RESEARCH

Dapagliflozin restores insulin and growth hormone secretion in obese mice

Zhengxiang Huang1,*, Lili Huang1,*, Chengjian Wang1, Shanli Zhu1, Xinzhou Qi1, Yang Chen1, Yanjun Zhang2, Michael A Cowley3, Johannes D Veldhuis4 and Chen Chen1

1School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
2School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Brisbane, Australia
3Department of Physiology, Monash University, Melbourne, Australia
4Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, Minnesota, USA

Correspondence should be addressed to C Chen: chen.chen@uq.edu.au
*(Z Huang and L Huang contributed equally to this work)

Abstract

The well-documented hormonal disturbance in a general obese population is characterised by an increase in insulin secretion and a decrease in growth hormone (GH) secretion. Such hormonal disturbance promotes an increase in fat mass, which deteriorates obesity and accelerates the development of insulin resistance and type 2 diabetes. While the pathological consequence is alarming, the pharmaceutical approach attempting to correct such hormonal disturbance remains limited. By applying an emerging anti-diabetic drug, the sodium-glucose cotransporter 2 inhibitor, dapagliflozin (1 mg/kg/day for 10 weeks), to a hyperphagic obese mouse model, we observed a significant improvement in insulin and GH secretion as early as 4 weeks after the initiation of the treatment. Restoration of pathological disturbance of insulin and GH secretion reduced fat accumulation and preserved lean body mass in the obese animal model. Such phenotypic improvement followed with concurrent improvements in glucose and lipid metabolism, insulin sensitivity, as well as the expression of metabolic genes that were regulated by insulin and GH. In conclusion, 10 weeks of treatment with dapagliflozin effectively reduces hyperinsulinemia and restores pulsatile GH secretion in the hyperphagic obese mice with considerable improvement in lipid and glucose metabolism. Promising outcomes from this study may provide insights into drug intervention to correct hormonal disturbance in obesity to delay the diabetes progression.

Key Words
- SGLT2 inhibitor
- growth hormone
- hyperinsulinemia
- obesity

Introduction

Hormonal disturbance, in either secretion amount or function, often occurs in parallel with impairment of glucose/lipid/protein metabolism in obesity. Two pivotal hormones, insulin and growth hormone (GH), which synergistically promote protein anabolism whereas exhibit antagonistic effect on lipid and glucose metabolism, play pivotal roles in the development of obesity (Berryman et al. 2013, Templeman et al. 2017). Insulin is secreted from pancreatic beta cells to promote glucose uptake and utilisation as well as lipogenesis (Templeman et al. 2017).
Excessive insulin secretion (hyperinsulinemia), as often seen in overeating and obesity, leads to desensitisation of insulin receptor and its downstream signalling (Shanik et al. 2008), adipose tissue inflammation (Pedersen et al. 2015), ectopic lipid accumulation in liver and muscle (Morita et al. 2017), and the development of insulin resistance (Samuel & Shulman 2016). Opposite to insulin, GH exhibits a catabolic effect on lipid metabolism by favouring lipolysis and lipid oxidation (Chia 2014). Secreted from somatotrophs within the anterior pituitary gland, GH displays a pulsatile secretion pattern, with low plasma concentration at baseline and large peaks in rhythmic intervals in all mammalians (Tannenbaum et al. 1976, Winer et al. 1990). This specific secretion pattern is crucial for its effect on lipid metabolism as only pulsatile GH augments the rate of lipolysis in obese humans (Surya et al. 2009). Dynamic analysis revealed a reduction of both GH secretion rate and burst frequency in obese individuals in proportion to the severity of obesity (Veldhuis et al. 1991). Such impairment of GH secretion further impairs fat utilisation.

Therefore, the hormonal disturbance (high insulin and low GH) in obese individuals concurrently drives fuel metabolism towards fat accumulation, which aggravates morbid obesity and may further accelerate insulin resistance and the development of type 2 diabetes (T2D). Restoration of physiological levels of insulin and GH in obesity is of particular importance to maintain healthy body composition and insulin sensitivity, as well as lipid and glucose metabolism.

