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Abstract
Thekisspeptins are a familyof peptidehormones,which in recent

years have been shown to play a critical role in the regulation of

the hypothalamic–pituitary–gonadal axis, thus in turn influen-

cing fertility and reproduction. This review examines the

physiological role of kisspeptin and the kisspeptin receptor in
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the control of gonadotrophin and gonadal steroid hormone

secretion and the implications of these findings with respect to

fertility. In addition, the potential therapeutic use of kisspeptin in

the treatment of reproductive disorders will be examined.
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Introduction

Infertility affects up to one in six couples in the United

Kingdom (Human Fertilisation and Embryology Authority

2009, http://www.hfea.gov.uk/infertility-facts.html#1248).

The currently available hormone-based treatments for inferti-

lity act through the manipulation of the hypothalamic–

pituitary–gonadal (HPG) axis at the level of GnRH or below.

Although effective, these treatments also have a significant

failure rate as well as an associated morbidity. The discovery of

kisspeptin in 1996 and the subsequent identification of the

kisspeptin receptor (previously known as G-protein-coupled

receptor 54, GPR54) have added a new critical dimension

to our understanding of the physiology of the HPG axis,

reproduction and fertility (Lee et al. 1996, Clements et al. 2001).

Mice and humans lacking kisspeptin receptor expression show a

phenotype of hypogonadotrophic hypogonadism and conse-

quent infertility (de Roux et al. 2003, Seminara et al. 2003).

However, kisspeptin receptor knockout mice have normal

levels of hypothalamic GnRH expression (Seminara et al. 2003)

and normal GnRH neuronal morphology (Messager et al.

2005). These findings have been pivotal in the emergence

of kisspeptin signalling as critical regulator of normal fertility,

and future work may lead to the development of therapeutic

use of kisspeptin in the treatment of reproductive disorders.
Kisspeptin structure and distribution

The kisspeptins are a family of RF peptide hormones, so

named as the arginine–phenylalanine residues are present at

the amino terminal (Arg-Phe-NH2; Clements et al. 2001,
Kotani et al. 2001). The kisspeptins are products of the

KISS1 gene derived from the plasma proteolytic cleavage of

the 145-amino acid gene product, the suffix denoting the

number of amino acids. All of the kisspeptin fragments have a

C-terminal decapeptide that is critical for biological activity,

and all of the kisspeptin forms show similar agonist activity

for kisspeptin receptor (Clements et al. 2001, Kotani et al.

2001, Ohtaki et al. 2001).

Kisspeptin is found in both the peripheral and the central

nervous system (CNS). In the periphery, kisspeptin has been

identified in the testis, ovary, anterior pituitary gonadotrophs,

pancreas and small intestine (Ohtaki et al. 2001, Richard et al.

2008, Gaytan et al. 2009). However, peripheral expression of

kisspeptin is highest in the placenta with maternal plasma

levels of kisspeptin in the third trimester of pregnancy rising

to 7000-fold greater than in the non-pregnant state (Muir

et al. 2001, Ohtaki et al. 2001, Horikoshi et al. 2003). It has

been postulated that the function of kisspeptin production by

the placenta may be to down-regulate the HPG axis during

pregnancy. However, this is not in keeping with the finding

that when kisspeptin-10 is centrally administered to pregnant

rats, stimulation of the HPG axis is found to be preserved

(Roa et al. 2006). Kisspeptin-10 inhibits trophoblast

migration in human placental explants (Bilban et al. 2004).

Plasma kisspeptin IR is elevated in patients with gestational

trophoblastic neoplasia when compared with non-pregnant

controls and falls during and after chemotherapy (Dhillo et al.

2006). Furthermore, levels of kisspeptin and kisspeptin

receptor mRNA in placental tissue are increased in cases of

gestational trophoblastic disease when compared with normal

placental tissue (Janneau et al. 2002). Such observations have
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led to speculation that kisspeptin may act to regulate

trophoblastic invasion of uterine tissue. However, patients

with inactivating mutations of the kisspeptin receptor are able

to undergo normal pregnancy after treatment with GnRH or

gonadotrophin (Pallais et al. 2006). The function of placental

kisspeptin signalling is therefore currently unknown;

however, its presence may not be essential for placental

function in humans.

