEC homogenates on a SDS-PAGE (40µg of protein per lane) and then transferring the proteins to PVDF membranes. αv was detected after incubating the membranes with rabbit polyclonal anti-human integrin αv (Abcam) overnight at 4°C with the secondary peroxidase conjugated antibodies. Antibody binding was detected with an ECL system (Amersham Pharmacia Biotech, Amersham, UK), and densitometric
Table 1 Oligonucleotides for real-time RT-PCR.

<table>
<thead>
<tr>
<th>mRNA targets</th>
<th>Descriptions</th>
<th>Sense</th>
<th>Antisense</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT-1</td>
<td>Cationic amino acid transporter-1</td>
<td>ATCTGCTTCATGCCTACTT</td>
<td>TCTCTGCCTCTGGTAAAAAC</td>
</tr>
<tr>
<td>CAT-2a</td>
<td>Cationic amino acid transporter-2a</td>
<td>TTTCCTGCTTTGTGTTG</td>
<td>TTGGGCTGGTCGTAAGATA</td>
</tr>
<tr>
<td>CAT-2b</td>
<td>Cationic amino acid transporter-2b</td>
<td>TTTTCCAAATGCTCTGTTA</td>
<td>CATTGGGCTGGTCGTAAGAGA</td>
</tr>
<tr>
<td>CAT-4</td>
<td>Cationic amino acid transporter-4</td>
<td>ATGGTGCGCTGGTCGCTCATA</td>
<td>TGGGAGGTGCTGGTCGTAAGA</td>
</tr>
<tr>
<td>y+LAT1</td>
<td>System y-L transport 1</td>
<td>CTTTGCTCTCCCTGCTGCTCA</td>
<td>GCTATGTTGCTGCACCTGCTG</td>
</tr>
<tr>
<td>y+LAT2</td>
<td>System y-L transport 2</td>
<td>CCTACCATCTTGGCTCTAAC</td>
<td>TTTCGGGTTTTTGTATTCT</td>
</tr>
<tr>
<td>B0+ system</td>
<td>System B0+</td>
<td>GTCTTCTTGGCTGTCATATA</td>
<td>CAATCACATACGCTCAAAGCA</td>
</tr>
<tr>
<td>αv</td>
<td>Alpha-v</td>
<td>GCGGGGGAAAGCCATCG</td>
<td>GCCCGGCTTTTGGTCGTAAGC</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endothelial nitric oxide synthase</td>
<td>GTGGACGCACAGTAACATG</td>
<td>ACCTCCACAGCTTCCACAGG</td>
</tr>
<tr>
<td>Actb</td>
<td>Beta actin</td>
<td>CGGTGAAGGTGACACAGC</td>
<td>TGTGGACTTGGGAGAGG</td>
</tr>
</tbody>
</table>

Statistical analysis

Results were expressed as means±S.E.M. Statistical analyses were performed using Graph Pad Prism 5 software. A two-factor ANOVA was used to test for drug or group interactions. When a significant interaction was detected, individual differences between groups were discerned by one-way ANOVA with Student–Newman–Keuls’ post hoc test. Significance was accepted at \(P<0.05 \).

Results

Thyroid hormones stimulated L-[\(^{3}H\)] arginine uptake in HUVECs

Given that cellular L-arginine transport is very important for NO production, the effects of both thyroid hormones (T\(_3\) and T\(_4\) at 10 and 100 nM concentrations) on L-arginine uptake were analyzed after 0 min, 2 and 6 h after hormone administration to HUVECs (Fig. 1A and B). L-arginine transport was significantly stimulated by T\(_3\) at 2 h with the 100 nM concentration and at 6 h with both 10 and 100 nM concentrations. T\(_4\) increased L-arginine uptake at 2 h with both concentrations, but the slight increase observed at 6 h did not reach statistical signification.