Sodium-glucose cotransporter 2 inhibitor (SGLT2i) is a new class of drug for overt T2D patients in the clinic, which lowers blood glucose levels by promoting urinary glucose excretion. However, SGLT2i has still not been used for obese patients without T2D in the clinic. Part of the reason is that the general prerequisite for prescription of SGLT2i is hyperglycaemia, whereas the blood glucose level is only slightly elevated in obese individuals due to the compensation of insulin hypersecretion. However, hyperinsulinaemia in obesity leads to on-going hormonal and metabolic disturbances (Miller & Chapman 2001). Although SGLT2i has been well documented in the improvement of insulin sensitivity in overt T2D patients (Merovci et al. 2016) and obese animals (Nakano et al. 2015, Benetti et al. 2016, Obata et al. 2016, Ji et al. 2017, Xu et al. 2017), its effect on obesity-related hormonal disturbances, in particular, on pulsatile GH secretion remains undefined. Addressing such a knowledge gap is essential to elucidate some of the untangled observations in previous studies. For example, preserved lean mass following SGLT2i treatment (Obata et al. 2016, Morino et al. 2018) cannot be explained by a reduction of insulin levels but may be rationalised by the protein-preserving effect of GH. Furthermore, a close evaluation of insulin and GH in obesity may further provide mechanistic insights into potential anti-obesity targets in the modulation of metabolism and body composition. Therefore, the main aim of this study is to determine the effects of dapagliflozin, one type of SGLT2i, on two dominant metabolic-regulating hormones (insulin and GH) with the corresponding glucose/lipid/protein metabolism in hyperphagic obese melanocortin 4 receptor-knockout (MC4RKO) mice.

Materials and methods

Animal

Both MC4RKO and WT mice on C57BL6/J background were obtained from heterozygous breeding pairs and genotyped using established MC4R primer pairs (Tan et al. 2016). Mice were housed under a 12-h light/12-h dark cycle in 22 ± 2°C and 35 ± 4% humidity environment at the animal facility of the Institute for Bioengineering and Nanotechnology, the University of Queensland. Mice had free access to chow diet (Specialty Feeds, Glen Forrest, WA, Australia) and water. All experiments and procedures were approved by the Animal Ethics Committee of the University of Queensland.

Experiment design

To study the chronic effect, 10-week-old MC4RKO mice (both genders) were treated with dapagliflozin (AstraZeneca, Göteborg, Sweden) dissolved in drinking water (1 mg/kg/day) for 10 weeks. Age-matched WT and MC4RKO mice with normal drinking water were used as controls. Body weight was measured weekly. Serial blood collection for GH measurement, glucose tolerance test and insulin tolerance test and indirect calorimeter recording were performed at 4, 6, 8 weeks following the initiation of the treatment, respectively. Twenty-four-hour urine samples were individually collected via a metabolic cage. At the end of the treatment, mice were killed following an intraperitoneal injection of sodium pentobarbital (32.5 mg/mL) under fed state. Terminal blood was collected by cardiac puncture and plasma was separated by centrifugation. Tissues were either snap-frozen for gene expression measurement or fixed in 4% paraformaldehyde.
for immunohistochemistry staining. To study insulin sensitivity, mice receiving 2-week treatment were fasted for 6 h and intraperitoneally injected with insulin (2 U/kg, Insulin solution human, Sigma). Five minutes later, mice were killed, and tissues were collected for insulin-stimulated Akt phosphorylation measurement.

Indirect calorimetric assays

Mice were individually housed in the recording chambers of TSE PhenoMaster (TSE Systems, Germany) with free access to food and water for 3 days. Food intake, water intake and locomotor activity were measured in the whole recording period; respiratory exchange ratio (RER) and oxygen consumption were measured hourly. Body fat mass and lean mass were determined by a NMR device (Bruker, USA).

Glucose tolerance test (GTT) and insulin tolerance test (ITT)

Mice were fasted for 14 h and 4 h before GTT and ITT, respectively. During the experiments, blood glucose levels were measured before (time point 0) oral gavage of glucose (2 g/kg) for GTT or intraperitoneal injection of human insulin (0.3 U/kg, Insulin solution human, Sigma) for ITT. The blood glucose levels were measured by a Glucose Ketone metre (Nova Stat Strip Xpress Glucose Hospital Meter, Nova Biomedical, UK) at specific time points after oral gavage or injection.

Serial blood collection for GH measurement

Blood samples were collected for pulsatile GH secretion profile measurement according to the established method (Steyn et al. 2011). Briefly, all mice were trained for 4 weeks before the experiment. The procedure began at 7:30 h and ended at 13:30 h. During the procedure, 2 µL of whole blood was collected from the tail tip of each mouse in a 10-min interval. For each sample, 2 µL of whole blood was added into 58 µL 0.01 M PBS supplemented with 0.05% Tween 20. Samples were mixed by vortex, snap-frozen by dry ice and stored at −80°C for measurement of GH by an in-house GH ELISA (Steyn et al. 2011). Due to the influence of the oestrous cycle on the female mice, GH measurement was performed only in male mice.