Within the rodent CNS, both Kiss1 mRNA and kisspeptin

protein are particularly highly expressed within the hypo-

thalamus in the arcuate nucleus (ARC), anteroventral

periventricular nucleus (AVPV) and periventricular nucleus

(Gottsch et al. 2004). In primates including humans,

hypothalamic KISS1 mRNA is predominantly found within

the infundibular nucleus, which is the equivalent of the ARC

in this order of mammals (Rometo et al. 2007).
The kisspeptin receptor

The kisspeptin receptor is a member of the rhodopsin family

of seven transmembrane GPRs with structural similarities to

the galanin receptor. However, it does not appear to bind

galanin in vitro (Lee et al. 1999, Muir et al. 2001). Initially

classified as an orphan receptor, the kisspeptin receptor

(previously known as GPR54) was found to be the

cognate receptor for kisspeptin 5 years after the hormone

was first described (Kotani et al. 2001, Muir et al. 2001,

Ohtaki et al. 2001).

Within the CNS, the kisspeptin receptor is found within

the hypothalamus but is also widely expressed within both

cortical and subcortical regions (Lee et al. 1999). In the

periphery, it is notably expressed in the placenta and by

pituitary gonadotrophs (Muir et al. 2001, Richard et al. 2008).
Kisspeptin stimulates the release of GnRH through
action at the kisspeptin receptor, which in turn
stimulates gonadotrophin release

The GnRH neurons of primates, rodents and sheep are found

in close apposition with kisspeptin neurons (Silverman et al.

1977, Barry 1979, Rance et al. 1994, Clarkson & Herbison

2006). GnRH neurons express the kisspeptin receptor, and

when kisspeptin is incubated with hypothalamic explants, it

stimulates the release of GnRH. This effect is not observed in

kisspeptin receptor knockout mice (kiss1rK/K; d’Anglemont

de Tassigny et al. 2008). The pivotal role of the kisspeptin

receptor in kisspeptin-stimulated GnRH release is further

demonstrated by the attenuation of the rise in plasma LH

following kisspeptin administration in male mice and rats

pre-treated with i.c.v. injections of a kisspeptin receptor

(Roseweir et al. 2009).

I.c.v. administration of kisspeptin-52 to male rodents results

in the expression of c-Fos (a well-established marker of

neuronal activation) within the cell bodies of GnRH neurons.
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In addition, GnRH neurons show an increase in firing rate

in vitro following kisspeptin treatment. This effect is

attenuated by the application of a kisspeptin receptor

antagonist (Irwig et al. 2004, Liu et al. 2008, Roseweir et al.

2009). Furthermore, kisspeptin treatment results in a dose-

and time-dependent increase in GnRH mRNA levels in

GnRH-secreting neuronal cell lines (Novaira et al. 2009).

Both i.c.v. and peripheral administration of kisspeptin

result in a marked rise in plasma LH and to a lesser extent FSH

in several mammalian species including rats, mice, sheep,

monkeys and humans. This effect is abolished in GPR54K/K

mice (Gottsch et al. 2004, Thompson et al. 2004, Dhillo et al.

2005, 2007, Messager et al. 2005, Seminara et al. 2006, Caraty

et al. 2007). The effect of kisspeptin on gonadotrophin release

is likely to be due to kisspeptin stimulation of GnRH

release into the portal circulation, which in turn stimulates the

release of LH and FSH from the gonadotrophs of the anterior

pituitary gland. Evidence for this includes the abolition of

the kisspeptin-induced gonadotrophin rise following pre-

treatment with a GnRH antagonist.

These findings are consistent with the phenotype of

hypogonadotrophic hypogonadism of kiss1rK/K and

kiss1K/K null mice (de Roux et al. 2003, Seminara et al.

2003, d’Anglemont de Tassigny et al. 2007). These mice have

normal levels of hypothalamic GnRH. As expected,

kisspeptin administration to Kiss1K/K mice results in

gonadotrophin release, but this effect is not observed in

Gpr54K/K mice (de Roux et al. 2003, Seminara et al.