Effects of thyroid hormones on the Na\(^+\)-independent transporter (system y\(^{+}\)) CAT-1, CAT-2a, CAT-2b and CAT-4

After observing that thyroid hormones increased L-arginine uptake in HUVECs, we examined the influence of thyroid hormones on the main family of L-arginine transporters in endothelial cells, the Na\(^+\)-independent transporter system y\(^{+}\). The effects of 10 and 100 nM of T\(_3\) and T\(_4\) on the expression of system y\(^{+}\) were evaluated after 2 and 6 h in HUVECs. CAT-1 mRNA was augmented after 6 h of administration with either thyroid hormone at the higher concentration, while no significant effects were observed after incubation with either hormone (Fig. 2A).
CAT-2a mRNA was augmented by the higher concentration of T₃ after 2 h and by both concentrations of T₃ after 6 h (Fig. 2B). CAT-2a mRNA was increased by both T₄ concentrations at 6 h, observing no significant effects at 2 h (Fig. 2B). CAT-2b mRNA was not increased by either concentrations of T₃ or T₄ after any time period (Fig. 2C). CAT-4 was only increased by the higher concentration of T₃ after 6 h, and no significant change in this transporter was observed with either hormone at other concentrations or times (Fig. 2D).

Effects of thyroid hormones on the Na⁺-dependent transporter (system y⁺L) CATs y⁺LAT1 and y⁺LAT2

Because both thyroid hormones were found to stimulate system y transporter, we also studied their effects on the Na⁺-dependent transporter y⁺L system, which works in additive cooperation with y⁺ system. Both concentrations of T₃ increased y⁺LAT1 mRNA after 6 h, and the increase was statistically significant with the higher concentration (Fig. 3A). Similar increases were observed with T₄ after 2 h (Fig. 3A). Transporter y⁺LAT2 mRNA was only upregulated by 10 nM T₃ after 6 h (Fig. 3B).

Effects of thyroid hormones on the Na⁺-independent transporter system B₀⁺⁺

L-arginine transport is also mediated by the CAT system B₀⁺⁺ in HUVECs, and we therefore analyzed the effects of thyroid hormones on this transporter. Both concentrations of T₃ significantly stimulated B₀⁺⁺ mRNA
generation after 6 h (Fig. 3C), and both concentrations of T₃ increased the expression of B₀⁺ mRNA after 2 h, although the increase was only statistically significant at the 100 nM concentration (Fig. 3C).

Effects of TRIAC on L-arginine transporters

To further evaluate the impact of thyroid hormones on L-arginine transporters, we also explored the effects of TRIAC, a naturally occurring thyroid hormone metabolite that closely resembles the bioactive hormone T₃. We analyzed the effects of TRIAC at concentrations of 10 and 100 nM on L-arginine transporters after 2 and 6 h of exposure. CAT-1 mRNA was significantly increased with the higher concentration after 6 h (Fig. 4A), CAT-2a mRNA was upregulated by both concentrations after 2 and 6 h (Fig. 4A), while TRIAC had no effect on CAT-2b at either concentration (Fig. 4A) and CAT-4 was stimulated at 6 h by the high concentration (Fig. 4A). y⁺LAT1 mRNA, y⁺LAT2 mRNA (Fig. 4B) and B₀⁺ system mRNA were only augmented with the higher concentration after 6 h (Fig. 4C). Thus, the effects of TRIAC on the different L-arginine transport systems were similar to those of T₃ after 2 and 6 h.

Effects of T₃, T₄ and TRIAC on eNOS mRNA expression and NO production in HUVECs

Given the key role played by eNOS and NO in cardiovascular and renal functions and their contribution to the cardiac and renal manifestations of thyroid disorders, we studied the effects of T₃, T₄ and TRIAC on eNOS mRNA expression and NO production. Under our experimental conditions, exposure of HUVECs to T₃ produced a concentration-related increase in eNOS mRNA expression after 6 h but did not affect this expression after 2 h (Fig. 5A). However, T₃ incubation increased A23187-stimulated NO generation at both 2 and 6 h with the higher concentration tested (Fig. 5A). In contrast, T₄ produced a concentration-related increase in eNOS mRNA after 2 h but had no effect after 6 h, which correlated with the increased NO generation found at this time (Fig. 5B). As observed for T₃ and the T₃ thyroid hormone analogue, TRIAC increased eNOS mRNA expression with the higher concentration after 6 h,
but increased A23187-stimulated NO production at both times (Fig. 5C).

