Search Results
Search for other papers by TC Groves in
Google Scholar
PubMed
Search for other papers by GF Wagner in
Google Scholar
PubMed
Search for other papers by GE DiMattia in
Google Scholar
PubMed
Stanniocalcin (STC) is a glycoprotein hormone first discovered in fish as a homeostatic regulator of calcium and phosphate transport; it has recently been discovered in mammals, in which it appears to have a similar role. It has also been implicated in a number of different physiological processes through correlative studies, but the factors regulating its production have not been elucidated. In this report, we show that steady-state STC mRNA levels in the mouse corticotrope tumor line, AtT-20, were exquisitely sensitive to glucocorticoids. Hydrocortisone and dexamethasone (Dex) induced a dramatic reduction in steady-state STC mRNA levels in AtT-20 cells through a post-transcriptional mechanism. Similarly, glucocorticoids down-regulated STC mRNA levels in the human fibrosarcoma cell line, HT1080. The specificity of the glucocorticoid-mediated decrease in STC mRNA abundance was shown using the glucocorticoid receptor antagonist, RU-486. Activation of the cAMP-signaling pathway in glucocorticoid-cultured AtT-20 cells transiently restored STC gene expression. Treatment of AtT-20 cells with the transcriptional inhibitor, actinomycin D, rescued steady-state STC mRNA levels from Dex-induced repression, indicating that the Dex-mediated decrease in STC gene expression requires current gene transcription. Taken together, these results describe a unique model system in which cAMP-stimulated events can reverse post-transcriptional repression of gene expression by glucocorticoids.
Search for other papers by R Kurotani in
Google Scholar
PubMed
Search for other papers by S Yoshimura in
Google Scholar
PubMed
Search for other papers by Y Iwasaki in
Google Scholar
PubMed
Search for other papers by K Inoue in
Google Scholar
PubMed
Search for other papers by A Teramoto in
Google Scholar
PubMed
Search for other papers by RY Osamura in
Google Scholar
PubMed
The pituitary-specific POU-homeodomain transcription factor, Pit-1, is known to regulate the expression of the GH gene in somatotropes, prolactin (PRL) in lactotropes, and TSH in thyrotropes. It is not normally expressed in corticotropes or gonadotropes. We addressed the question of whether exogenous Pit-1 was sufficient to induce ectopic transcription of the GH gene in the corticotropic cell line, AtT-20, or the gonadotropic cell line, alpha T3-1. A fusion gene composed of enhanced green fluorescent protein gene and human Pit-1 cDNA was transfected into AtT-20 and alpha T3-1 cells. The endogenous mouse GH mRNA was induced in three of nine AtT-20 cell lines and one of three alpha T3-1 cell lines containing the fusion gene. A small amount of GH protein was also detected in these cell lines. These data indicate that transfected Pit-1 is capable of inducing transcription of the GH gene in AtT-20 cells and alpha T3-1 cells. These data also suggest that synergistic co-factors might be required to transcribe the GH gene effectively for translation into GH protein. Furthermore, our findings support the hypothesis that the function of anterior pituitary cells is determined by the combinatorial action of specific transcription factors.
Search for other papers by T Komatsu in
Google Scholar
PubMed
Search for other papers by F Itoh in
Google Scholar
PubMed
Search for other papers by S Mikawa in
Google Scholar
PubMed
Search for other papers by K Hodate in
Google Scholar
PubMed
Resistin has been suggested to induce insulin resistance in obesity and to inhibit adipocyte differentiation. In lactating cows, glucose uptake in the mammary gland is a rate-limiting step in milk synthesis, and to supply glucose to the mammary gland, insulin resistance increases. We examined the expression of the resistin gene by real-time PCR of cDNA in the adipose tIssue and mammary gland of lactating and non-lactating cows. Lactation induced a significant increase of resistin expression in adipose tIssue compared with that in the dry period, and decreased resistin expression in the mammary gland. There were no significant differences in the expression of insulin responsive glucose transporter (GLUT4) mRNA between the adipose tIssue of lactating and non-lactating cows, and GLUT4 mRNA was not detected in the mammary gland. The plasma insulin concentration was lower in lactating cows than in non-lactating cows. These results indicate that the pattern of resistin expression in peripheral tIssues is changed in association with milk production. The increase of resistin expression and maintenance of a lower level of plasma insulin concentration may decrease glucose availability by increasing insulin resistance in adipose tIssue. Additionally, our results suggest that the decrease of resistin expression in the mammary gland may influence on the insulin-dependent glucose uptake in mammary epithelial cells during lactation.
