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Abstract
MicroRNAs (miRNAs) are small molecules negatively regulating gene expression by

diminishing their target mRNAs. Emerging studies have shown that miRNAs play diverse

roles in diabetes mellitus. Type 1 diabetes (T1D) and T2D are two major types of diabetes.

T1D is characterized by a reduction in insulin release from the pancreatic b-cells, while T2D is

caused by islet b-cell dysfunction in response to insulin resistance. This review describes

the miRNAs that control insulin release and production by regulating cellular membrane

electrical excitability (ATP:ADP ratio), insulin granule exocytosis, insulin synthesis in b-cells,

and b-cell fate and islet mass formation. This review also examines miRNAs involved

the insulin resistance of liver, fat, and skeletal muscle, which change insulin sensitivity

pathways (insulin receptors, glucose transporter type 4, and protein kinase B pathways).

This review discusses the potential application of miRNAs in diabetes, including the use of

gene therapy and therapeutic compounds to recover miRNA function in diabetes, as well as

the role of miRNAs as potential biomarkers for T1D and T2D.
Key Words

" diabetes

" insulin resistance

" microRNA

" T1D

" T2D
ow
Journal of Endocrinology

(2014) 222, R1–R10
Introduction
Diabetes mellitus (DM) affects 347 million people world-

wide. The World Health Organization predicts that

diabetes-related deaths could double between 2005 and

2030. The research conducted by American Diabetes

Association estimated that the national economic burden

of diagnosed diabetes in the USA in 2012 was $245 billion,

including $176 billion in direct medical costs and $69

billion in reduced productivity, a 41% increase from the

estimates in 2009 (American Diabetes Association 2013).

DM is a complex disease characterized by high blood

glucose levels. There are two major forms of diabetes.

Type 1 diabetes (T1D) results from a lack of insulin

production in pancreatic b-cells. T2D is due to resistance

to insulin, resulting in ineffective use of insulin in the

body. Long-term hyperglycemia in both T1D and T2D
may lead to macrovascular (coronary artery disease,

peripheral arterial disease, and stroke) and microvascular

complications (diabetic nephropathy, neuropathy, and

retinopathy) (Fowler 2008). Though conventional treat-

ments for diabetes are effective, recent advances in

molecular biology have provided a better understanding

of diabetes and the potential to develop molecular

theranostics for the disease.

MicroRNAs (miRNAs) play a crucial role in the

regulation of protein-encoding genes. They are single-

stranded non-coding RNA molecules of approximately

22 nucleotides in length, which function as regulators of

gene expression by binding to the 3 0 UTR region of mRNAs

and destabilizing them or inhibiting their translation

(Bartel 2004). A number of studies show that miRNAs play
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an important role in the etiology and pathogenesis of

DM and its complications. Though miRNAs and their

roles in diabetes remain largely unknown, results from a

number of studies indicate that miRNAs may serve as

potential biomarkers for the diagnosis and prognosis of

diabetes. In this review, we summarize recent findings

about the roles of miRNAs in diabetes, as well as their

target genes and proteins. Moreover, we also discuss the

potential application of miRNAs in diabetes.
Roles of miRNAs in diabetes

miRNAs and insulin release

Insulin release is initiated by electrical excitation of the

b-cell membrane. Following a meal, glucose in circulation

leads to an increased glucose uptake into b-cells through

glucose transporters (called GLUTs). Glucose is metab-

olized in b-cells, which causes the production of ATP and

an increase in the ATP:ADP ratio, resulting in the closure

of ATP-sensitive potassium channels (KATP channels) in
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miRNAs involved in insulin release in pancreatic b-cells and b-cell fate.

Foxa2, forkhead box A2; KATP channel, ATP-sensitive potassium channel;

MAP4K4, MAPKKKK4; MCT1, monocarboxylate transporter 1; Mtpn,

myotrophin; Onecut2, one cut homeobox 2; Pdcd4, programmed cell death
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the cell membrane and subsequent depolarization of the

membrane. The depolarization of cell membranes opens

the voltage-gated calcium channel, leading to calcium

influx, and the accumulation of calcium triggers the fusion

of secretory vesicles to the plasma membrane to release

insulin (Layden et al. 2010, Rorsman & Braun 2013). Insulin

acts on the cells of peripheral tissues, mainly in fat, skeletal

muscle, and liver, by binding the insulin receptors in

cell membrane and, in turn, activates glucose uptake and

metabolization. Insulin plays a crucial role in glucose

homeostasis. The reduced production and incomplete

utilization of insulin are the major mechanisms resulting

in T1D and T2D. miRNAs are involved in b-cell membrane

electrical excitation (initiated by an increase in ATP:ADP

ratio), insulin synthesis, exocytosis processes (docking,

fusion, and exocytosis of insulin granules), and b-cell fate

and pancreatic mass formation (Fig. 1).