Pharmacological blockade of αvβ3 integrin with TETRAC suppresses L-arginine transporters, eNOS expression and NO generation in HUVECs

T₄ and T₃ activate the cell-surface receptor for thyroid hormone on a plasma membrane structural protein, integrin αvβ3, which is known to mediate local actions of the hormone on membrane ion pumps and the transport of chemotherapeutic agents and amino acids. We therefore investigated whether this membrane receptor can be used to stimulate the mRNA expression of L-arginine transporters by thyroid hormones, using the integrin αvβ3 thyroid hormone receptor blocker TETRAC. Coincubation of TETRAC with T₃, T₄ or TRIAC suppressed the stimulating effects of these agents on the different L-arginine transporters after 2 and 6 h of incubation (Figs 2, 3, 4). TETRAC also suppressed the stimulating effects of T₃, T₄ and TRIAC on eNOS mRNA expression (Fig. 5A, B and C). NO production stimulated by T₄, T₃ or its analog TRIAC was also suppressed by TETRAC (Fig. 5A, B and C). TETRAC administration did not have significant effect in control conditions (Supplementary Fig. 1, see section on supplementary data given at the end of this article).

Figure 4
Effects of TRIAC on L-arginine transporters. Cultures were incubated for the indicated times in the presence of TRIAC at concentrations of 10 and 100 nM with or without coincubation with TETRAC (100 nM) before RNA extraction and reverse transcription. The methods were the same as for the natural thyroid hormones. mRNA levels of CAT-1, CAT-2a, CAT-2b and CAT-4 (A), y⁺LAT1, and y⁺LAT2 (B) and B₀⁻ (C) after TRIAC exposure. The number of cases was 5–8 for each time and concentration. Data are expressed as means ± s.e.m. *P < 0.05, **P < 0.01 vs control (Ctrl) levels. *P < 0.05, **P < 0.01 vs without TETRAC.
Genetic blockade of αvβ3 integrin suppresses L-arginine uptake, L-arginine transporters upregulation, eNOS mRNA and nitric oxide production induced by T₃ in HUVECs

The above observations were verified by conducting another set of experiments in which HUVECs were treated with control or αv-specific siRNA. At 48 h after transfection with αv-specific siRNA, HUVECs showed a ~90% decrease in αv mRNA and protein with respect to control siRNA-treated cells (Fig. 6A).

αv siRNA suppressed the stimulating effects of 100 nM T₃ on L-arginine uptake (Fig. 6B) and on the different L-arginine transporters (Fig. 6C) as well as on eNOS mRNA (Fig. 6D) and nitric oxide generation (Fig. 6E) after 6 h of incubation. These results are consistent with those obtained by the pharmacological blockade of αvβ3 with TETRAC. The agonist (T₃), concentration (100 nM), and incubation time (6 h) were selected as providing the most effective stimulus in the previous experiments.

PI3K and MAPK inhibitors and chelation of intracellular Ca²⁺ suppress L-arginine transporters upregulation, eNOS mRNA and nitric oxide production stimulated by T₃ in HUVECs

Several thyroid hormone-stimulated membrane transport systems are activated through transduction pathways involving PI3K, MAPK and intracellular calcium. We therefore explored the possible involvement of these intracellular signaling pathways in the stimulatory effects of thyroid hormones on L-arginine transporters. For this purpose, we examined the effect of the PI3K inhibitor, LY-294002 on the stimulating effects of 100 nM T₃ on the different L-arginine transporters after 6 h of incubation. As shown in Fig. 7A, B and C, PI3K inhibition suppressed the mRNA expression of all L-arginine transporters studied. We also explored the role of the MAPK pathway by analyzing the impact of the ERK1/2 inhibitor PD98059, JNK inhibitor SP600125 and p38 MAPK inhibitor SB203580 on the stimulating effects of 100 nM T₃. All three compounds inhibited the stimulating effect of T₃.
on the mRNA expression of all L-arginine transporters analyzed (Fig. 7A, B and C). Seemingly, PI3K and MAPK blockers also inhibited eNOS mRNA (Fig. 7D) and nitric oxide generation (Fig. 7E) stimulated by T3. However, the administration of these inhibitors did not have significant effect in control conditions (Supplementary Fig. 2). BAPTA/AM reduced the expression of all variables analyzed in the presence of T3, but did not have significant effects in control conditions (Fig. 8).