2003, Messager et al. 2005, d’Anglemont de Tassigny et al.

2007). Thus, evidence suggests that kisspeptin is the major

ligand for the kisspeptin receptor.
Kisspeptin may also act directly on pituitary
gonadotrophs to stimulate gonadotrophin release

Some lines of evidence point towards a direct effect of

kisspeptin on the gonadotrophs of the anterior pituitary

gland, stimulating the release of LH and FSH. Both the Kiss1

and Kiss1R genes are expressed in pituitary gonadotrophs, and

in vitro exposure of pituitary cells and tissue explants to

kisspeptin results in the dose-dependent release of LH (Kotani

et al. 2001, Navarro et al. 2005, Gutierrez-Pascual et al. 2007,

Richard et al. 2008). Furthermore, in ovariectomised female

rats, there is a fall in the expression of Kiss1 mRNA within

gonadotrophs, which can be prevented by the administration

of oestradiol (E2; Richard et al. 2008). These data suggest that

circulating sex steroids may be required for pituitary Kiss1

expression. This is consistent with the observation that

circulating levels of E2 modulate responsiveness of pituitary

gonadotrophs to GnRH (Knobil et al. 1980).

Nevertheless, kiss1rK/K mice that show a phenotype of

hypogonadotrophic hypogonadism have preserved gonado-

troph function as evidenced by an appropriate response to

exogenous GnRH (Seminara et al. 2003). In addition, i.v.

administration of kisspeptin fails to stimulate LH release in
www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 06/25/2025 05:27:12AM
via free access



Kisspeptin and fertility . S HAMEED and others 99
GnRH-replaced, ovariectomised, hypothalamic–pituitary-

disconnected ewes. Furthermore, the pre-treatment of male

monkeys with a GnRH antagonist results in the failure of

administered kisspeptin to stimulate an LH rise (Plant et al.

2006, Smith et al. 2008).

The role of kisspeptin within the pituitary is currently

unknown. In vivo and ex vivo evidences suggest a stimulatory

role of kisspeptin within the anterior pituitary. However,

pituitary kisspeptin signalling does not appear critical for the

robust stimulation of gonadotrophin release observed

following kisspeptin administration in vivo. Hence, kisspeptin

signalling within the pituitary may have a regulatory role on

gonadotrophin function, which is distinct to its better

characterised role within the hypothalamus.
Kisspeptin plays a key role in mediating gonadal
steroid feedback to the hypothalamus

Steroid hormones produced by the gonads feed back to the

hypothalamus exerting a positive or a negative regulatory

effect on GnRH production and release. The oestrogen

receptors (ERs) are transcription factors, which exist as two

isoforms, ERa and ERb. These receptors bind to specific

DNA sequences known as oestrogen-response elements

found in the promoter region of oestrogen-responsive

genes, resulting in the activation or suppression of gene

transcription.

During most of the menstrual cycle, oestrogen suppresses

gonadotrophin secretion, but at mid-cycle, the effect of

oestrogen on the HPG axis changes to a potent positive

feedback effect, leading to a surge in the plasma LH and

ovulation. Increasing evidence suggests that hypothalamic

kisspeptin signalling plays a critical role in the generation of

the pre-ovulatory LH surge, which is necessary for normal

fertility. Evidence for this comes from ovariectomised GPR54

and Kiss1 null mice treated with oestrogen and progesterone,

which fail to mount an LH surge unlike their wild-type litter

mates (Dungan et al. 2007, Clarkson et al. 2008). In addition,

infusion of a monoclonal anti-rat kisspeptin antibody into the

pre-optic area (POA), which contains GnRH cell bodies,

leads to the complete blockade of the pre-ovulatory LH surge

in oestrogen-treated ovariectomised female rats (Kinoshita

et al. 2005). Lastly, continuous i.c.v. administration of a

kisspeptin antagonist to female rats in the morning of oestrous

until the afternoon of the following pro-oestrous prevents the

pre-ovulatory LH surge (Pineda et al. 2010).