Search for other papers by O Isozaki in
Google Scholar
PubMed
Search for other papers by T Tsushima in
Google Scholar
PubMed
Search for other papers by M Miyakawa in
Google Scholar
PubMed
Search for other papers by Y Nozoe in
Google Scholar
PubMed
Search for other papers by H Demura in
Google Scholar
PubMed
Search for other papers by H Seki in
Google Scholar
PubMed
Growth hormone (GH) is known to interact with adipose tissue and to induce lipolysis. Adipocytes produce leptin which regulates appetite and energy expenditure. In order to elucidate the role of GH in leptin production, we studied the effect of GH on leptin gene expression and body fat in fatty Zucker rats, a model of obesity with resistance to both leptin and insulin. Recombinant human GH administered subcutaneously at 0.5 mg/kg per day (low dose) as well as at 1.65 mg/kg per day (high dose) reduced leptin mRNA levels in epididymal fat tissue but not in subcutaneous fat tissue after 7 days. GH administration only at the high dose reduced percentage body fat. Insulin-like growth factor-I infusion (200 microg/kg per day) did not change percentage body fat or leptin mRNA levels in epididymal fat. These observations suggest that GH directly interacts with adipose tissue and reduces leptin gene expression in visceral fat tissue.
Search for other papers by J Liu in
Google Scholar
PubMed
Search for other papers by AI Kahri in
Google Scholar
PubMed
Search for other papers by P Heikkila in
Google Scholar
PubMed
Search for other papers by R Voutilainen in
Google Scholar
PubMed
Adrenomedullin (ADM) is a polypeptide originally discovered in a human pheochromocytoma and is also present in normal adrenal medulla. It has been proposed that ADM could be involved in the regulation of adrenal steroidogenesis via paracrine mechanisms. Our aim was to find out if ADM gene is expressed in adrenocortical tumors and how ADM gene expression is regulated in adrenal cells. ADM mRNA was detectable by Northern blotting in most normal and hyperplastic adrenals, adenomas and carcinomas. The average concentration of ADM mRNA in the hormonally active adrenocortical adenomas was about 80% and 7% of that in normal adrenal glands and separated adrenal medulla respectively. In adrenocortical carcinomas, the ADM mRNA concentration was very variable, but on average it was about six times greater than that in normal adrenal glands. In pheochromocytomas, ADM mRNA expression was about ten times greater than that in normal adrenals and three times greater than in separated adrenal medulla. In primary cultures of normal adrenal cells, a protein kinase C inhibitor, staurosporine, reduced ADM mRNA accumulation in a dose- and time-dependent fashion (P < 0.01), whereas it simultaneously increased the expression of human cholesterol side-chain cleavage enzyme (P450 scc) gene (a key gene in steroidogenesis). In cultured Cushing's adenoma cells, adrenocorticotropin, dibutyryl cAMP ((Bu)2cAMP) and staurosporine inhibited the accumulation of ADM mRNA by 40, 50 and 70% respectively (P < 0.05), whereas the protein kinase C activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA), increased it by 50% (P < 0.05). In primary cultures of pheochromocytoma cells, treatment with (Bu)2cAMP for 1 and 3 days increased ADM mRNA accumulation two- to threefold (P < 0.05). Our results show that ADM mRNA is present not only in adrenal medulla and pheochromocytomas, but also in adrenocortical neoplasms. Both protein kinase A- and C-dependent mechanisms regulate ADM mRNA expression in adrenocortical and pheochromocytoma cells supporting the suggested role for ADM as an autocrine or paracrine (or both) regulator of adrenal function.
