Search Results

You are looking at 1 - 4 of 4 items for

  • Author: M Quinkler x
  • Refine by access: All content x
Clear All Modify Search
M Quinkler
Search for other papers by M Quinkler in
Google Scholar
PubMed
Close
,
B Kosmale
Search for other papers by B Kosmale in
Google Scholar
PubMed
Close
,
V Bähr
Search for other papers by V Bähr in
Google Scholar
PubMed
Close
,
W Oelkers
Search for other papers by W Oelkers in
Google Scholar
PubMed
Close
, and
S Diederich
Search for other papers by S Diederich in
Google Scholar
PubMed
Close

Abstract

In the human and in rodents like the rat and mouse, the liver enzyme 11β-hydroxysteroid dehydrogenase type I (11β-HSD-I) is a functional oxidoreductase preferring NADP+/NADPH as cosubstrate, while the renal isoenzyme (11β-HSD-II) prefers NAD+ as cosubstrate, and seems to be a pure oxidase and protects the tubular mineralocorticoid (MC) receptor from occupancy by cortisol and corticosterone. We studied the enzyme kinetics of 11β-HSDs in kidney and liver microsomes of the guinea pig, a species whose zoological classification is still a matter of debate. With a fixed concentration of 10−6 mol/l cortisol, liver and kidney microsomes preferred NAD+ to NADP+ (10−3 mol/l) for the conversion to cortisone. Kidney microsomes converted cortisol to cortisone with K m values of 0·64 μmol/l and 9·8 μmol/l with NAD+ and NADP+ as cosubstrates respectively. The reduction of cortisone to cortisol was slow with kidney microsomes, but could be markedly enhanced by adding an NADH/NADPH regenerating system: with NADPH as preferred cosubstrate, the approximate K m was 7·2 μmol/l. This indicated the existence of both isoenzymes in the guinea pig kidney. Liver microsomes oxidized cortisol to cortisone with similar K m and Vmax values for NAD+ to NADP+ as cosubstrates (K m of 4·3 μmol/l and 5·0 μmol/l respectively). The NAD+ preference for the oxidation of 10−6 mol/l cortisol described above may be due to a second, NAD+-preferring 11β-HSD with a K m of 1·4 μmol/l. In contrast to the kidney, liver microsomes actively converted cortisone to cortisol with a preference for NADPH (K m: 1·2 μmol/l; Vmax: 467 nmol/min per mg protein). Thus, the main liver enzyme is similar to the oxidoreductase of other species (11β-HSD-I) and is also present in the kidney, while the main kidney enzyme is clearly NAD+-preferring. This kidney enzyme (analogous to 11β-HSD-II of other species) seems to be suitable for the protection of the MC receptor from the high free plasma cortisol levels of the guinea pig.

Journal of Endocrinology (1997) 153, 291–298

Restricted access
Marcus Quinkler Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TH, United Kingdom

Search for other papers by Marcus Quinkler in
Google Scholar
PubMed
Close
,
Binayak Sinha Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TH, United Kingdom

Search for other papers by Binayak Sinha in
Google Scholar
PubMed
Close
,
Jeremy W Tomlinson Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TH, United Kingdom

Search for other papers by Jeremy W Tomlinson in
Google Scholar
PubMed
Close
,
Iwona J Bujalska Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TH, United Kingdom

Search for other papers by Iwona J Bujalska in
Google Scholar
PubMed
Close
,
Paul M Stewart Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TH, United Kingdom

Search for other papers by Paul M Stewart in
Google Scholar
PubMed
Close
, and
Wiebke Arlt Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TH, United Kingdom

Search for other papers by Wiebke Arlt in
Google Scholar
PubMed
Close

Women with polycystic ovary syndrome (PCOS) have high circulating androgens, thought to originate from ovaries and adrenals, and frequently suffer from the metabolic syndrome including obesity. However, serum androgens are positively associated with body mass index (BMI) not only in PCOS, but also in simple obesity, suggesting androgen synthesis within adipose tissue. Thus we investigated androgen generation in human adipose tissue, including expression of 17β-hydroxysteroid dehydrogenase (17β-HSD) isozymes, important regulators of sex steroid metabolism. Paired omental and subcutaneous fat biopsies were obtained from 27 healthy women undergoing elective abdominal surgery (age range 30–50 years; BMI 19.7–39.2 kg/m2). Enzymatic activity assays in preadipocyte proliferation cultures revealed effcient conversion of androstenedione to testosterone in both subcutaneous and omental fat. RT-PCR of whole fat and preadipocytes of subcutaneous and omental origin showed expression of 17β-HSD types 4 and 5, but no relevant expression of 17β-HSD types 1, 2, or 3. Microarray analysis confirmed this expression pattern (17β-HSD5>17β-HSD4) and suggested a higher expression of 17β-HSD5 in subcutaneous fat. Accordingly, quantitative real-time RT-PCR showed significantly higher expression of 17β-HSD5 in subcutaneous compared with omental fat (P<0.05). 17β-HSD5 expression in subcutaneous, but not omental, whole fat correlated significantly with BMI (r=0.51, P<0.05). In keeping with these findings, 17β-HSD5 expression in subcutaneous fat biopsies from six women taking part in a weight loss study decreased significantly with weight loss (P<0.05). A role for 17β-HSD5 in adipocyte differentiation was further supported by the observed increase in 17β-HSD5 expression upon differentiation of stromal preadipocytes to mature adipocytes (n=5; P<0.005), which again was higher in cells of subcutaneous origin. Functional activity of 17β-HSD5 also significantly increased with differentiation, revealing a net gain in androgen activation (androstenedione to testosterone) in subcutaneous cultures, contrasting with a net gain in androgen inactivation (testosterone to androstenedione) in omental cultures. Thus, human adipose tissue is capable of active androgen synthesis catalysed by 17β-HSD5, and increased expression in obesity may contribute to circulating androgen excess.