Hormones and metabolites measurement

Glucagon and resistin levels in the terminal plasma were measured by the Mouse Metabolic Hormone Magnetic Bead Panel (Millipore). Plasma insulin level was measured by Rat/Mouse Insulin ELISA Kit (Millipore). Plasma FFA and ketone body levels were measured by NEFA C kit (Wako) and Glucose Ketone Meter, respectively. The triglyceride content in liver and muscle was measured as described previously (Mosa et al. 2017b). The glucose concentration of the urine sample was determined by Glucose Colorimetric Assay Kit (Cayman Chemical). The homeostasis model assessment of insulin resistance (HOMA-IR) was calculated by the equation: HOMA-IR=fasting blood glucose (mmol/L)×fasting plasma insulin (mU/L)/22.5.

Pancreas immunohistochemistry

According to the established methods (Mosa et al. 2017a), sections of paraffin-embedded fixed pancreas (7 µm) were incubated with a mixture of primary antibodies, including mouse anti-insulin (Merck) and rabbit anti-glucagon (Thermo Fisher Scientific) overnight, and then incubated with Alexa Fluor® 488-conjugated and 555-conjugated secondary antibodies (Life Technology). Cell nuclei was stained by Hoechst 33342 (Thermo Fisher). Stained slides were scanned by Nikon Upright Stereology and Slide Scanning Microscope (Nikon), and morphometric measurement was performed using Imaris Image Analysis Software. The mass of alpha or beta cells was calculated by multiplying the percentage of glucagon or insulin-positive area in each section and the weight of the pancreas. In one animal, three non-consecutive pancreas sections and 20–40 islets were measured. All parameters of the microscope and settings were kept constant throughout the whole experiment.

Gene expression measurement

The total RNA from the liver, muscle, inguinal and epididymal adipose tissues was extracted and purified by PureLink RNA Mini Kit (Thermo Fisher Scientific). 1 µg RNA was synthesised into cDNA by iScript™ RT Supermix for RT-qPCR (Bio-Rad). For quantitative PCR (qPCR), cDNA was amplified using SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad) and quantified by QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher Scientific). Primer pairs were shown in Supplementary data (Supplementary Table 1, see section on supplementary materials given at the end of this article). The fold change of target gene expression compared to the housekeeping gene (beta-actin) was achieved by the 2−ΔΔCT method.
Western blot

Mouse livers were homogenised in buffer containing Protease Inhibitor Cocktail (5892953001, Roche) and phosphatase inhibitor (1 mM Na$_3$VO$_4$, 30 mM NaF, 10 mM Na$_2$P$_2$O$_7$), heat-denatured, separated in 8% SDS-PAGE, and incubated with the following primary antibodies: anti-pSTAT5 (Tyr694, #9351, Cell Signalling Technology), anti-STAT5 (#94205, Cell Signalling Technology), anti-pAkt (Ser473, #4060, Cell Signalling Technology), anti-Akt (#4685, Cell Signalling Technology), and anti-alpha-tubulin (ab4074, Abcam). Immunoblots were detected by Odyssey LI-COR CLx Imaging System and quantified using NIH ImageJ software.

Statistics

Statistical analysis was performed using GraphPad Prism 7 software (excluding deconvolution analysis and analysis of covariance (ANCOVA) for energy expenditure). All results were presented as the mean±s.e.m. One-way ANOVA and Student's t-test were used for comparisons among groups. A P value less than 0.05 was considered significant. The quantitative parameters of GH secretion and clearance associated with observed GH concentration profiles were determined by deconvolution analysis following established parameters (Steyn et al. 2011). Energy expenditure was analysed by ANCOVA following an established method (Speakman et al. 2013) in the MC4RKO mice with or without drug intervention. We excluded wild-type mice in ANCOVA analysis as the genotypic effect was not the observation target. Exclusion criteria also applied to wild-type mice due to the significant body weight and lean mass difference compared to MC4RKO mice as detailed in discussion.