miRNAs alter ATP:ADP ratio in insulin secretion Uncou-

pling protein 2 (UCP2) in pancreatic b-cells reduces

ATP levels, causes a decrease in ATP:ADP ratio, and
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4; PDK1, phosphoinositide-dependent protein kinase 1; Rab27a, member

RAS oncogene family; Sirt1, sirtuin (silent mating type information

regulation 2 homolog) 1; Vamp2, vesicle-associated membrane protein 2;

UCP2, uncoupling protein 2.
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subsequently decreases glucose-stimulated insulin

secretion (Bordone et al. 2006). UCP2 is a direct target of

miR-15a in b-cells. Prolonged stimulation of MIN6 cells

with glucose downregulates miR-15a, resulting in an

increase in UCP2 and a reduction in insulin secretion

(Sun et al. 2011). miR-9 diminishes SIRT1 in b-cells

and reduces the glucose-stimulated insulin secretion

(Ramachandran et al. 2011), probably through enhanced

expression of UCP2 (Bordone et al. 2006, Ramachandran

et al. 2011, Sun et al. 2011). miR-29a and miR-29b also

negatively control insulin release by reducing monocar-

boxylate transporter 1 (MCT1 (SLC16A1)), which acts as

a substrate for mitochondrial oxidation to increase the

cytosolic ATP:ADP ratio and triggers insulin release in

b-cells (Pullen et al. 2011). miR-124a targets FOXA2,

regulating the KATP channel subunits, Kir6.2 and Sur-1,

and pancreatic development (Baroukh et al. 2007).

miRNAs control insulin granule exocytosis miR-9

miRNA exerts a negative regulatory effect on insulin

release by cleaving the target transcription factor, ONE-

CUT2 (a Granuphilin gene repressor), and increasing the

level of Granuphilin (SLP4) (a Rab3/27 effector), which

facilitates exocytosis processing by mobilizing insulin

granules from the readily releasable pool to the cell

membrane (Plaisance et al. 2006). Interestingly, studies

of miRNA expression profiles shows that the increase in

miR-29a/b/c in the islets of prediabetic NOD mice is also

associated with impaired glucose-induced insulin

secretion by diminishing the expression of Onecut2 (Roggli

et al. 2012). miR-96 is also negatively associated with

Granuphilin, independently from ONECUT2, and nega-

tively regulates insulin exocytosis (Huang et al. 2009).

miR-375 is abundantly expressed in the islet cells and the

overexpression of miR-375 suppresses glucose-stimulated

insulin release by reducing myotrophin (Mtpn), a regulator

of the actin network in membrane docking and fusion

for insulin exocytosis (Poy et al. 2004). miR-124a directly

targets RAB27A, downregulates NOC2, and upregulates

SNAP25, RAB3A, and Synapsin1a, facilitating insulin

exocytosis (Lovis et al. 2008a, Merrins & Stuenkel 2008).

miR-34a is upregulated in db/db mice, in which miR-34a

is associated with the decreased expression of vesicle-

associated membrane protein 2 (Vamp2), a key player

in docking and fusion of insulin granules in b-cell

membranes (Lovis et al. 2008b).

miRNAs control insulin synthesis miR-375 targets

3 0-phosphoinositide-dependent protein kinase-1 (PDK1)

and decreases glucose-induced insulin gene expression
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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and protein synthesis (Hashimoto et al. 2006, El Ouaamari

et al. 2008). miR-30d induces insulin expression in

b-cells via targeting MAP4K4, the negative regulator of

the insulin transcription factor, MAFA (Zhao et al. 2012).

miRNAs control pancreatic cell fate and pancreas

formation miR-375 is essential for the formation of

insulin-secreting pancreatic islets (Kloosterman et al.