Discussion

The main findings of this study were that thyroid hormones stimulate L-arginine uptake and the mRNA expression of L-arginine transporters in HUVECs and that the thyroid hormone receptor on plasma membrane integrin αvβ3 plays an essential role in these effects. In HUVECs, L-arginine transport is mediated by the CAT isoforms y+/CAT-1 (Sobrevia et al. 1995, Flores et al. 2003), y+/CAT-2b (Casanello & Sobrevia 2002) and systems b0,+ (Bussolati et al. 1993) and γL (Arancibia-Garavilla et al. 2003). All these transport systems except for CAT2b were upregulated by thyroid hormones. In fact, it has been reported that CAT-2b expression is only stimulated under cytokine or lipopolysaccharide treatment (Simmons et al. 1996). In the present study, T3 and its analog TRIAC were the most active hormones in increasing mRNA of L-arginine Na+-independent and -dependent transporters after 6 h. It is likely that 6 h is the optimal period for the full development of intracellular signaling. The effects on the different L-arginine transport systems were similar between TRIAC and T3, in consonance with previous data showing that TRIAC and T3 inhibit leptin secretion.
with similar potency (Medina-Gómez et al. 2004). TRIAC exerts thyromimetic actions on the hypothalamus–pituitary–thyroid axis and on peripheral tissues including brain, heart, bone, liver, kidney, adipose tissue and skin, but its exact physiological role is unknown (Groeneweg et al. 2017). TRIAC binds efficiently to nuclear TRs (Oppenheimer et al. 1973, Smith et al. 1980), with a similar affinity as T3 to TRα1 and a 3- to 6-fold higher affinity than T3 to TRβ1 and TRβ2 (Schueler et al. 1990, Messier & Langlois 2000); and the present data indicate that TRIAC binds to the integrin αvβ3 plasma membrane receptor in endothelial cells, as reported D’Arezzo et al. (2004) in L-6 myoblasts.

Although the more active concentration of T3 (100 nM) is higher than physiological plasma levels (~6-fold), it should be taken into account that T4 is supplied to cells at micromolar range and is transformed into T3 by iodothyronine deiodinases. Thus, it has been reported that deiodinase 1 is present in endothelial cells (Sabatino et al. 2015). Deiodinase 1 transforms T4 into T3, releasing T3 to the plasma, being responsible for the 80% of the plasma levels of T3. This process of release might generate high levels of T3 around the plasma membrane. Moreover, Bergh et al. (2005) reported that cultures incubated with 100 nM total T4 result in 1–0.1 nM free T4, consistent with normal physiological levels. Hence, the data reported here can be considered of physiological relevance, playing a greater role in the hyperthyroid state.

Endothelial synthesis of NO requires the de novo import of extracellular L-arginine, and a correlation was found between NO production and L-arginine transport (Arancibia-Garavilla et al. 2003, Kakoki et al. 2004). The γ-/CATs system is the principal cationic amino acid transport system for regulating the intracellular supply...
of L-arginine for NOS, and \(y^+ \)/CATs activity may be rate limiting for NO synthesis. In addition, human umbilical vein endothelium also requires the activity of the cationic and neutral amino acid transport system \(y^+ \)/L for NO synthesis (Arancibia-Garavilla et al. 2003). After observing that L-arginine uptake and both \(y^+ \)/CAT and \(y^+ \)/L systems were stimulated by thyroid hormone, we investigated the effects of T\(_4\), T\(_3\) and TRIAC on eNOS mRNA expression and NO production, finding that both classic thyroid hormones and TRIAC stimulated eNOS mRNA expression and NO generation in HUVECs. These last results are in agreement with previous reports of the enhancement by T\(_3\) of NO production in vascular myocytes and the expression of all three NOS isoforms (Carroll-Sepulveda et al. 2010) and of the stimulation by T\(_3\) of eNOS activity in endothelial cells (Hiroi et al. 2006). The present study reports for the first time that eNOS mRNA and NO production were also stimulated by TRIAC.