Results

Dapagliflozin promotes urinary glucose excretion and improves glucose tolerance in MC4RKO mice

Reminiscent of glucose homeostasis in human obesity, MC4RKO mice had slightly increased fasting (4.59±0.24 vs 3.89±0.15 mmol/L) and random blood glucose (8.00±0.64 vs 6.72±0.21 mmol/L) (Fig. 1A), as well as slightly impaired glucose tolerance (Fig. 1C and D), compared to WT mice. Dapagliflozin treatment significantly increased daily urinary glucose excretion (Fig. 1B) and water intake (Supplementary Fig. 1A), normalised random blood glucose level (Fig. 1A) and improved glucose tolerance (Fig. 1C and D) in MC4RKO mice.

Dapagliflozin corrects the disturbed insulin and GH levels in MC4RKO mice

Generally, fasting insulin reflects basal insulin secretion, while fed insulin reflects beta cell function. Therefore, we measured plasma insulin level in both fasting and fed conditions. Pulsatile GH secretion changes significantly upon physiological challenges such as fasting (Ho et al. 1988, Steyn et al. 2012). To better clarify the effect of SGLT2i without physiological disturbance, we measured the GH secretion profile under fed conditions. MC4RKO mice had a 4-fold increase in fasting and a 20-fold increase in fed insulin levels than those in WT mice. Dapagliflozin treatment reduced approximately 70% of both fasting and fed insulin levels in MC4RKO mice (Fig. 2A and B). The pulsatile and basal GH secretion was suppressed in MC4RKO mice (Fig. 2C, D, E, F and G), reflecting an impairment of GH secretion similar to the diet-induced obese mice that we previously reported (Huang et al. 2012). Following 4 weeks of dapagliflozin treatment, the amount of pulsatile GH secretion (Fig. 2E and F) in MC4RKO mice was increased by around three-fold of untreated levels with an increasing trend in basal GH secretion (Fig. 2G). The number of secretory
bursts per 6 h among WT, MC4RKO and dapagliflozin treatment group remained unchanged (Fig. 2H). STATS phosphorylation and insulin-like growth factor 1 (IGF-1) are often used as biomarkers for the downstream signalling of the GH receptor in the liver. Fully restored IGF-1 gene expression and STAT5 phosphorylation in the liver of MC4RKO mice treated by dapagliflozin (Fig. 2I and J) confirmed the effect of restored pulsatile GH secretion. Muscle Igf1 expression in MC4RKO was also fully restored by dapagliflozin (Supplementary Fig. 2C), although plasma IGF-1 levels remain comparable among all groups (Supplementary Fig. 3C).

Dapagliflozin prevents beta cell overgrowth and improves insulin sensitivity in MC4RKO mice

To further address the plausible explanation for reduced hyperinsulinaemia, we assessed islet morphology and whole-body insulin sensitivity. MC4RKO mice had a 4-fold increase in beta cell mass and a 3-fold increase in the ratio of beta/alpha cell mass compared to that in WT mice. Dapagliflozin treatment reduced both parameters by approximately 60 and 40%, respectively (Fig. 3A, B and D). Dapagliflozin treatment did not change alpha cell mass or plasma glucagon level (Fig. 3C and Supplementary Fig. 3B). Impaired insulin sensitivity in MC4RKO mice was significantly improved following dapagliflozin treatment, as demonstrated by ITT (Fig. 3E and Supplementary Fig. 1E) and HOMA-IR (Fig. 3F). At the cellular level, insulin-stimulated Akt phosphorylation in both white adipose tissue (WAT) and liver was significantly increased within 2 weeks of dapagliflozin treatment (Fig. 3G and H).

Dapagliflozin promotes negative energy balance, reduces fat mass and increases lipid oxidation in MC4RKO mice

To determine the phenotypic changes following the dapagliflozin treatment, body composition and indirect calorimeter were measured in these mice. With a deficit in satiety signalling (Hušar et al. 1997), MC4RKO mice had significantly increased food intake compared to WT mice, and this was not affected by the dapagliflozin treatment (Fig. 4A). Compare to WT mice, the body weight gain of MC4RKO mice was significantly greater and was attenuated by the dapagliflozin treatment (Fig. 4B and C). NMR measurement showed that MC4RKO mice had an approximately 4-fold increase in fat mass and a 30% increase in lean mass compared to WT mice (Fig. 4D and E). Dapagliflozin treatment reduced around 50% of fat mass in MC4RKO mice without changing lean mass (Fig. 4D and E). The decreased weight of different adipose depots (Supplementary Fig. 1B) further confirmed the reduction of fat mass following dapagliflozin treatment. Since increased ectopic lipid accumulation is associated with insulin resistance (Boren et al. 2013), the triglyceride content was assessed in both liver and muscle.
Dapagliflozin restores GH in obese mice

Z Huang, L Huang et al.