2007) and maintains the normal pancreatic a- and b-cell

mass (Poy et al. 2009). It has been reported that increased

expression of miR-21, miR-34a, and miR-146a has been

induced by interleukin 1b (IL1b) and tumor necrosis factor

a (TNFa) indb/dbmice (Lovis et al. 2008b, Roggli et al. 2010).

miR-21 targets PDCD4 and induces cell death through the

Bax family of apoptotic proteins (Lu et al. 2008, Ruan

et al. 2011). miR-146 contributes to the enhancement of

free-acid-induced b-cell apoptosis (Lovis et al. 2008b).
miRNAs and insulin resistance

Insulin secreted from b-cells has numerous actions on the

peripheral tissues that maintain glucose homeostasis

during the uptake of food. In the skeletal muscle, insulin

increases glucose transport, permitting glucose entry, and

glycogen synthesis. In the liver, insulin promotes glyco-

gen synthesis and inhibits gluconeogenesis. In the

adipose tissue, insulin suppresses lipolysis and promotes

lipogenesis (Rottiers & Naar 2012, Samuel & Shulman

2012). Insulin resistance indicates that the peripheral

tissues fail to respond to the normal level of insulin, and

manifests as an elevated glucose level with decreased

insulin-mediated glucose uptake in the skeletal muscle

and adipose tissue, and as an impaired suppression of

glucose output in the liver (Peppa et al. 2010). Herrera

et al. (2009, 2010) profiled a cluster of miRNAs in insulin

target tissues in Goto-Kakizaki (GK) rats, a spontaneous

rat model of T2D, and found upregulation of miR-222

and miR-27a in adipose tissue; upregulation of miR-125a,

miR-195, and miR-103 in liver; and downregulation of

miR-10b in muscle.

miRNAs and hepatic insulin resistance miRNAs regulate

insulin resistance in liver and hepatocytes and this is well

documented by many studies. Upregulation of miR-143 in

the livers of diabetic rats (Jordan et al. 2011) and obese

mice (Takanabe et al. 2008) has been observed. Further

study has shown that miR-143 downregulates Orp8, and in

turn impairs the ability of insulin to induce the activation

of PKB (Akt) signaling, a central signaling node of insulin

action to induce glucose metabolism (Jordan et al. 2011).
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miR-802 is upregulated in the livers of obese mice and

obese human subjects, the increase in miR-802 silences

HNF1B, resulting in a diminished ability of insulin to

activate PKB signaling (Kornfeld et al. 2013).

Hepatic Sirt1 deficiency in mice has been demon-

strated to impair mTORC2/AKT signaling and results in

hyperglycemia and insulin resistance (Wang et al. 2011).

The upregulation of miR-181a in diabetic liver and

hepatocytes decreases Sirt1, inactivating insulin signaling

and glucose metabolism (Zhou et al. 2012). miR-96 and

miR-126 directly target the insulin receptor substrate 1

(IRS1) 3 0 UTR. The reduction in IRS1 is involved in insulin

resistance under conditions of mitochondrial dysfunction

in hepatocytes (Ryu et al. 2011, Jeong et al. 2013).

Protein tyrosine phosphatase 1B (PTP1B), a target of

miR-122, inhibits hepatic insulin signaling by depho-

sphorylating tyrosine residues in the insulin receptor (IR)

and IRS. A high-fat diet induces the phosphorylation of

JUNK1 in mice, and decreases the expression of miR-122,

resulting in an increase in hepatic insulin resistance (Yang

et al. 2012). Another study has shown that the reduction

in miR-200a/b/c in the livers of db/db mice is associated

with the inactivation of the AKT/GSK signaling pathway.

A decrease in Fog2, a direct target of miR-200a/b/c,

impairs the AKT/GSK-mediated glycogenesis in liver,

resulting in hepatic insulin resistance (Dou et al. 2013).

miRNAs and insulin resistance of adipose tissue

miR-103 and miR-107 are well studied in adipocytes.

Upregulation of miR-103/-107 was demonstrated in obese

mice. Overexpression of miR-103/-107 in either liver or fat

impaired the insulin sensitivity, and silencing of miR-103/

107 in adipocytes enhanced insulin signaling, decreased

adipocyte size, and enhanced insulin-stimulated glucose

uptake via upregulating Caveolin-1, a critical regulator for

stabilizing the insulin receptor (Trajkovski et al. 2011).

miR-221 is positively associated with BMI, and is up-

regulated in human pre-adipocytes. A study showed that

miR-221 could downregulate adiponectin receptor 1

(ADIPOR1)-mediated actions of insulin, possibly via

peroxisome proliferator-activated receptor (PPAR) signal-

ing (Meerson et al. 2013). An increase in miR-93 in the

adipocytes of polycystic ovary syndrome patients dimi-

nished the GLUT4 expression by directly binding the

3 0 UTR, indicating the mechanism of insulin resistance in

diabetes patients (Chen et al. 2013).