Recently, Flamant et al. (2017) have defined four types of thyroid hormone signaling. The classical genomic actions exerted by binding of T\(_3\) to high-affinity nuclear thyroid hormone receptors (TRs) to regulate gene expression (Brent 1994) is now called type 1 of thyroid hormone action. By this type of signaling, thyroid hormones play important roles in metabolism, growth and cell differentiation (Lazar 1993). When thyroid hormone interacts with TRs and does not require direct interaction with DNA, it is called type 2 or 3 of thyroid hormone action. Thus, T\(_3\) can also bind to cytoplasmic (Vincinanza et al. 2013) and membrane-localized (Kalyanaraman et al. 2014) TRs, which interact with intracellular signaling pathways. Finally, the type 4 way of signaling is when TH acts independently of TRs, binding to other types of proteins. This type of thyroid hormone action can be included to the effects mediated by the binding of TTHH with the plasma membrane integrin \(\alpha \beta \)3 that contains a cell-surface receptor for thyroid hormones. T\(_4\) and T\(_3\) activate this receptor without entering the cell (Bergh et al. 2005). This integrin \(\alpha \beta \)3 receptor mediates a set of short- and long-term effects of thyroid hormone on membrane ion pumps and amino acids and an array of genes modulated by thyroid hormone (Davis et al. 2016). We studied whether this membrane receptor plays a role in increasing L-arginine uptake, the mRNA expression of L-arginine transporters, eNOS mRNA and the production of NO by thyroid hormones. Our results demonstrate that pharmacological blockade of integrin \(\alpha \beta \)3 by TETRAC suppressed the stimulatory effects of natural thyroid hormones and TRIAC on these variables. These observations were further verified by analyzing the effects of the genetic blockade of \(\alpha \) integrin, which confirmed the results obtained by pharmacological blockade of \(\alpha \beta \)3 with TETRAC. All these findings demonstrate the participation of integrin \(\alpha \beta \)3, mainly \(\alpha \) subunit, in these stimulatory effects of thyroid hormones.

We explored the participation of PI3K, MAPK and intracellular calcium in the signaling pathways of the stimulatory effects of thyroid hormones on L-arginine transporters and eNOS mRNA and NO. Results indicate that these intracellular pathways participate in these effects. These findings are consistent with the involvement of PI3K, MAPK and intracellular calcium...
Figure 9
Proposed model for the sequence of events initiated by thyroid hormones in the plasma membrane that modify L-arginine transport in HUVECs. Scheme showing the proposed mechanisms underlying the stimulatory effects of thyroid hormones on sodium-dependent and -independent L-arginine transporters and eNOS in HUVECs. αvβ3 integrin and PI3K, MAPK and intracellular Ca$^{2+}$ signaling are critical steps in these effects of thyroid hormones. The binding of thyroid hormones to integrin αvβ3 activates PI3K, MAPK and intracellular Ca$^{2+}$, which increased mRNA expression of L-arginine transporters, with subsequent L-arginine uptake and NO production. A full color version of this figure is available at https://doi.org/10.1530/JOE-18-0229.

In other effects of thyroid hormones on membrane transport systems in different cells. Thus, Na, K-ATPase and NHE1 ion transporter (D’Arezzo et al. 2004) and amino acid transport system A (Incerpi et al. 2002) were activated via a transduction pathway involving PKC, PI3K, the MAPKS and intracellular calcium (Incerpi et al. 2002, D’Arezzo et al. 2004). In addition, integrin αvβ3 is linked to the activation of MAPKS (Bergh et al. 2005), and TETRAC blocks these hormonal actions, which are downstream from MAPKS (Yalcin et al. 2010). Accordingly, these factors may be sequential steps in the stimulatory effects of thyroid hormones on L-arginine transporters' upregulation. Finally, a schematic outline summarizing the sequence of events initiated by thyroid hormones in the plasma membrane is shown in Fig. 9. The cell-surface hormone signal is initiated at αvβ3 integrin receptor and transduced through stimulation of PI3K, MAPKs (ERK1/2, JNK and p38) and intracellular calcium, culminating in the increased mRNA levels of the L-arginine transporter and of eNOS. Moreover, the present results suggest that the continuous release of thyroid hormones, modulating L-arginine transporter activity, may contribute to the basal endothelial production of NO and vascular tone under physiological conditions; hence, alterations of this mechanism may participate in the cardiovascular abnormalities of thyroid disorders.