Search for other papers by MG Baroni in
Google Scholar
PubMed
Search for other papers by MG Cavallo in
Google Scholar
PubMed
Search for other papers by M Mark in
Google Scholar
PubMed
Search for other papers by L Monetini in
Google Scholar
PubMed
Search for other papers by B Stoehrer in
Google Scholar
PubMed
Search for other papers by P Pozzilli in
Google Scholar
PubMed
Animal insulinoma cell lines are widely used to study physiological and pathophysiological mechanisms involved in glucose metabolism and to establish in vitro models for studies on beta-cells. In contrast, human insulinoma cell lines are rarely used because of difficulties in obtaining and culturing them for long periods. The aim of our study was to investigate, under different experimental conditions, the capacity of the human insulinoma cell line CM to retain beta-cell function, particularly the expression of constitutive beta-cell genes (insulin, the glucose transporters GLUT1 and GLUT2, glucokinase), intracellular and secreted insulin, beta-cell granules, and cAMP content. Results showed that CM cells from an early-passage express specific beta-cell genes in response to glucose stimulation, in particular the insulin and GLUT genes. Such capacity is lost at later passages when cells are cultured at standard glucose concentrations. However, if cultured at lower glucose concentration (0.8 mM) for a longer time, CM cells re-acquire the capacity to respond to glucose stimulation, as shown by the increased expression of beta-cell genes (insulin, GLUT2, glucokinase). Nonetheless, insulin secretion could not be restored under such experimental conditions despite the presence of intracellular insulin, although cAMP response to a potent activator of adenylate cyclase, forskolin, was present indicating a viable system. In conclusion, these data show that the human insulinoma cell line CM, at both early-passage and late-passage, posseses a functional glucose-signalling pathway and insulin mRNA expression similar to normal beta-cells, representing, therefore, a good model for studies concerning the signalling and expression of beta-cells. Furthermore, we have previously shown that it is also a good model for immunological studies. In this respect it is important to note that the CM cell line is one of the very few existing human beta-cell lines in long-term culture.
Search for other papers by A Sanigorski in
Google Scholar
PubMed
Search for other papers by D Cameron-Smith in
Google Scholar
PubMed
Search for other papers by P Lewandowski in
Google Scholar
PubMed
Search for other papers by K Walder in
Google Scholar
PubMed
Search for other papers by A de Silva in
Google Scholar
PubMed
Search for other papers by G Morton in
Google Scholar
PubMed
Search for other papers by GR Collier in
Google Scholar
PubMed
We examined the effects of leptin treatment on the expression of key genes in adipocyte metabolism in Psammomys obesus (P. obesus), a polygenic rodent model of obesity. Lean and obese P. obesus were given three daily intraperitoneal injections of either saline or leptin (total of 45 mg/kg per day) for 7 days. In lean animals, leptin treatment led to reductions in food intake, body weight and fat mass. Pair-fed animals matched for the reduction in food intake of the lean leptin-treated animals demonstrated similar reductions in body weight and fat mass. In obese P. obesus, leptin treatment failed to have any effect on body weight or body fat mass, indicating leptin resistance. Lipoprotein lipase, hormone-sensitive lipase and peroxisome proliferator activated receptor gamma 2 mRNA levels were significantly reduced in lean leptin-treated animals, whereas pair-fed animals were similar to lean controls. Uncoupling protein 2 and glycerol phosphate acyltransferase were also reduced in the lean leptin-treated animals, but not significantly so. Obese animals did not show any gene expression changes after leptin treatment. In conclusion, high circulating concentrations of leptin in lean P. obesus resulted in decreased gene expression of a number of key lipid enzymes, independent of changes in food intake, body weight and fat mass. These effects of leptin were not found in obese P. obesus.
Search for other papers by YM Cho in
Google Scholar
PubMed
Search for other papers by DA Lewis in
Google Scholar
PubMed
Search for other papers by PF Koltz in
Google Scholar
PubMed
Search for other papers by V Richard in
Google Scholar
PubMed
Search for other papers by TA Gocken in
Google Scholar
PubMed
Search for other papers by TJ Rosol in
Google Scholar
PubMed
Search for other papers by RL Konger in
Google Scholar
PubMed
Search for other papers by DF Spandau in
Google Scholar
PubMed
Search for other papers by J Foley in
Google Scholar
PubMed
Cultured primary human keratinocytes were the first non-cancer-derived cell type reported to produce the humoral hypercalcemia factor, parathyroid hormone-related protein (PTHrP). Emerging evidence suggests that only a subset of keratinocytes produce high levels of PTHrP in vivo. We found that the PTHrP mRNA content of intact human skin was minimal, whereas transcripts were easily detectable in primary keratinocytes derived from those skin samples. We hypothesized that conditions associated with growth in culture activated PTHrP gene expression in primary keratinocytes. In culture, keratinocytes produce a number of epidermal growth factor (EGF)-like ligands (transforming growth factor-alpha, heparin binding-EGF and amphiregulin) and their receptor, ErbB1. Treatment of keratinocytes with a specific erbB1 inhibitor (PD153035) reduced PTHrP mRNA levels by >80% in rapidly growing keratinocytes. Treatment of keratinocytes with reagents that neutralize amphiregulin reduced PTHrP mRNA levels by approximately 60%. Blockade of erbB1 signaling reduces transcription from the endogenous PTHrP P3-TATA promoter. The Ets transcription factor-binding site, 40 bases upstream of the P3 promoter, is required for baseline expression of PTHrP reporter gene constructs in keratinocytes; in addition, cotransfection of Ets-1 and Ets-2 expression vectors activate the reporter gene constructs. Finally, disruption of both ras and raf signaling reduce reporter gene expression by 80%, suggesting that ErbB1 signaling is mediated by the classic ras/MAP kinase pathway. These findings suggest that acquisition of EGF-like ligand expression has the potential to substantially activate PTHrP gene expression in the epidermis.
