Search Results
Search for other papers by R. Bilek in
Google Scholar
PubMed
Search for other papers by P. J. Gkonos in
Google Scholar
PubMed
Search for other papers by M. A. Tavianini in
Google Scholar
PubMed
Search for other papers by D. G. Smyth in
Google Scholar
PubMed
Search for other papers by B. A. Roos in
Google Scholar
PubMed
ABSTRACT
Thyrotrophin-releasing hormone (TRH)-immunoreactive peptides were extracted from rat prostate and divided into two groups by mini-column cation exchange chromatography. The amounts of the peptides in each group were determined by radioimmunoassay with a TRH antiserum. The unretained peptides which lacked a basic group and the retained peptides which possessed a basic group were further purified by high-performance liquid chromatography. The unretained fraction was found to contain a series of TRH-immunoreactive peptides, one of which corresponded chromatographically to synthetic pGlu-Glu-Pro amide and another to pGlu-Phe-Pro amide. None of the TRH-immunoreactive peptides in either fraction exhibited the chromatographic behaviour of TRH. Additional evidence for the absence of TRH gene expression in the prostate was obtained by Northern blot analysis and by application of polymerase chain reaction amplification, which failed to reveal TRH mRNA. Furthermore the preproTRH-derived peptide, preproTRH(53–74), could not be detected by radioimmunoassay.
The influence of thyroid status was investigated on the levels of the TRH-like peptides in the prostate. Adult rats were treated chronically with thyroxine (T4) or propylthiouracil (PTU) and the concentrations of the TRH-immunoreactive peptides were determined by chromatography and radioimmunoassay. Treatment with T4 caused the levels of the neutral and acidic TRH-like peptides to fall to approximately one-third of the levels in the controls. No significant difference from the controls was seen in the concentrations of the peptides in the prostates of rats rendered hypothyroid by administration of PTU.
The results demonstrate that rat prostate contains TRH-immunoreactive peptides which are not derived from the TRH gene. It is concluded that the TRH-like peptides arise from one or more genes which are structurally distinct from that which codes for the TRH preprohormone. Since these peptides are amidated and their levels are sensitive to hormone administration, it is likely that they fulfil a biological function.
Journal of Endocrinology (1992) 132, 177–184
Search for other papers by H. Ikegami in
Google Scholar
PubMed
Search for other papers by H. Jikihara in
Google Scholar
PubMed
Search for other papers by K. Koike in
Google Scholar
PubMed
Search for other papers by K. Morishige in
Google Scholar
PubMed
Search for other papers by H. Kurachi in
Google Scholar
PubMed
Search for other papers by N. Yamamoto in
Google Scholar
PubMed
Search for other papers by K. Hirota in
Google Scholar
PubMed
Search for other papers by A. Miyake in
Google Scholar
PubMed
Search for other papers by O. Tanizawa in
Google Scholar
PubMed
ABSTRACT
The administration of thyrotrophin-releasing hormone (TRH) causes a variety of dopamine-related biological events. To understand the specific role of TRH on rat hypothalamic dopamine neurones, we examined the in-vivo effects of intraventricular (i.c.v.) infusion of TRH on the release and synthesis of prolactin in the rat pituitary gland and on the changes in binding of [3H]MeTRH and dopamine turnover rates in rat hypothalamus. We have also examined the in-vitro effects of TRH on the release of [3H]dopamine from dispersed tuberoinfundibular dopamine neurones.
Female rats were treated with i.c.v. infusions of 1 μmol TRH/l daily for 1, 3 and 7 days using Alzet osmotic pumps. Following 7 days of treatment the serum prolactin concentrations were significantly decreased. A reduction in hypothalamic TRH-binding sites (Bmax) was also apparent but the dissociation constant (K d) was unaffected. Northern blot analysis of total RNA isolated from the pituitary glands of control animals using 32P-labelled prolactin cDNA as a probe indicated the presence of three species of prolactin gene transcripts of approximately 3·7, 2·0 and 1·0 kb in size, and these were decreased by TRH treatment. We examined the turnover rate of dopamine in the rat hypothalamus when TRH was administered i.c.v. for 7 days. There was a significant increase in 3,4-dihydroxyphenylacetic acid/dopamine ratio with TRH treatment. Moreover, exposure to TRH stimulated [3H]dopamine release from rat tuberoinfundibular neurones in a time- and dose-dependent manner. Dopamine receptor antagonists such as SCH23390 and (−)sulpiride, and other neuropeptides such as vasoactive intestinal peptide and oxytocin did not affect TRH-stimulated [3H]dopamine release.