In MC4RKO mice, ectopic lipid accumulation increased in both liver and muscle, which was ameliorated by dapagliflozin treatment (Fig. 4F and G). Results from indirect calorimeter showed that MC4RKO mice had elevated respiratory exchange ratio (RER) in both light and dark phase, reflecting a dominant utilisation of carbohydrates over fats. The RER was reduced by dapagliflozin treatment (Fig. 4H and I). Together with an increase in plasma level of ketone body (Supplementary Fig. 3D), results suggested that dapagliflozin drove fuel utilisation towards fat. The decreased locomotor activity in MC4RKO mice was not changed by dapagliflozin treatment (Supplementary Fig. 1C and D). To determine whether changes in energy expenditure following dapagliflozin treatment in MC4RKO cohorts is a pure effect from the drug, we analysed the data with ANCOVA using lean mass as a covariate. There was a significant treatment effect (F = 19.379, P = 0.002) without a significant covariate effect (F = 0.187, P = 0.677) nor interaction effect (F = 0.096, P = 0.766). These results indicated that reduced energy expenditure of MC4RKO mice in the dapagliflozin treatment group was largely due to the drug effect with little impact from lean mass change (Fig. 4J and K).

Dapagliflozin increases expression of genes involved in lipid oxidation, lipolysis, WAT browning, and decreases expression of genes involved in inflammation

Obesity is often accompanied by the disturbance of gene expression involved in lipid metabolism and inflammation. To determine the effect of dapagliflozin at the molecular level, we analysed relevant genes in liver (Fig. 5A), s.c. WAT (Fig. 5B) and visceral WAT (Fig. 5C). MC4RKO mice had decreased expression of genes involved in lipid oxidation in the liver (Pparα and Cpt1a) and lipolysis in WAT (Hsl), and dapagliflozin treatment corrected those alterations (Fig. 5A, B and C). The lipogenic gene expression levels were increased in the liver (Srebf1) and decreased in visceral WAT (Fasn and Pparγ) of MC4RKO mice, and dapagliflozin treatment partially normalised those alterations (Fig. 5A and Supplementary Fig. 2A, B). Dapagliflozin treatment increased the expression level of WAT browning markers (Ppary, Pgc1α, Cidea, Eva1 and Tmem26) in MC4RKO mice although there was no change in Ucp1 expression level (Fig. 5B). The dissociation between the control of Ucp1 and that of Pgc1α may be attributed to an impairment of
Figure 4
Dapagliflozin promotes negative energy balance, reduces fat mass and increases lipid oxidation in MC4RKO mice (A), daily food intake. (B) Body weight gain through the experiment. (C, D and E) At the terminal of the experiment, total body weight (C), fat mass (D) and lean mass (E) were measured. (F and G) Triglyceride content in liver (F) and muscle (G). (H and J) Respiratory exchange ratio (RER) (H) and oxygen consumption (J) were measured during dark phase (18:00 h to 6:00 h next day) marked by shaded area and light phase (6:00 h to 18:00 h) in half-hour intervals. (I) The average RER in both light and dark phase. Scatter plots from ANCOVA showing raw oxygen consumption values plotted against lean body mass of MC4RKO and MC4RKO + SGLT2i mice. Data were presented as means ± s.e.m., n = 6–8 each group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs WT group; #P < 0.05, ##P < 0.01, ###P < 0.001, ####P < 0.0001 vs MC4RKO group.

Figure 5
Dapagliflozin increases expression of genes involved in lipid oxidation, lipolysis, WAT browning, and decreases expression of genes involved in inflammation. (A, B and C) Gene expression fold change was measured by qPCR, in liver (A), subcutaneous (B) and visceral (C) white adipose tissue (WAT). Data were presented as means ± s.e.m., n = 6–8 each group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
β-adrenergic pathway in MC4R KO mice as melanocortin system modulates sympathetic outflow (Silva et al. 2014) and lack of β-adrenergic pathway dissociates the control of Ucp1 from that of Pgc1α in cultured β-less mouse brown adipocytes (Leht et al. 2006). In addition, the increased inflammation markers (Tnfa and Ccl2) in both liver and WAT in MC4RKO mice were reduced by dapagliflozin treatment (Fig. 5A and C) with a concurrent reduction of circulation inflammation marker resistin (Supplementary Fig. 3A).