In addition, studies have shown that many miRNAs

were highly associated with insulin resistance in adipose

tissue though the directly targeted gene was not identified.

Upregulation of miR-29 in adipose tissue of GK rats and
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0544 Printed in Great Britain
3T3-L1 adipocytes led to repression of insulin-stimulated

glucose uptake, through inhibition of AKT activation.

However, AKT is not the direct target of miR-29 (He et al.

2007). Downregulation of miR-21 was found in insulin-

resistant adipocytes but overexpressing miR-21 signi-

ficantly increased insulin-induced phosphorylation of

AKT and GSK3b and the translocation of GLUT4 in

insulin-resistant adipocytes (Ling et al. 2012). The target

gene of miR-21 was not identified, but was possibly a

component of the PTEN–AKT pathway. miR-320 was

upregulated in insulin-resistant adipocytes and anti-miR-

320 oligonucleotides activated AKT signaling, possibly

by targeting the p85 subunit of PI3K, and increased the

protein expression of GLUT4, sequentially enhancing

insulin-stimulated glucose uptake (Ling et al. 2009).

miRNAs and insulin resistance of skeletal muscle Let-7

suppressed the multiple components of the insulin–PI3K–

mTOR pathway, via targeting insulin-like growth factor 1

receptor (IGF1R), insulin receptor (INSR), and IRS2 to

mediate insulin resistance in skeletal muscle (Zhu et al.

2011). Frost & Olson (2011) demonstrated that knock-

down of let-7 improved insulin sensitivity in liver and

muscle, resulting in increased lean and muscle mass, but

not increased fat mass, and prevented ectopic fat

deposition in the liver. The upregulation of miR-223 was

found in insulin-resistant heart muscle of T2D patients,

while overexpression of miR-223 was positively associated

with GLUT4, but not PI3K signaling or MAPK activity

in cardiomyocytes (Lu et al. 2010). The upregulation of

miR-494 induced by TNFa desensitizes C2C12 muscle cells

to the effects of insulin by inhibiting the pathway

downstream of Akt, which was associated with the

regulation of STXBP5 (an inhibitor of glucose transport)

and SLC2A4 (the gene encoding GLUT4) expression (Lee

et al. 2013). Katta et al. (2013) demonstrated that miR-1

and miR-133 were associated with insulin resistance in

insulin-resistant obese Zucker rats. Recently, several

studies involving miRNA microarray analysis have been

conducted using the GK diabetic model. Huang et al.

(2009) showed at least a twofold decrease in miR-23a/b,

miR-24, miR-126, miR-130a, miR-424, and miR-450 and

at least a twofold increase in miR-307 and let-7f in the

skeletal muscle of GK rats vs Wistar rats. Herrera et al.

(2010) found a significant decrease in miR-10b in the

skeletal muscle of GK rats compared with Wistar Kyoto

rats and Brown Norway rats. He et al. (2007) found an

increase in miR-29a/b/c in the skeletal muscle of GK

rats compared with normal Wistar rats. However, the
Published by Bioscientifica Ltd.
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miRNAs involved in insulin sensitivity and insulin resistance. ADIPOR1,

adiponectin receptor 1; Zfpm2, zinc finger protein friend of GATA family

member 2; GLUT4, glucose transporter type 4; GSK, glycogen synthase

kinase; Hnf1b, hepatocyte nuclear factor 1b; IGF1R, insulin-like growth

factor 1 receptor; INSR, insulin receptor; IRS1, insulin receptor substrate 1;

IRS2, insulin receptor substrate 2; mTOR, mammalian target of rapamycin;

mTORC2, mTOR complex 2; ORP8, oxysterol-binding

protein-related proteins; PI3K, phosphoinositide 3-kinase; PKB, protein

kinase B; PPAR, peroxisome proliferator-activated receptor; PTP1B, protein-

tyrosine phosphatase 1B; Slc2A4, solute carrier family 2 member 4; Sirt1,

sirtuin (silent mating type information regulation 2 homolog) 1; Stxbp5,

syntaxin-binding protein 5.
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molecular mechanism of these miRNAs in insulin resist-

ance requires further investigation.