These data suggest that i.c.v. administration of TRH might decrease both prolactin secretion and accumulation of prolactin gene transcripts in the pituitary by stimulating dopamine release from tuberoinfundibular neurones.
Journal of Endocrinology (1992) 133, 59–66
Search for other papers by T. Iriuchijima in
Google Scholar
PubMed
Search for other papers by M. Mori in
Google Scholar
PubMed
ABSTRACT
To clarify the mechanism(s) underlying the TRH-induced refractory state of the anterior pituitary, we evaluated rat pituitary inositol phospholipid hydrolysis in the presence of staurosporine. TRH caused a time- and dose-dependent accumulation of inositol phosphates in rat anterior pituitary slices. Pretreatment with 550 nmol TRH/l completely abolished the subsequent accumulation of inositol phosphates in response to 140 nmol TRH/l. TRH-stimulated accumulation of inositol phosphates did not occur after pretreatment with 0·2 μmol phorbol ester/l. Refractoriness of inositol phospholipid hydrolysis which was produced by pretreatment with TRH and phorbol ester was inhibited by staurosporine. The present data support the hypothesis that protein kinase C plays a profound role in TRH induction of the refractory state of inositol phospholipid hydrolysis in the anterior pituitary.
Journal of Endocrinology (1990) 124, 75–79
Search for other papers by A Boelen in
Google Scholar
PubMed
Search for other papers by J Kwakkel in
Google Scholar
PubMed
Search for other papers by W M Wiersinga in
Google Scholar
PubMed
Search for other papers by E Fliers in
Google Scholar
PubMed
in rats starvation results in decreased serum thyroid hormones and thyroid-stimulating hormone (TSH) concentrations and decreased TSH releasing hormone (TRH) mRNA expression in the hypothalamic paraventricular nucleus (PVN) associated with a modest
Search for other papers by P Fragner in
Google Scholar
PubMed
Search for other papers by SL Lee in
Google Scholar
PubMed
Search for other papers by S Aratan de Leon in
Google Scholar
PubMed
TRH was initially found in the hypothalamus and regulates TSH secretion. TRH is also produced by insulin-containing beta-cells. Endogenous TRH positively regulates glucagon secretion and attenuates pancreatic exocrine secretion. We have previously shown that triiodothyronine (T(3)) down-regulates pre-pro-TRH gene expression in vivo and in vitro. The present study was designed to determine the initial impact of T(3) on rat TRH gene promoter and to compare this effect with that of dexamethasone (Dex). Primary islet cells and neoplastic cells (HIT T-15 and RIN m5F) were transiently transfected with fragments of the 5'-flanking sequence of TRH fused to the luciferase reporter gene. The persistence of high TRH concentrations in fetal islets in culture, probably due to transactivating factors, allowed us to explore how T(3) and Dex regulate the TRH promoter activity in transfected cells and whether the hormone effect is dependent on the cell type considered. TRH gene promoter activity is inhibited by T(3) in primary but not neoplastic cells and stimulated by Dex in both primary and neoplastic cells of islets. These findings validate previous in vivo and in vitro studies and indicate the transcriptional impact of these hormones on TRH gene expression in the pancreatic islets.