Discussion

A precise balance between insulin and GH not only regulates glucose/lipid/protein metabolism in a homeostatic state but also plays an essential role in maintaining normal body composition. This study sought to define the metabolic effects of SGLT2i in hyperphagic obese mice and focus on the dominant endocrine elements: insulin and GH. Although there are a few studies investigating the effect of SGLT2i in obese animal models (Nakano et al. 2015, Benetti et al. 2016, Obata et al. 2016, Ji et al. 2017, Xu et al. 2017), none of them has reported the dynamic changes of GH following the treatment. Missing this key endocrine element may underestimate the pivotal effect of GH and its interaction with insulin on glucose/lipid/protein metabolism. In this study, we showed that dapagliflozin reduced hyperinsulinaemia and restored pulsatile GH secretion in obese MC4RKO mice. The substrate metabolism switched from carbohydrates to fats following the restoration of insulin and GH secretion. These changes led to decreased fat mass, improved insulin sensitivity and glucose tolerance, as well as preserved lean mass and delayed T2D progression. Changes of insulin, GH and substrate metabolism upon SGLT2i treatment in obese MC4RKO mice are reminiscent of fasting conditions in humans (Ho et al. 1988), indicating a physiological benefit (Patterson et al. 2015) from a pharmaceutical intervention in obesity.

The mechanisms of SGLT2i in regulating insulin secretion in T2D is mainly due to the removal of excess glucose in the blood and reducing the secretion pressure on beta cells (Kaneto et al. 2017). In our study, the slightly elevated random blood glucose level of MC4RKO mice was normalised following dapagliflozin treatment with a concomitant reduction in beta cell mass (Fig. 3). Decreased beta cell mass led to the reduction of hyperinsulinaemia, which improves whole-body insulin sensitivity (Shanik et al. 2008, Ning et al. 2011, Pedersen et al. 2015), and vice versa. Unlike previous studies on overt T2D animal models that show an increase in beta cell mass after SGLT2i treatment (Kimura et al. 2018), our results showed a decrease in beta cell mass in the treated mice. This contradictory results may be due to the different exposure durations of beta cells to glucotoxicity and lipotoxicity, with beta cells undergoing hyperplasia and hypertrophy (compensation) in obesity (Cerf 2013) whereas experiencing apoptosis (decompensation) in overt diabetes (Wajchenberg 2007).

Although it is well documented that dapagliflozin treatment raises plasma glucagon levels in most human and rodent study (Ferrannini et al. 2014, Merovci et al. 2014, Bonner et al. 2015, Timper et al. 2016, Millar et al. 2017, Saponaro et al. 2019), we did not observe changes in either circulating levels of glucagon or pancreatic glucagon positive cells following dapagliflozin treatment in MC4RKO mice. Such deviation may result from the loss of MC4R signalling as a recent study in MC4R-deficient mice demonstrates that MC4R is required for stimulation of glucagon release in response to hypoglycaemia or glucopenia (Tooke et al. 2019). Interestingly, the expression levels of genes involved in gluconeogenesis (Fig. 5A) were upregulated following dapagliflozin treatment. Such changes may be less a matter of glucagon's effect but more likely to be a consequence of reduced hyperinsulinaemia or increased GH.

In terms of changes in GH, the mechanisms underlying reduced GH secretion in obesity are not fully understood but may involve perturbations in GH-releasing hormone (GHRH) and somatostatin tone, as well as increased feedback inhibition by FFA and insulin (Maccario et al. 2000). It is known that hyperinsulinaemia inhibits GH secretion from pituitary gland via insulin receptor both in vivo and in vitro, regardless of systemic insulin resistance (Luque & Kineman 2006, Gahe et al. 2013). Therefore, restored pulsatile GH secretion after dapagliflozin treatment is likely to be a consequence of the reduced circulating insulin level. Detailed analysis of GH patterning further demonstrated that dapagliflozin treatment increased the amount of pulsatile GH secretion but did not change the pulse frequency (Fig. 2), indicating a restoration of the deficit in GH release without affecting the hypothalamic pulse generation by dapagliflozin. Although the direct effects of dapagliflozin on pituitary cells or GH regulatory neurons should also be considered, no Sglt2 mRNA expression was detected in mouse pituitary gland; neither in arcuate and periventricular nuclei of the hypothalamus, where GHRH/somatostatin neuron are located (Supplementary Fig. 2D and E). Thus, it is unlikely that SGLT2 has a direct effect on pituitary cells or hypothalamic...
GHRH/somatostatin neurons. The null effect of dapagliflozin on GHRH/somatostatin neurons is further supported by the unaltered GH secretion pattern following treatment.