Taken together, miRNAs regulate insulin sensitivity

and resistance mainly by targeting the components of

the insulin/PKB signaling pathway and GLUT4-mediated

glucose uptake and metabolism (Fig. 2).
Potential application of miRNAs in diabetes

Therapeutic targets for improving insulin release and

insulin sensitivity

Altered expression of miRNAs in diabetes causes malfunc-

tion of insulin release and insulin resistance. Restoration
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0544 Printed in Great Britain
of expression of miRNAs to normal levels may have

therapeutic potential for maintaining sufficient insulin

secretion and insulin sensitivity. Several approaches have

been developed to restore miRNAs to normal levels. Anti-

miRNA oligonucleotides (AMOs) are one of the most

common strategies in miRNA gene therapy, in which

AMOs directly and specifically bind to miRNA sequences

to prevent binding of miRNA to the target. The other

oligonucleotide-based techniques include miRNA mimics,

which comprise the same nucleotide sequences as the

endogenous miRNA. The regulation of miRNA with viral-

based and reagent-based transfection has been success-

fully used in animal experiments, showing the therapeutic

potential for diabetes.
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Anti-miRNA oligonucleotides AMOs have been shown

to possess therapeutic potential in targeting miRNAs-

related human diseases (Weiler et al. 2006). AMOs are

chemically modified oligonucleotide analogs, allowing

small RNA to cross the physical barrier and improving the

efficiency of therapeutics, e.g. 2 0-fluoro and 2 0-O-methyl

conjugations and 2 0-4 0-methylene bridges, linking with a

locked nucleic acid (LNA; Weiler et al. 2006, Czech et al.

2011). Though AMO is not clinically used for diabetes,

some studies have demonstrated that the antisense

oligonucleotides exert effects on miRNA-mediated dia-

betes as described below.

El Ouaamari et al. (2008) showed that application

of 2 0-O-methyl-miR-375 antisense oligonucleotides

increased expression of its target gene PDK1 and reverted

insulin release back to normalcy in INS-1E cells. Trajkovski

et al. (2011) showed that the inhibition of miR-103 and

miR-107 by 2 0-O-methyl-miR-103 and -107 antisense

oligonucleotides improves glucose homeostasis and insu-

lin sensitivity in ob/ob mice. Roggli et al. (2010) found that

blocking the miR-21, miR-34a, or miR-146a function with

antisense molecules could prevent the reduction in

glucose-induced insulin secretion in MIN6 b-cells under

ILb treatment, but Lovis et al. (2008b) showed that

blocking the miR-34a or miR-146 activity using oligonu-

cleotides partially protected palmitate-treated MIN6B1

b-cell lines from apoptosis but was insufficient to restore

normal insulin secretion.

Inhibition of miR-320 using anti-miR-320 oligo-

nucleotides restored the insulin sensitivity in insulin-

resistant 3T3-L1 adipocytes, evidenced by activation of

insulin – PI3K signaling pathways and insulin-stimulated

glucose uptake (Ling et al. 2009). Treatment with antisense

oligonucleotides (2 0-O-methyl-miR-181a) increases SIRT1

protein levels and activity, and improves insulin sensi-

tivity in HepG2 hepatocytes (Zhou et al. 2012).

The inhibition of miR-29 with LNA antisense-based

anti-miR29 increased insulin-induced AKT signaling,

but barely augmented insulin-dependent glucose uptake

(He et al. 2007). The discrepancy with AMO treatment

indicated the involvement of numerous other target

molecules of the insulin-signaling pathway (He et al.

2007). LNA antisense-based anti-let-7 improved the

impaired glucose tolerance, at least in liver and muscle,

of mice (Frost & Olson 2011).