Free access
C Bumke-Vogt
Search for other papers by C Bumke-Vogt in
Google Scholar
PubMed
Close
,
V Bahr
Search for other papers by V Bahr in
Google Scholar
PubMed
Close
,
S Diederich
Search for other papers by S Diederich in
Google Scholar
PubMed
Close
,
SM Herrmann
Search for other papers by SM Herrmann in
Google Scholar
PubMed
Close
,
I Anagnostopoulos
Search for other papers by I Anagnostopoulos in
Google Scholar
PubMed
Close
,
W Oelkers
Search for other papers by W Oelkers in
Google Scholar
PubMed
Close
, and
M Quinkler
Search for other papers by M Quinkler in
Google Scholar
PubMed
Close

Due to high binding affinity of progesterone to the human mineralocorticoid receptor (hMR), progesterone competes with the natural ligand aldosterone. In order to analyse how homeostasis can be maintained by mineralocorticoid function of aldosterone at the MR, especially in the presence of elevated progesterone concentrations during the luteal phase and pregnancy, we investigated protective mechanisms such as the decrease of free progesterone by additional binding sites and progesterone metabolism in renal cells. As a prerequisite for sequestration of progesterone by binding to the human progesterone receptor (hPR) we demonstrated the existence of hPR expression in female and male kidney cortex and medulla at the level of transcription and translation. We identified hPR RNA by sequencing the RT-PCR product and characterised the receptor by ligand binding and scatchard plot analysis. The localisation of renal hPR was shown predominantly in individual epithelial cells of distal tubules by immunohistology, and the isoform hPR-B was detected by Western blot analysis. As a precondition for renal progesterone metabolism, we investigated the expression of steroid-metabolising enzymes for conversion of progesterone to metabolites with lower affinity to the hMR. We identified the enzyme 17alpha-hydroxylase for renal 17alpha-hydroxylation of progesterone. For 20alpha-reduction, different hydroxysteroid dehydrogenases (HSDs) such as 20alpha-HSD, 17beta-HSD type 5 (3alpha-HSD type 2) and 3alpha-HSD type 3 were found. Further, we detected the expression of 3beta-HSD type 2 for 3beta-reduction, 5alpha-reductase (Red) type 1 for 5alpha-reduction, and 5beta-Red for 5beta-reduction of progesterone in the human kidney. Therefore metabolism of progesterone and/or binding to hPR could reduce competition with aldosterone at the MR and enable the mineralocorticoid function.

Free access
M Quinkler
Search for other papers by M Quinkler in
Google Scholar
PubMed
Close
,
H Troeger
Search for other papers by H Troeger in
Google Scholar
PubMed
Close
,
E Eigendorff
Search for other papers by E Eigendorff in
Google Scholar
PubMed
Close
,
C Maser-Gluth
Search for other papers by C Maser-Gluth in
Google Scholar
PubMed
Close
,
A Stiglic
Search for other papers by A Stiglic in
Google Scholar
PubMed
Close
,
W Oelkers
Search for other papers by W Oelkers in
Google Scholar
PubMed
Close
,
V Bahr
Search for other papers by V Bahr in
Google Scholar
PubMed
Close
, and
S Diederich
Search for other papers by S Diederich in
Google Scholar
PubMed
Close

The 11beta-hydroxysteroid dehydrogenases (11beta-HSDs) convert cortisol to its inactive metabolite cortisone and vice versa. 11beta-HSD type 1 (11beta-HSD-1) functions as a reductase in vivo, regulating intracellular cortisol levels and its access to the glucocorticoid receptor. In contrast, 11beta-HSD-2 only mediates oxidation of natural glucocorticoids, and protects the mineralocorticoid receptor from high cortisol concentrations. We investigated the in vivo and in vitro effects of ACTH on the recently characterized 11beta-HSDs in guinea pig liver and kidney. Tissue slices of untreated guinea pigs were incubated with (3)H-labelled cortisol or cortisone and ACTH(1-24) (10(-10) and 10(-9) mol/l). The 11beta-HSD activities in liver and kidney slices were not influenced by in vitro incubation with ACTH(1-24). In addition, guinea pigs were treated with ACTH(1-24) or saline injections s.c. for 3 days. Liver and kidney tissue slices of these animals were incubated with (3)H-labelled cortisol or cortisone. In vivo ACTH treatment significantly increased reductase and decreased oxidase activity in liver and kidney. Furthermore, 11beta-HSD-1 activity assessed by measurement of the urinary ratio of (tetrahydrocortisol (THF)+5alphaTHF)/(tetrahydrocortisone) was significantly increased after ACTH treatment compared with the control group. Plasma levels of cortisol, cortisone, progesterone, 17-hydroxyprogesterone and androstenedione increased significantly following in vivo ACTH treatment. The enhanced reductase activity of the hepatic and renal 11beta-HSD-1 is apparently caused by cortisol or other ACTH-dependent steroids rather than by ACTH itself. This may be an important fine regulation of the glucocorticoid tonus for stress adaptation in every organ, e.g. enhanced gluconeogenesis in liver.

Free access