Search for other papers by BH Duvilanski in
Google Scholar
PubMed
Search for other papers by D Pisera in
Google Scholar
PubMed
Search for other papers by A Seilicovich in
Google Scholar
PubMed
Search for other papers by M del Carmen Diaz in
Google Scholar
PubMed
Search for other papers by M Lasaga in
Google Scholar
PubMed
Search for other papers by E Isovich in
Google Scholar
PubMed
Search for other papers by MO Velardez in
Google Scholar
PubMed
Substance P (SP) may participate as a paracrine and/or autocrine factor in the regulation of anterior pituitary function. This project studied the effect of TRH on SP content and release from anterior pituitary and the role of SP in TRH-induced prolactin release. TRH (10(-7) M), but not vasoactive intestinal polypeptide (VIP), increased immunoreactive-SP (ir-SP) content and release from male rat anterior pituitary in vitro. An anti-prolactin serum also increased ir-SP release and content. In order to determine whether intrapituitary SP participates in TRH-induced prolactin release, anterior pituitaries were incubated with TRH (10(-7) M) and either WIN 62,577, a specific antagonist of the NK1 receptor, or a specific anti-SP serum. Both WIN 62,577 (10(-8) and 10(-7) M) and the anti-SP serum (1:250) blocked TRH-induced prolactin release. In order to study the interaction between TRH and SP on prolactin release, anterior pituitaries were incubated with either TRH (10(-7) M) or SP, or with both peptides. SP (10(-7) and 10(-6) M) by itself stimulated prolactin release. While 10(-7) M SP did not modify the TRH effect, 10(-6) M SP reduced TRH-stimulated prolactin release. SP (10(-5) M) alone failed to stimulate prolactin release and markedly decreased TRH-induced prolactin release. The present study shows that TRH stimulates ir-SP release and increases ir-SP content in the anterior pituitary. Our data also suggest that SP may act as a modulator of TRH effect on prolactin secretion by a paracrine mechanism.
Search for other papers by J M M Rondeel in
Google Scholar
PubMed
Search for other papers by W Klootwijk in
Google Scholar
PubMed
Search for other papers by E Linkels in
Google Scholar
PubMed
Search for other papers by G A C van Haasteren in
Google Scholar
PubMed
Search for other papers by W J de Greef in
Google Scholar
PubMed
Search for other papers by T J Visser in
Google Scholar
PubMed
Abstract
TRH-like peptides share the N- and C-terminal amino acids with TRH (pGlu-His-Pro-NH2) but differ in the middle amino acid residue. One of them, pGlu-Glu-Pro-NH2 (<EEP-NH2; EEP) is present in the rat pituitary gland, but its biological significance is unknown. We investigated the localization and regulation of this tripeptide in the rat pituitary gland. To distinguish between TRH and EEP two antisera were used for RIA: specificity of antiserum 4319 for the TRH-like peptides pGlu-Phe-Pro-NH2 and EEP was equal to or greater than that for TRH, whereas antiserum 8880 is TRH-specific. Our RIA data showed the presence of a TRH-like peptide in the anterior pituitary gland (AP) and of TRH in the posterior pituitary gland (PP). The TRH-like peptide in the AP was identified on anion-exchange chromatography and subsequent HPLC as EEP. Pathophysiological conditions such as altered thyroid and adrenal status and suckling did not affect pituitary gland levels of EEP. In general, however, there is a clear sex difference: levels of EEP are higher in male than in female rats. In both sexes gonadectomy leads to a substantial two- to threefold rise in EEP levels, abolishing the sex difference. Testosterone administration to gonadectomized male rats normalizes levels of EEP again. Disulfiram, an inhibitor of the enzyme peptidylglycine α-amidating monooxygenase, reduced levels of EEP in the AP by approximately 50%. In conclusion: 1) the TRH-like peptide EEP is present in the AP, whereas TRH is confined to the PP, 2) levels of EEP in the AP are regulated by sex steroids, 3) EEP is actively amidated in the AP and thus seems to be produced from a glycine-extended progenitor sequence.
Journal of Endocrinology (1995) 145, 43–49
Search for other papers by S M Cockle in
Google Scholar
PubMed
Introduction
Thyrotrophin-releasing hormone (TRH) was the first of the hypothalamic releasing hormones to be characterised in the late 1960s, and was soon observed throughout the central nervous system (CNS) and in several peripheral tissues (for review, Hokfelt et al. 1989). Some time later, reports started to appear of unusual immunoreactivity which suggested the existence of peptides differing from TRH (pGlu-His-ProNH2) by the central amino acid: i.e. with the structure pGlu-Xaa-ProNH2, where Xaa is an unknown amino acid. The first of these TRH-related peptides to be identified was fertilization-promoting peptide (FPP) (Xaa: Glu) (Fig. 1), followed by three further peptides containing Phe, Gln or Tyr as the previously unknown amino acid (for review, Ashworth 1994). To date, FPP is the only TRH-related peptide known to have a definitive physiological role (Green et al. 1994).