In conclusion, this paper shows for the first time that thyroid hormones stimulate L-arginine Na$^{+}$-dependent and -independent transporters and potentiate the NO production induced by calcium ionophore. These effects are blocked by pharmacological αvβ3 integrin inhibition or genetic αv subunit downregulation or by PI3K, MAPK or intracellular calcium signaling inhibitors, indicating the key role of these mechanisms.

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/JOE-18-0229.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This study was supported by a grant (CTS-6704, CTS-251, CTS-164, P12-CTS-2722) from the Junta de Andalucía and from the Carlos III Health Institute of the Spanish Ministry of Health and Consumer Affairs (Red de Investigación Renal, REDinREN 012/0021). ‘FEDER una manera de hacer Europa’.

Acknowledgments
The authors are grateful to R Davies for help with the English version.

References

Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Moussa S & Davis JJ 2005 Integrin αvβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146 2864–2871. (https://doi.org/10.1210/en.2005-0102)

Bogle RG, Coade SB, Moncada S, Pearson JD & Mann GE 1991 Bradykinin and ATP stimulate L-arginine uptake and nitric oxide release in
vascular endothelial cells. Biochemical and Biophysical Research Communications 180 926–932. (https://doi.org/10.1016/0006-291X(80)81154-4)
Klein I 1990 Thyroid hormone and the cardiovascular system. American Journal of Medicine 88 631–637. (https://doi.org/10.1016/S0002-9343(90)90351-1)
Lazar MA 1993 Thyroid hormone receptors: multiple forms, multiple possibilities. Endocrine Reviews 14 184–193. (https://doi.org/10.1210/edrv-14-2-184)
McDonald KK, Zharidov S, Block ER & Kilberg MS 1997 AcaVear complex between the cationic amino acid transporter 1 and endothelial nitric oxide synthase may explain the ‘arginine paradox’. Journal of Biological Chemistry 272 31213–31216. (https://doi.org/10.1074/jbc.272.50.31213)
Messier N & Langlois MF 2000 T3Icar regulation of transcription is T3(T3) receptor isoform- and response element-specific. Molecular and Cellular Endocrinology 165 57–66. (https://doi.org/10.1016/S0303-7207(00)00266-5)
Moreno JM, Rodriguez-Gómez I, Wangensteen R, Osuna A, Bueno P & Vargas F 2005 Cardiac and renal antioxidant enzymes and effects

Sabatino I, Lubrano V, Balzan S, Kusmi C, Del Turco S, & Iervasi G 2015 Thyroid hormone deiodinases D1, D2, and D3 are expressed in human endothelial dermal microvascular line: effects of thyroid hormones. Molecular and Cellular Biochemistry 399 87–94. (https://doi. 10.org/10.1007/s11010-014-2235-8)

Simmons WW, Closs EI, Cunningham JM, Smith TW & Kelly RA 1996 Cytokines and insulin induce cationic amino acid transporter (CAT) expression in cardiac myocytes. Regulation of L-arginine transport and NO production by CAT-1, CAT-2A, and CAT-2B. Journal of Biological Chemistry 271 11694–11702. (https://doi.org/10.1074/jbc.271.20.11694)

Smith HC, Robinson SE & Eastman CJ 1980 Binding of endogenous iodothyronines to isolated liver cell nuclei. Endocrinology 106 1133–1136. (https://doi.org/10.1210/endo-106-4-1133)

Weyrich AS, Ma X & Lefer AM 1992 The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation 86 279–288. (https://doi.org/10.1161/01.CIR.86.1.279)

Received in final form 4 July 2018
Accepted 17 July 2018
Accepted Preprint published online 18 July 2018