ERa has been shown to be critical for the positive feedback

effect of oestrogen, which results in the female mid-cycle LH

surge. Adult female rodents pre-administered with an ERa
antagonist fail to ovulate or undergo a pre-ovulatory LH

surge and have blunted LH response following administration

of kisspeptin-10 (Roa et al. 2008). Furthermore, ovari-

ectomised, oestrogen-replaced, neuron-specific ERa null

mice are infertile. It is not known whether such mice have

altered levels of Kiss1 expression, but they fail to generate
www.endocrinology-journals.org
a pre-ovulatory LH peak despite having normal basal levels

of LH (Wintermantel et al. 2006). Interestingly, the pre-

ovulatory LH surge is preserved in ERb knockouts

(Wintermantel et al. 2006). GnRH neurons express ERb
but not ERa, which implies that the mid-cycle positive

regulation of GnRH release by oestrogen is mediated by a

separate population of ERa-expressing neurons with afferent

input to GnRH neurons (Hrabovszky et al. 2000). Dual in situ

hybridisation studies have revealed the co-expression of

Kiss1 and ERa mRNA in the AVPV and the ARC.

In addition, work using neuronal viral retrograde tracing

in mice has demonstrated ERa-expressing neurons in the

AVPV and ARC with afferent input to GnRH neurons

(Smith et al. 2005, Wintermantel et al. 2006). In female rats,

Kiss1 mRNA expression in the AVPV peaks during the

evening of pro-oestrous but falls to a nadir in the ARC (Smith

et al. 2006b). Kiss1 neurons in the AVPV show high levels of

c-Fos expression during the LH surge, while c-Fos expression

at dioestrous is virtually absent (Smith et al. 2006b).

Conversely, c-Fos is almost undetectable in the ARC at

pro-oestrous (Smith et al. 2006b). Lastly, in female mice

following ovariectomy, Kiss1 expression in the AVPV falls

but is increased following oestrogen replacement in these

animals. Interestingly, the opposite pattern is observed in the

ARC (Smith et al. 2005).

Taken altogether, these findings suggest that E2 within

ERa-expressing kisspeptin neurons in the AVPV positively

regulates GnRH neurons culminating in the pre-ovulatory

LH surge. However, ERa-expressing kisspeptin neurons in

the ARC respond to oestrogen stimulation by inhibiting

GnRH production and release (Fig. 1). This feed forward-

feedback control on GnRH release by gonadal steroids is

critical for normal fertility.
Kisspeptin neurons in the ARC co-express other
neuropeptides, which regulate the HPG axis

Kisspeptin neurons in the ARC co-express the neuropeptides

neurokinin B (NKB) and dynorphin, and this co-localisation

is highly conserved in several mammalian species including

humans (Goodman et al. 2007, Rance 2009, Hrabovszky et al.

2010). Dynorphin is an endogenous opioid peptide, which

plays a role in the progesterone-mediated negative feedback

control of GnRH release, while NKB is a member of the

substance P-related tachykinin family (Goodman et al. 2004,

Krajewski et al. 2005). The receptor for NKB is tachykinin

neurokinin 3 receptor (NK3R), which is expressed on

GnRH neurons (Todman et al. 2005).

Recently, it has been reported in humans that loss-

of-function mutations in the gene encoding NKB (TAC3)

or the gene encoding NK3R (TAC3R) result in normosmic

hypogonadotrophic hypogonadism and pubertal failure. This

phenotype is remarkably similar to rodent and human models

of defective kisspeptin signalling (de Roux et al. 2003,
Journal of Endocrinology (2011) 208, 97–105
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Figure 1 Diagram of kisspeptin signalling within the female central nervous system. KISS1-expressing
neurons within the hypothalamic arcuate nucleus (ARC; equivalent to the infundibular nucleus in
primates) are negatively regulated by oestrogen and inhibit GnRH release. KISS1-expressing neurons
within the hypothalamic anteroventral periventricular nuclear (AVPV) are positively regulated by
oestrogen and stimulate GnRH during the pre-ovulatory surge. Kisspeptin may also have a direct
modulatory effect on pituitary LH and FSH release. KISS1 neurons in the ARC co-express neurokinin B
(NKB), which stimulates LH and FSH release in a GnRH-dependent manner. Leptin signalling has a
permissive effect on kisspeptin signalling within the ARC, which may be mediated by the mammalian
target of rapamycin (mTOR; also known as mechanistic target of rapamycin, MTOR) pathway.
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Seminara et al. 2003, d’Anglemont de Tassigny et al. 2007,

Guran et al. 2009, Topaloglu et al. 2009).