Search for other papers by PJ Scarpace in
Google Scholar
PubMed
Search for other papers by M Nicolson in
Google Scholar
PubMed
Search for other papers by M Matheny in
Google Scholar
PubMed
To determine the effects of food restriction and leptin administration on several transcripts involved in energy homeostasis, we examined leptin, uncoupling proteins (UCP) 1, 2 and 3, lipoprotein lipase (LPL), beta3-adrenergic receptors (beta3AR) and hormone-sensitive lipase (HSL) mRNA levels in brown adipose tissue (BAT) and epididymal (EWAT) and perirenal (PWAT) white adipose tissue in three groups of rats. The groups were administered leptin for 1 week, or had food restricted to the amount of food consumed by the leptin-treated animals, or had free access to food. Leptin administration increased serum leptin concentrations 50-fold and decreased food consumption by 43%, whereas serum insulin and corticosterone concentrations were unchanged. Leptin increased LPL mRNA by 80%, UCP1 mRNA twofold, and UCP3 mRNA levels by 62% in BAT, and increased UCP2 mRNA levels twofold in EWAT. In contrast, UCP2 mRNA levels were unchanged in PWAT and BAT. In WAT from food-restricted rats, leptin gene expression was diminished by 40% compared with those fed ad libitum. With leptin administration, there was a further 50% decrease in leptin expression. LPL mRNA levels were decreased by food restriction but not by leptin in WAT, whereas beta3AR and HSL mRNA levels were unchanged with either food restriction or leptin treatment. The present study indicates that leptin increases the gene expression of UCP2 in EWAT and that of UCP1, UCP3 and LPL in BAT, whereas reduced food consumption but not leptin, decreases LPL expression in WAT. In addition, with leptin administration there is a decrease in leptin gene expression in WAT, independent of food intake and serum insulin and corticosterone concentrations.
Search for other papers by M Raccurt in
Google Scholar
PubMed
Search for other papers by PE Lobie in
Google Scholar
PubMed
Search for other papers by E Moudilou in
Google Scholar
PubMed
Search for other papers by T Garcia-Caballero in
Google Scholar
PubMed
Search for other papers by L Frappart in
Google Scholar
PubMed
Search for other papers by G Morel in
Google Scholar
PubMed
Search for other papers by HC Mertani in
Google Scholar
PubMed
We have demonstrated and localized human GH (hGH) gene expression in surgical specimens of normal human mammary gland and in proliferative disorders of the mammary gland of increasing severity using sensitive in situ RT-PCR methodology. hGH mRNA identical to pituitary hGH mRNA was first detected by RT-PCR of RNA derived from samples of normal human mammary gland. Cellular localization of hGH gene expression in the normal mammary gland exhibited restriction to luminal epithelial and myoepithelial cells of the ducts and to scattered stromal fibroblasts. We subsequently examined the expression of the hgh gene in three progressive proliferative disorders of the human mammary gland, i.e. A benign lesion (fibroadenoma), a pre-invasive stage (intraductal carcinoma) and an invasive ductal carcinoma. hGH mRNA was readily detected in the tumoral and non-tumoral epithelial components and also in cells of the reactive stroma including fibroblasts, myofibroblastic and myoepithelial cells, inflammatory infiltrate lymphocytes and endothelial cells in areas of neovascularization. In all three proliferative disorders examined, the intensity of the cellular labeling observed in both the epithelial and stromal compartments was always stronger compared with that in adjacent normal tissue. hGH protein was also present in significantly higher concentration in extracts derived from proliferative disorders of the mammary gland compared with extracts derived from normal mammary gland. We also examined hGH gene expression in axillary lymph nodes not containing and containing metastatic mammary carcinoma. hGH gene expression was evidenced in metastatic mammary carcinoma cells and in reactive stromal cells by both in situ hybridization and in situ RT-PCR. In contrast, in lymph nodes not containing metastatic mammary carcinoma, hGH mRNA was detected only by use of in situ RT-PCR. Thus, increased expression of the hGH gene in the epithelial component and the de novo stromal expression in proliferative disorders of the mammary gland are suggestive of a pivotal role for autocrine hGH in neoplastic progression of the mammary gland.