Search Results

You are looking at 11 - 18 of 18 items for

  • Author: Claes Ohlsson x
  • Refine by Access: All content x
Clear All Modify Search
Open access

Vikte Lionikaite, Karin L Gustafsson, Anna Westerlund, Sara H Windahl, Antti Koskela, Juha Tuukkanen, Helena Johansson, Claes Ohlsson, H Herschel Conaway, Petra Henning, and Ulf H Lerner

Excess vitamin A has been associated with decreased cortical bone thickness and increased fracture risk. While most studies in rodents have employed high dosages of vitamin A for short periods of time, we investigated the bone phenotype in mice after longer exposure to more clinically relevant doses. For 1, 4 and 10 weeks, mice were fed a control diet (4.5 µg retinyl acetate/g chow), a diet modeled from the human upper tolerable limit (UTL; 20 µg retinyl acetate/g chow) and a diet three times UTL (supplemented; 60 µg retinyl acetate/g chow). Time-dependent decreases in periosteal circumference and bone mineral content were noted with the supplemented dose. These reductions in cortical bone resulted in a significant time-dependent decrease of predicted strength and a non-significant trend toward reduced bone strength as analyzed by three-point bending. Trabecular bone in tibiae and vertebrae remained unaffected when vitamin A was increased in the diet. Dynamic histomorphometry demonstrated that bone formation was substantially decreased after 1 week of treatment at the periosteal site with the supplemental dose. Increasing amount of vitamin A decreased endocortical circumference, resulting in decreased marrow area, a response associated with enhanced endocortical bone formation. In the presence of bisphosphonate, vitamin A had no effect on cortical bone, suggesting that osteoclasts are important, even if effects on bone resorption were not detected by osteoclast counting, genes in cortical bone or analysis of serum TRAP5b and CTX. In conclusion, our results indicate that even clinically relevant doses of vitamin A have a negative impact on the amount of cortical bone.

Free access

Johan Svensson, Jon Kindblom, Ruijin Shao, Sofia Movérare-Skrtic, Marie K Lagerquist, Niklas Andersson, Klara Sjögren, Katrien Venken, Dirk Vanderschueren, John-Olov Jansson, Olle Isaksson, and Claes Ohlsson

Both IGF1 and androgens are major enhancers of prostate growth and are implicated in the development of prostate hyperplasia and cancer. The aim of the present study was to investigate whether liver-derived endocrine IGF1 modulates the androgenic response in prostate. Mice with adult, liver-specific inactivation of IGF1 (LI-IGF1−/− mice) displayed an ∼80% reduction in serum IGF1 levels associated with decreased prostate weight compared with control mice (anterior prostate lobe −19%, P<0.05; dorsolateral prostate (DLP) lobe −35%, P<0.01; ventral prostate (VP) lobe −47%, P<0.01). Reduced androgen receptor (Ar) mRNA and protein levels were observed in the VP lobe (−34% and −30% respectively, both P<0.05 versus control mice). Analysis of prostate morphology showed reductions in both the glandular and fibromuscular compartments of the VP and DLP lobes that were proportional to the reductions in the weights of these lobes. Immunohistochemistry revealed reduced intracellular AR immunoreactivity in the VP and DLP lobes. The non-aromatizable androgen dihydrotestosterone increased VP weight to a lesser extent in orchidectomized (ORX) LI-IGF1−/− mice than in ORX controls (−40%, P<0.05 versus control mice). In conclusion, deficiency of liver-derived IGF1 reduces both the glandular and fibromuscular compartments of the prostate, decreases AR expression in prostate, and reduces the stimulatory effect of androgens on VP weight. These findings may explain, at least in part, the well-known clinical association between serum IGF1 levels and conditions with abnormal prostate growth.