The restoration of insulin and GH levels may play a vital role in the metabolic effects of SGLT2i in obesity. Hyperinsulinaemia causes increased lipid synthesis and inflammation in WAT, liver and muscle (Xu et al. 2003, Shanik et al. 2008, Pedersen et al. 2015, Samuel & Shulman 2016, Morita et al. 2017). Amelioration of hyperinsulinaemia reduces lipid accumulation and improves insulin sensitivity by decreasing the expression level of genes regulating lipogenesis (Ning et al. 2011, D'Souza A et al. 2016) and inflammation (Mehran et al. 2012, Pedersen et al. 2015) in vivo. In consensus with previous studies of SGLT2i in obese animal models (Nakano et al. 2015, Benetti et al. 2016, Ji et al. 2017, Xu et al. 2017), SGLT2i in this report reduced lipid content and inflammation in WAT, liver and muscle (Fig. 4F and G). These changes led to improved insulin sensitivity as measured by ITT, HOMA-IR and insulin-stimulated Akt phosphorylation (Fig. 3). GH, on the other hand, induces lipolysis in WAT and lipid oxidation in the liver (Chia 2014). Low GH secretion (Luque et al. 2011) or GH receptor knockout (Cordoba-Chacon et al. 2018) leads to fat accumulation in mouse models. By contrast, GH injection in obese mouse results in a reduction of fat body mass (List et al. 2009). These pieces of evidence support a catabolic effect of GH on fat metabolism. It should be noted that exogenous GH injection may cause insulin resistance (Berryman et al. 2013) due to GH-induced increase in blood glucose and FFA flux. GH injection also causes desensitisation of GH receptor signalling pathways (Ji et al. 2002). Besides, exogenous GH injection does not mimic physiological pulsatile GH secretion pattern, which may exert distinct metabolic effects. In line with the previous study in mice (Obata et al. 2016), our study showed that dapagliflozin treatment increased lipolysis in WAT and lipid oxidation in the liver of MC4RKO mice. More importantly, dapagliflozin treatment restored physiological pulsatile GH secretion without changing long-term plasma FFA level (Supplementary Fig. 3E). Therefore, both insulin sensitivity and GH receptor signalling were improved by dapagliflozin treatment in obese MC4RKO mice. No change in circulating total IGf-1 was observed in the SGLT2i treatment group (Supplementary Fig. 3C), which is consistent with obese people in general (Nam et al. 1997, Lewitt et al. 2014).

However, increased Igf1 mRNA expression was observed in muscle following the recovery of pulsatile GH (Supplementary Fig. 2C) and may exert protein preservation effects on lean mass through autocrine/paracrine manner (Philippou et al. 2007). It is worth to point out that discrete components of the GH secretory pattern may differentially affect IGF-I generation. For example, pulsatile GH is more effective than continuous GH infusion in increasing IGF-I mRNA levels in skeletal muscle in rodents (Isgaard et al. 1988). This may explain increased levels of Igf1 mRNA expression in muscle in our study as we show an increase in pulsatile GH secretion following dapagliflozin treatment.