Kisspeptin neurons in the ARC project to GnRH neurons.

The association of NKB and kisspeptin within kisspeptin

neurons may be suggestive of a synergy between the two

neuropeptides in the regulation of the HPG axis. For

example, it is known that the expression of both peptides is

inhibited by E2. In addition, in post-menopausal women,

the distribution and morphology of the hypertrophied

KISS1-positive neurons in the infundibular nucleus are

similar to that of NKB-expressing cells (Rometo et al. 2007,

Navarro et al. 2009).

Until recently, the effect of NKB on reproductive hormone

release had been inconclusive with conflicting results from

studies in sheep and rodents (Jayasena & Dhillo 2010).

However, recently it has been reported that i.v. administration

of NKB or an NKB agonist to male monkeys results in a

potent stimulation of LH release, an effect that is abolished by

pre-treatment with a GnRH antagonist (Ramaswamy et al.

2010). Interestingly, repetitive administration of NKB is
Journal of Endocrinology (2011) 208, 97–105
not associated with a sustained pattern of LH release

(Ramaswamy et al. 2010). Furthermore, monkeys remain

responsive to kisspeptin injection despite losing responsive-

ness to NKB following repetitive administration. This

suggests that NKB stimulates GnRH release in a kisspeptin-

independent manner. It is not known whether animals may

respond to NKB despite losing responsiveness to kisspeptin

following chronic administration; such an observation would

suggest NKB and kisspeptin to have parallel influences of

GnRH release.
A role for kisspeptin signalling in pubertal
development and seasonal reproductive activity

During puberty, the immature mammal develops adult

physical and hormonal characteristics rendering it

fertile and capable of reproduction. Juvenile kiss1rK/K and

kiss1K/K mice and humans with inactivating kisspeptin

receptor mutations fail to enter puberty (de Roux et al. 2003,
www.endocrinology-journals.org
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Seminara et al. 2003, d’Anglemont de Tassigny et al. 2007);

these observations therefore suggest that kisspeptin signalling

plays a critical role in the onset of puberty.

Further evidence for the importance of kisspeptin

signalling in the onset of puberty comes from studies of

immature female rats administered twice daily i.c.v. injections

of kisspeptin from postnatal day 26 to day 31 (Navarro et al.

2004). This results in precocious vaginal opening, increased

uterine weight and raised plasma LH and E2 levels relative to

vehicle-treated controls. These findings complement the

report of central precocious puberty in an 8-year-old girl due

to an activating mutation of KISS1R (Teles et al. 2008).

At postnatal day 10, kisspeptin-expressing neurons in the

AVPV are not detectable in either male or female mice.

However, these become apparent, lying in close apposition to

GnRH neurons, from postnatal day 25, reaching adult levels

by the onset of puberty at postnatal day 31 (Clarkson &

Herbison 2006). In support of these findings, the expression

of KISS1 mRNA in the mediobasal hypothalamus (MBH) of

agonadal male rhesus monkeys has been found to be

significantly greater in the pubertal group than in the juvenile

cohort (Shahab et al. 2005). Similarly, in female monkeys

with intact gonads, a threefold increase in KISS1 mRNA

expression is observed in the MBH in early pubertal animals

that in a juvenile group (Shahab et al. 2005).

Kisspeptin is also implicated in seasonal regulation of

reproductive activity in seasonal breeders. In Syrian hamsters,

hypothalamic Kiss1 expression is high during long day

conditions (associated with sexual activity) and reduced

during short day conditions (associated with a quiescence of

sexual activity); furthermore, administration of kisspeptin-10

to these animals restores testicular weight and testosterone

release (Revel et al. 2006, 2007). Sheep display seasonal sexual

activity during short day conditions. KISS1 expression within

the ARC is increased under short day conditions in

ovariectomised ewes, but no seasonal change in KISS1

expression is detected within the POA (Clarke et al. 2009).