Open access

Claes Ohlsson, Petra Henning, Karin H Nilsson, Jianyao Wu, Karin L Gustafsson, Klara Sjögren, Anna Törnqvist, Antti Koskela, Fu-Ping Zhang, Marie K Lagerquist, Matti Poutanen, Juha Tuukkanen, Ulf H Lerner, and Sofia Movérare-Skrtic

Substantial progress has been made in the therapeutic reduction of vertebral fracture risk in patients with osteoporosis, but non-vertebral fracture risk has been improved only marginally. Human genetic studies demonstrate that the WNT16 locus is a major determinant of cortical bone thickness and non-vertebral fracture risk and mouse models with life-long Wnt16 inactivation revealed that WNT16 is a key regulator of cortical thickness. These studies, however, could not exclude that the effect of Wnt16 inactivation on cortical thickness might be caused by early developmental and/or growth effects. To determine the effect of WNT16 specifically on adult cortical bone homeostasis, Wnt16 was conditionally ablated in young adult and old mice through tamoxifen-inducible Cre-mediated recombination using CAG-Cre-ER; Wnt16 flox/flox (Cre-Wnt16 flox/flox) mice. First, 10-week-old Cre-Wnt16 flox/flox and Wnt16 flox/flox littermate control mice were treated with tamoxifen. Four weeks later, Wnt16 mRNA levels in cortical bone were reduced and cortical thickness in femur was decreased in Cre-Wnt16 flox/flox mice compared to Wnt16 flox/flox mice. Then, inactivation of Wnt16 in 47-week-old mice (evaluated four weeks later) resulted in a reduction of Wnt16 mRNA levels, cortical thickness and cortical bone strength with no effect on trabecular bone volume fraction. Mechanistic studies demonstrated that the reduced cortical bone thickness was caused by a combination of increased bone resorption and reduced periosteal bone formation. In conclusion, WNT16 is a crucial regulator of cortical bone thickness in young adult and old mice. We propose that new treatment strategies targeting the adult regulation of WNT16 might be useful to reduce fracture risk at cortical bone sites.

Free access

Marta Lantero Rodriguez, Maaike Schilperoort, Inger Johansson, Elin Svedlund Eriksson, Vilborg Palsdottir, Jan Kroon, Marcus Henricsson, Sander Kooijman, Mia Ericson, Jan Borén, Claes Ohlsson, John-Olov Jansson, Malin C Levin, Patrick C N Rensen, and Åsa Tivesten

Brown adipose tissue (BAT) burns substantial amounts of mainly lipids to produce heat. Some studies indicate that BAT activity and core body temperature are lower in males than females. Here we investigated the role of testosterone and its receptor (the androgen receptor; AR) in metabolic BAT activity in male mice. Castration, which renders mice testosterone deficient, slightly promoted the expression of thermogenic markers in BAT, decreased BAT lipid content, and increased basal lipolysis in isolated brown adipocytes. Further, castration increased the core body temperature. Triglyceride-derived fatty acid uptake, a proxy for metabolic BAT activity in vivo, was strongly increased in BAT from castrated mice (4.5-fold increase vs sham-castrated mice) and testosterone replacement reversed the castration-induced increase in metabolic BAT activity. BAT-specific AR deficiency did not mimic the castration effects in vivo and AR agonist treatment did not diminish the activity of cultured brown adipocytes in vitro, suggesting that androgens do not modulate BAT activity via a direct, AR-mediated pathway. In conclusion, testosterone is a negative regulator of metabolic BAT activity in male mice. Our findings provide new insight into the metabolic actions of testosterone.

Open access

Karin L Gustafsson, Sofia Movérare-Skrtic, Helen H Farman, Cecilia Engdahl, Petra Henning, Karin H Nilsson, Julia M Scheffler, Edina Sehic, Ulrika Islander, Ellis Levin, Claes Ohlsson, and Marie K Lagerquist

Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To determine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradiol (E2), and various tissues were evaluated. Las and Bza treatment increased uterine weight to a similar extent in C451A and control mice, demonstrating mERα-independent uterine SERM effects, while the E2 effect on the uterus was predominantly mERα-dependent. Las and Bza treatment increased both trabecular and cortical bone mass in controls to a similar degree as E2, while both SERM and E2 treatment effects were absent in C451A mice. This demonstrates that SERM effects, similar to E2 effects, in the skeleton are mERα-dependent. Both Las and E2 treatment decreased thymus weight in controls, while neither treatment affected the thymus in C451A mice, demonstrating mERα-dependent SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased the total body fat percent in C451A mice, demonstrating the ability of these treatments to affect fat tissue in the absence of functional mERα signaling. In conclusion, mERα signaling can modulate SERM responses in a tissue-specific manner. This novel knowledge increases the understanding of the mechanisms behind SERM effects and may thereby facilitate the development of new improved SERMs.