Studies show controversial results in energy metabolism changed by SGLT2i, especially in energy expenditure. A recent review suggests that the energy loss caused by SGLT2 inhibition may trigger compensatory hyperphagia in both human and rodents in most circumstances (Rajeev et al. 2016). Although MC4RKO mice with dapagliflozin treatment showed no change in food intake compared to the vehicle group, they had reduced body weight. This indicates an unparalleled change between body weight loss and the anticipated reduction in food intake. Therefore, compensatory hyperphagia may exist in dapagliflozin treated MC4RKO mice. Different to food intake, various changes in energy expenditure are found in previous animal studies, with increase (Naznin et al. 2017, Xu et al. 2017), decrease (Chiba et al. 2016, Kern et al. 2016) or no change (Devenny et al. 2012, Yokono et al. 2014) reported after SGLT2i treatments. The controversial results are possibly caused by differences in experimental designs as some studies used pair-fed animals (Devenny et al. 2012, Xu et al. 2017) while others used ad libitum feeding (Yokono et al. 2014, Chiba et al. 2016, Kern et al. 2016, Naznin et al. 2017). Alternatively, the method used to normalise and interpret the energy expenditure data may contribute to the different outcomes. According to a recent review (Kleinert et al. 2018), most approaches previously used to interpret energy expenditure are based on a direct comparison of uncorrected energy expenditure per individual or with correction by body weight. None of them takes body composition into account. This may cause misinterpretation of the data, given that energy expenditure is dependent on both lean (muscle) and fat (brown adipose tissue) body mass (Kleinert et al. 2018). Therefore, analysis of covariance (ANCOVA), which uses body weight and body composition as covariates, is more appropriate to analyse energy expenditure (Kleinert et al. 2018). To use ANCOVA, the data set should meet two assumptions: (1) independence of the covariate and treatment effect and (2) homogeneity of regression slopes (Miller & Chapman 2001). By pre-analysing body weight, fat mass and lean mass as the covariate respectively,
we confirmed that lean mass was independent of the treatment (assumption 1). We also confirmed that the slopes of linear trend lines for the two groups were similar (Fig. 4K) (assumption 2). By meeting with both criterion of ANCOVA, our analysis showed that dapagliflozin treatment reduced energy expenditure in MC4RKO mice. Since food intake was not changed by dapagliflozin in our study, reduced energy expenditure was more likely due to an alternative compensatory mechanism to combat negative energy balance caused by dapagliflozin. However, with a significant reduction of body weight in the long term, the net metabolic effect of dapagliflozin remained going towards negative energy balance.

In humans, the MC4R gene mutation is the most frequent single-gene cause of obesity, presenting in 6% of severe childhood obesity patients (Yeo et al. 1998, Farooqi et al. 2003). Dapagliflozin effectively restored insulin and GH secretion, as well as lipid/glucose metabolisms in obese MC4RKO mice, providing significant clinical relevance of such drug in treating obese patients with MC4R gene mutation. Whether SGLT2i has similar effects on general obese patients await further confirmation.

Although the outcomes of this study are promising, there remain a few limitations. For example, the detailed mechanisms by which dapagliflozin regulates GH secretion were not fully explored. Further studies on primary cultured somatrophs or hypothalamus slices are encouraged. In addition, the current study focuses on the balance of insulin and GH without distinguishing the sole effect of insulin or GH on lipid/glucose metabolism. Although the STAS phosphorylation and local Igf1 expression do provide strong evidence for the direct effects of GH, further study using GH receptor blocker in MC4RKO mice or using transgenic mice with deficient GH receptor signalling may help to isolate the GH’s role in glucose/lipid/protein metabolism following deficient GH receptor signalling may help to isolate the GH’s role in glucose/lipid/protein metabolism following the

SGLT2i treatment.

In conclusion, this study provides evidence to support the promising effect of SGLT2i, dapagliflozin, in the restoration of pathological levels of insulin and GH in obese MC4RKO mice. This may lead to the beneficial effects in shifting substrate utilisation from glucose to lipid, reducing fat mass and improving insulin sensitivity. This study sheds lights on the potential application of SGLT2i in obese patients.

Supplementary materials

This is linked to the online version of the paper at https://doi.org/10.1530/JOE-19-0385.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by the National Health and Medical Research Council grant (APP1113494, 2016-2020) and The University of Queensland.

Author contribution statement

Z H, L H and C C designed the experiments. Z H, L H, C W, S Z, X Q and Y C conducted the experiments and collected the data. Z H, L H, J D V and Y Z performed data analysis. Z H, L H and C C wrote the manuscript. M C provided MC4RKO mice and valuable advice for the experiment design.

Acknowledgements

The authors thank AstraZeneca for providing dapagliflozin for this study. Zhengxiang Huang is a recipient of China Scholarship Council PhD scholarship and UQ International PhD scholarship.

References

Devenny JJ, Godonis HE, Harvey SJ, Rooney S, Cullen MJ & Pelleymouner MA 2012 Weight loss induced by chronic dapagliflozin...

Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y & Roth J 2008 Insulin resistance and hyperinsulinaemia is hyperinsulinemia the cart or the horse? *Diabetes Care* 31 (Supplement 2) S262–S268. (https://doi.org/10.2337/dc08-S264)

Received in final form 17 December 2019
Accepted 21 January 2020
Accepted Manuscript published online 24 January 2020

© 2020 Society for Endocrinology
Published by Bioscientifica Ltd.
Printed in Great Britain