These findings suggest that kisspeptin acts as an essential

gatekeeper to the onset of puberty and consequent fertility

in several mammalian species. Furthermore, kisspeptin may

play a role in the seasonal regulation of reproductive activity

in Syrian hamsters and sheep.
Kisspeptin provides a link between nutritional status
and fertility

It has long been recognised that an intimate relationship exists

between nutritional status and fertility. Leptin is a peptide

hormone synthesised and secreted by adipocytes conveying

information about body energy stores and nutritional status

(Zhang et al. 1994, Pelleymounter et al. 1995). The level of

circulating leptin is proportional to fat mass and falls in both

mice and humans following weight loss (Maffei et al. 1995).

The leptin-deficient ob/ob mouse is a well-established model

of hypoleptinaemia (Zhang et al. 1994). These mice have
www.endocrinology-journals.org
delayed puberty and are infertile as a consequence of

hypogonadotrophic hypogonadism. Interestingly, a similar

phenotype of hypogonadotrophic hypogonadism is also

present in humans with mutations of leptin or its receptor

and in women with hypoleptinaemia as a consequence of

low body weight (Coleman 1978, Clement et al. 1998,

Farooqi et al. 1999, Welt et al. 2004). Leptin therapy in

hypoleptinaemic mice and humans reverses these reproduc-

tive abnormalities. In addition, when leptin is administered

to juvenile wild-type mice, this accelerates the onset of

puberty (Chehab et al. 1996, 1997, Ahima et al. 1997, Farooqi

et al. 1999, Welt et al. 2004).

The leptin receptor (Ob-Rb) is not expressed by GnRH

neurons of the hypothalamus. However Ob-Rb mRNA is

found in 40% of Kiss1 mRNA-expressing cells of the ARC

(Smith et al. 2006a). The expression of Kiss1 mRNA in the

ARC of ob/ob mice is reduced in comparison with wild-type

mice. Interestingly, although kisspeptin mRNA in the ARC

of ob/ob mice is significantly increased following leptin

treatment, its expression is not restored to that of the wild-

type controls (Smith et al. 2006a).

The expression of Kiss1 mRNA has been shown to be

influenced by nutritional status. In pre-pubertal rats, which

have been food deprived for 72 h, the hypothalamic

expression of Kiss1 mRNA is markedly reduced (Castellano

et al. 2005). In a model of chronic undernutrition in pre-

pubertal rats, daily i.c.v. administration of kisspeptin from

postnatal day 30 to 37 restores the delayed vaginal opening of

these animals and increases the suppressed levels of plasma LH,

FSH and E2 (Castellano et al. 2005).

The ARC contains discrete subpopulations of first-order

leptin-responsive neurons. One subpopulation expresses the

orexigenic peptide neuropeptide Y (NPY), while another

expresses the anorectic peptide a-melanocyte-stimulating

hormone (a-MSH), which is derived from pro-opiomelano-

cortin (POMC; Cheung et al. 1997, Broberger et al. 1998).

Using double-label fluorescent immunohistochemistry,

kisspeptin fibres in ewes have been shown to be in close

apposition with ARC NPY and POMC neurons (Backholer

et al. 2010). I.c.v. administration of an a-MSH-like agonist

to ewes increasesKISS1mRNA in the POA and results in a rise

in plasma LH (Backholer et al. 2009). Conversely, the orexigenic

peptide melanin-concentrating hormone, which is highly

expressed in the lateral hypothalamus, inhibits the stimulatory

effects of kisspeptin on GnRH neurons (Wu et al. 2009).

Mammalian target of rapamycin protein (mTOR; also

known as mechanistic target of rapamycin, MTOR) is

another regulator of energy homeostasis, which has been

shown to influence kisspeptin signalling. mTOR is a

ubiquitously expressed serine-threonine protein kinase,

which plays a vital role in the regulation of cell growth and

differentiation (Schmelzle & Hall 2000). When nutrient

availability is low, mTOR activity falls thus inhibiting the

high-energy demand cell cycle. Interestingly, i.c.v. adminis-

tration of leucine (which stimulates mTOR signalling) leads

to an increase in plasma LH in female peri-pubertal rats
Journal of Endocrinology (2011) 208, 97–105
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(Cota et al. 2006, Roa et al. 2009). Conversely, when mTOR

activation is blocked (by rapamycin), the expression of Kiss1

mRNA in the ARC becomes almost undetectable, and

plasma levels of LH fall (Roa et al. 2009).