Virus-based miRNA regulation miRNA expression can

also be manipulated by introducing the expression

plasmid into cells through virus-based transfection and

reagent-based transfection (Trajkovski et al. 2011). Mice
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0544 Printed in Great Britain
that received injections of adenovirus expressing miR-107

displayed an increase in both random and fasting blood-

glucose levels, impaired glucose tolerance after an i.p.

glucose injection, and decreased insulin sensitivity

(Trajkovski et al. 2011). Overexpression of miR-181a

using adenovirus-based transfection in C57/BL6 mice by

tail vein injection impaired hepatic insulin signaling and

attenuated glucose homeostasis, while downregulation of

miR-181a with i.p. injection of LNA antisense oligonu-

cleotides improved glucose homeostasis in mice with

diet-induced obesity (Zhou et al. 2012). Recently, non-

viral-based miRNA regulation has been successfully

developed to treat diabetic complications and other

diseases, such as diabetic nephropathy, lung fibrosis, and

cardiac fibrosis (Xiao et al. 2012, Chen et al. 2014, Zhang

et al. 2014). These studies showed that miRNA regulation

by virus-based and reagent-based transfection may be

applicable to T1D and T2D though the potential risks of

the therapy need to be further investigated.

Therapeutic chemical compounds miRNA inhibits the

expression of the target gene and in turn affects the

downstream signaling. A decrease in miR-122 led to

hepatic insulin resistance, while licorice flavonoids had

been shown to reduce obesity-induced insulin resistance

(Yang et al. 2012). Joven et al. (2012) showed that plant-

derived polyphenols could regulate the expression of

miRNA paralogs, miR-103/-107 and miR-122, and prevent

diet-induced fatty liver disease in hyperlipidemic mice.

Moreover, Parra et al. (2010) showed that adipose miRNAs

(miR-103/-107, miR-122, and miR-123) were sensitive to

dietary conjugated linoleic acid treatment in mice.

Although the mechanisms involved are unclear, the

discovery and development of therapeutic drugs to disturb

miRNAs implicated in pathogenesis of diabetes might be

an alternative approach.
miRNAs as potential biomarkers of DM

miRNAs are potential biomarkers for many diseases, e.g.

acute myocardial infarction (AMI) and hepatocellular

carcinoma (HCC). Wang et al. (2010) showed that

circulating miR-208a was found in individuals with AMI

with 90.9% sensitivity and 100% specificity. Li et al.

(2010) demonstrated that three serum miRNAs (miR-25,

miR-375, and let-7) could be used as biomarkers that

distinguished hepatitis B virus-positive HCC from the

controls with 97.9% sensitivity and 99.1% specificity,

while miR-375 alone predicted HCC with 96% specificity

and 100% sensitivity. However, the diagnostic potential
Published by Bioscientifica Ltd.
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of miRNAs in diabetes is largely unexplored. Several

studies have shown that circulating miRNAs can serve as

potential biomarkers for diabetes (Guay & Regazzi 2013).

Potential miRNA biomarkers in T1D Circulating

miR-375 levels have been shown to be a biomarker of

b-cell death, and were significantly increased at 2 weeks

before onset of diabetes in NOD mice, a model of auto-

immune diabetes (Erener et al. 2013). Elevated expression

of miR-326 was found in peripheral blood lymphocytes of

T1D patients with ongoing islet autoimmunity (Sebastiani

et al. 2011). Clinically, Nielsen et al. (2012) showed the

upregulation of twelve serum miRNAs (miR-152, miR-

30a-5p, miR-181a, miR-24, miR-148a, miR-210, miR-27a,

miR-29a, miR-26a, miR-27b, miR-25, and miR-200a) in

T1D patients; particularly they found that miR-25 was

negatively associated with b-cell function. SalasPerez et al.

(2013) detected downregulation of miR-21a and miR-93

in peripheral blood mononuclear cells from T1D patients.

Potential miRNA biomarkers in T2D A serum miRNA

analysis of T2D patients shows that seven miRNAs (miR-9,

miR-29a, miR-30d, miR-34a, miR-124a, miR-146a, and

miR-375) were significantly elevated compared with

individuals with normal glucose tolerance (NGT) and

five miRNAs in the above list (miR-9, miR-29a, miR-34a,

miR-146a, and miR-375) were significantly upregulated

compared with levels in individuals with prediabetes,

although miRNA expression was not significantly different

between NGT and pre-diabetes (Kong et al. 2011).

Zampetaki et al. (2010) found lower levels of plasma

miRNAs (miR-20b, miR-21, miR-24, miR-15a, miR-126,

miR-191, miR-197, miR-223, miR-320, and miR-486) in

T2D patients, but a modest increase in miR-28-3p.