Free access

Alexia Barroso, Jose Antonio Santos-Marcos, Cecilia Perdices-Lopez, Ana Vega-Rojas, Miguel Angel Sanchez-Garrido, Yelizabeta Krylova, Helena Molina-Abril, Claes Ohlsson, Pablo Perez-Martinez, Matti Poutanen, Jose Lopez-Miranda, Manuel Tena-Sempere, and Antonio Camargo

Gonadal steroids strongly contribute to the metabolic programming that shapes the susceptibility to the manifestation of diseases later in life, and the effect is often sexually dimorphic. Microbiome signatures, together with metabolic traits and sex steroid levels, were analyzed at adulthood in neonatally androgenized female rats, and compared with those of control male and female rats. Exposure of female rats to high doses of androgens on early postnatal life resulted in persistent alterations of the sex steroid profile later on life, namely lower progesterone and higher estradiol and estrone levels, with no effect on endogenous androgens. Neonatally androgenized females were heavier (10% at early adulthood and 26% at adulthood) than controls and had impaired glucose homeostasis observed by higher AUC of glucose in GTT and ITT when subjected to obesogenic manipulations. Androgenized female displayed overt alterations in gut microbiota, indicated especially by higher Bacteroidetes and lower Firmicutes abundance at early adulthood, which disappeared when animals were concurrently overfed at adulthood. Notably, these changes in gut microbiota were related with the intestinal expression of several miRNAs, such as miR-27a-3p, miR-29a-5p, and miR-100-3p. Our results suggest that nutritional and hormonal disruption at early developmental periods not only alters the metabolic programming of the individual later in life but also perturbs the architecture of gut microbiota, which may interact with the host by a cross-talk mediated by intestinal miRNAs; phenomena that may contribute to amplify the metabolic derangement caused by obesity, as seen in neonatally androgenized female rats.

Open access

Carmen Corciulo, Julia M Scheffler, Piotr Humeniuk, Alicia Del Carpio Pons, Alexandra Stubelius, Ula Von Mentzer, Christina Drevinge, Aidan Barrett, Sofia Wüstenhagen, Matti Poutanen, Claes Ohlsson, Marie K Lagerquist, and Ulrika Islander

Among patients with knee osteoarthritis (OA), postmenopausal women are over-represented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17β-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms.

Open access

Laura L Gathercole, Nikolaos Nikolaou, Shelley E Harris, Anastasia Arvaniti, Toryn M Poolman, Jonathan M Hazlehurst, Denise V Kratschmar, Marijana Todorčević, Ahmad Moolla, Niall Dempster, Ryan C Pink, Michael F Saikali, Liz Bentley, Trevor M Penning, Claes Ohlsson, Carolyn L Cummins, Matti Poutanen, Alex Odermatt, Roger D Cox, and Jeremy W Tomlinson

Steroid 5β-reductase (AKR1D1) plays important role in hepatic bile acid synthesis and glucocorticoid clearance. Bile acids and glucocorticoids are potent metabolic regulators, but whether AKR1D1 controls metabolic phenotype in vivo is unknown. Akr1d1–/– mice were generated on a C57BL/6 background. Liquid chromatography/mass spectrometry, metabolomic and transcriptomic approaches were used to determine effects on glucocorticoid and bile acid homeostasis. Metabolic phenotypes including body weight and composition, lipid homeostasis, glucose tolerance and insulin tolerance were evaluated. Molecular changes were assessed by RNA-Seq and Western blotting. Male Akr1d1–/– mice were challenged with a high fat diet (60% kcal from fat) for 20 weeks. Akr1d1–/– mice had a sex-specific metabolic phenotype. At 30 weeks of age, male, but not female, Akr1d1–/– mice were more insulin tolerant and had reduced lipid accumulation in the liver and adipose tissue yet had hypertriglyceridemia and increased intramuscular triacylglycerol. This phenotype was associated with sexually dimorphic changes in bile acid metabolism and composition but without overt effects on circulating glucocorticoid levels or glucocorticoid-regulated gene expression in the liver. Male Akr1d1–/– mice were not protected against diet-induced obesity and insulin resistance. In conclusion, this study shows that AKR1D1 controls bile acid homeostasis in vivo and that altering its activity can affect insulin tolerance and lipid homeostasis in a sex-dependent manner.