Reproduction is a highly energy demanding process, and

during food deprivation the HPG axis is down-regulated in

order to conserve energy. In summary, the findings presented

above demonstrate a key role for hypothalamic kisspeptin as a

link between nutritional status and fertility.
Could kisspeptin offer a novel therapy for the
treatment of fertility disorders?

As our understanding of the biology of the kisspeptin

signalling system grows, it is becoming increasingly tempting

to speculate on the possible therapeutic use of kisspeptin in

the treatment of fertility disorders. Infertility affects up to one

in six couples in the United Kingdom, and although effective,

both the hormonal and surgical therapies, which are currently

employed are not without significant side effects and failure

rates (National Institute for Health and Clinical Excellence

2004, Human Fertilisation and Embryology Authority 2009,

http://www.hfea.gov.uk/infertility-facts.html#1248).

When administered to healthy male subjects, i.v. infusion

of kisspeptin results in a significant increase in plasma LH,

FSH and testosterone (Dhillo et al. 2005). S.c. injection of

kisspeptin to healthy pre-menopausal female subjects elicits a

marked rise in LH, which is most pronounced in the pre-

ovulatory phase of the menstrual cycle (Dhillo et al. 2007).

This finding sits well with the animal studies reviewed above,

which suggest an essential role for kisspeptin in the generation

of the LH surge.

Kisspeptin has been administered to humans by s.c. and i.v.

injection without any observed adverse effects (Dhillo et al.

2005, 2007). In particular, kisspeptin has not been shown to

cause changes in heart rate or blood pressure, which is

important in view of the vasoconstrictor properties of

kisspeptin that have been demonstrated in vitro (Mead et al.

2007, Nijher et al. 2010).

When kisspeptin is administered twice daily s.c. injection

to infertile women with functional hypothalamic amenor-

rhoea (HA) due to low body weight, it effectively stimulates a

rise in plasma gonadotrophins ( Jayasena et al. 2009). This

effect is most marked following the first injection of kisspeptin

and is significantly diminished after 2 weeks of treatment.

However, biweekly administration of kisspeptin results in a

sustained gonadotrophin response to kisspeptin ( Jayasena et al.

2010). Furthermore, it has been shown that in women with

HA, the LH response to injected kisspeptin is fourfold greater

than that of healthy female subjects studied in the follicular

phase ( Jayasena et al. 2009). This may be due to an enhanced

responsiveness to kisspeptin in women with HA or increased

pituitary sensitivity to the effects of GnRH.

Gonadotrophin injections provide the current mainstay of

infertility therapy (Elchalal & Schenker 1997). It is therefore
Journal of Endocrinology (2011) 208, 97–105
interesting to consider if kisspeptin-based therapies would

offer any potential advantages over existing therapies.

Kisspeptin acts by stimulating endogenous hypothalamic

GnRH release, which in turn triggers endogenous pituitary

gonadotrophin release (Irwig et al. 2004, Thompson et al.

2004, Shahab et al. 2005). Kisspeptin therapy might therefore

stimulate a more natural pattern of reproductive hormone

release than existing therapies. Furthermore, the stimulation

of endogenous gonadotrophin release by kisspeptin may be

predicted to confer a lower risk of ovarian hyperstimulation

syndrome associated with exogenous gonadotrophin injec-

tions (Elchalal & Schenker 1997). More data are needed to

test if such potential benefits would exist over current

therapies for infertility.
Concluding remarks

Over the past decade, our increasing insight into the biology

of the kisspeptin pathway has significantly added to our

understanding of the physiology and pathophysiology of the

HPG axis. Kisspeptin has now been safely and successfully used

in both healthy and infertile human subjects, and it is possible

that in the future the manipulation of kisspeptin signalling

may be used in the treatment of reproductive disorders.
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