Importantly, a decrease in miR-15a, miR-29b, miR-126,

and miR-223 and an increase in miR-28-3p levels in

plasma indicated the manifestation of disease, indicating

their value for predicting T2D. Karolina et al. (2011)

identified miR-144, miR-146a, miR-150, and miR-182 in

the blood of T2D patients as the signature miRNAs for

predicting of T2D. In addition, Pescador et al. (2013)

showed that three serum miRNAs (miR-138, miR-376a,

and miR-15b) are potential biomarkers for distinguishing

obese patients from obese-T2D and T2D patients; mean-

while, the combination of miR-503 and miR-138 can

distinguish diabetic from obese-diabetic patients. Further-

more, Zhao et al. (2011) found that three serum miRNAs

(miR-132, miR-29a, and miR-222) can predict gestational

DM with 66.7% sensitivity and 63.3% specificity (area

under the curveZ0.642).
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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So far no commercial products are available for

diabetes diagnosis. The potential clinical use of miRNAs

as diabetic biomarkers still needs further investigation.
Discussion and prospects

miRNAs play multiple roles in the maintenance of glucose

homeostasis in the human body by regulating b-cell

development and differentiation, insulin secretion, and

insulin actions on the insulin target tissues, liver, adipose

tissue, muscle, etc. Upregulation and downregulation of

miRNAs are strongly associated with T1D and T2D.

miRNAs directly target genes involved in b-cell survival

and insulin exocytosis, and insulin resistance is the central

mechanism of miRNAs-mediated T1D and T2D (Fernandez-

Valverde et al. 2011, Guay et al. 2011, Rottiers & Naar 2012,

Samuel & Shulman 2012, Williams & Mitchell 2012).

Manipulation of miRNAs and insulin signaling may have

therapeutic potential. AMOs for miRNAs (anti-miR-181a,

anti-miR-320, etc.) have demonstrated the sufficient

ability to restore miRNA to normal levels and revert the

abnormalities of insulin signaling. Nevertheless, resistance

of tissues to the uptake of AMOs is a major obstacle for

developing AMO strategy for the clinical use (Xiao et al.

2012). Virus-based gene delivery (adenovirus vectors,

lentivirus vectors, etc.) is the most widely used gene

delivery approach with high transfection rate; however,

toxicity, host immune response, and potential mutagen-

esis limit the clinical benefits (Mah et al. 2002, Jia & Zhou

2005). Advances in science have led to the development of

nonviral vectors-mediated gene therapies to overcome the

shortcomings, e.g. the sleeping beauty transposon system

(Aronovich et al. 2011) and the ultrasound microbubble-

mediated gene delivery system (Lan et al. 2003, Chen et al.

2011, Zhong et al. 2013). Transposon-based miR-29b

overexpression via mouse tail vein injection resulted in

higher levels of transfection and long-term expression of

miR-29b in the lungs of mice, without obvious patho-

logical changes (Xiao et al. 2012). Ultrasound micro-

bubble-mediated miR-21 small hairpin RNA transfer

caused a twofold increase in miR-21 expression in diabetic

kidney, which attenuated renal fibrosis and inflammation

in db/db mice (Zhong et al. 2013). However, these gene

delivery approaches remain at the preclinical stage and are

far from the clinical use. The development of safe, highly

efficient, tissue-specific miRNA gene therapy is still a big

challenge. Interestingly, some chemical compounds, e.g.

licorice flavonoids and linoleic acid, regulated miRNAs

and attenuated the pathogenesis of diabetes (Parra et al.

2010, Yang et al. 2012). The development of chemical
Published by Bioscientifica Ltd.
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compounds to regulate miRNAs implicated in diabetes

could be another potential strategy to manipulate diabetes.

Though miRNAs and their roles in diabetes remain

under-explored, some studies have demonstrated that

miRNAs may act as potential biomarkers for diagnosis

and prognosis of diabetes. The sensitivity and specificity

of miRNAs in the identification of pancreatic b-cell fate,

insulin secretion, and insulin action have not satisfied

the clinical need so far in pilot studies. As each miRNA

may have numerous targets, and is involved in complex

processes of physiology and pathology, we believe that

a cluster of miRNAs, instead of a single miRNA, could be

used as diabetes biomarker with better sensitivity and

specificity that meet the clinical requirements.

Though the understanding of the involvement of

miRNAs in diabetes is in its infancy, advances in investi-

gating the role of miRNA in diabetes may potentially

provide a powerful tool to predict, diagnose, treat, and

prognose diabetes in the future.
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