Distribution of FPP
FPP occurs in high concentrations in rabbit prostate with low to undetectable
Search for other papers by W Klootwijk in
Google Scholar
PubMed
Search for other papers by R D H de Boer in
Google Scholar
PubMed
Search for other papers by E Sleddens-Linkels in
Google Scholar
PubMed
Search for other papers by S M Cockle in
Google Scholar
PubMed
Search for other papers by W W de Herder in
Google Scholar
PubMed
Search for other papers by K Bauer in
Google Scholar
PubMed
Search for other papers by T J Visser in
Google Scholar
PubMed
Search for other papers by W J de Greef in
Google Scholar
PubMed
Abstract
TRH-like immunoreactivity (TRH-LI) was estimated in methanolic extracts of rat tissues and blood by RIA using antiserum 4319, which binds most peptides with the structure pGlu-X-ProNH2, or antiserum 8880, which is specific for TRH (pGlu-His-ProNH2). TRH-LI (determined with antiserum 4319) and TRH (determined with antiserum 8880) contents were 8 and 8 ng/g in brain, 216 and 222 ng/g in hypothalamus, 6·5 and 6 ng/g in pancreas, 163 and 116 ng/g in male pituitary, 105 and 77 ng/g in female pituitary, 1 and 0·1 ng/g in salivary gland, 61 and 42 ng/g in thyroid, 12 and 3 ng/g in adrenal, 3 and 0·3 ng/g in prostate, and 11 and 0·8 ng/g in ovary respectively. Blood TRH-LI (antiserum 4319) and TRH (antiserum 8880) levels were 31 and 18 pg/ml in male rats, and 23 and 10 pg/ml in female rats respectively. Unextracted serum obtained from blood kept for at least 1 h at room temperature no longer contained authentic TRH but still contained TRH-LI (males 20·3 ± 3·1, females 15·9 ± 3·0 pg/ml; means ± s.e.m.). Isocratic reverse-phase HPLC showed that TRH-LI in serum is largely pGlu-Glu-ProNH2 (<EEP-NH2), a peptide previously found in prostate and anterior pituitary.
In urine, TRH-LI (antiserum 4319) and TRH (antiserum 8880) levels were 3·21 ± 0·35 and 0·32 ± 0·04 ng/ml in male rats and 3·75 ± 0·22 and 0·37 ± 0·04 ng/ml in female rats respectively (means ± s.e.m.). Anion-exchange chromatography on QAE-Sephadex showed that urine of normally fed rats contains both basic/neutral TRH-LI (b/nTRH-LI) and acidic TRH-LI (aTRH-LI) in a ratio of ≈ 40:60, and further analysis by HPLC indicated that aTRH-LI represents <EEP-NH2. Analysis of food extracts and urine from fasted rats demonstrated that b/nTRH-LI is derived from food particles spilled by the rats during urine collection, while aTRH-LI is endogenously produced. While urinary aTRH-LI levels were higher in female than in male rats (2·99 ± 0·41 vs 2·04 ± 0·20 ng/ml), the daily urinary excretion was similar in both sexes (females 15·6 ± 1·4, males 19·5 ± 2·0 ng/day). Intravenously injected <EEP-NH2 disappeared from serum with a half-life of ≈ 1 h, and was recovered unchanged and quantitatively in urine. In contrast, when <EEP-NH2 was administered with food, only ≈ 0·5% was recovered in urine. The urinary clearance rate of serum TRH-LI amounted to 0·52 ± 0·10 ml/min in males and 0·34 ± 0·05 ml/min in females.
In view of the presence of <EEP-NH2 in the anterior pituitary gland, and the regulation of its content in parallel with gonadotrophins, we examined the possibility that serum <EEP-NH2 is of pituitary origin and correlates with gonadotrophin secretion. However, treatments that alter pituitary <EEP-NH2 content and gonadotrophin release had no effect on serum TRH-LI or urinary aTRH-LI.
In conclusion, the TRH-like peptide <EEP-NH2 is present in rat serum and is excreted into the urine. Moreover, <EEP-NH2 in serum and urine is not derived from rat food and is probably not of pituitary origin.
Journal of Endocrinology (1997) 153, 411–421
Search for other papers by Patricia Joseph-Bravo in
Google Scholar
PubMed
Search for other papers by Lorraine Jaimes-Hoy in
Google Scholar
PubMed
Search for other papers by Jean-Louis Charli in
Google Scholar
PubMed
The authors and journal apologise for an error in the above paper, which appeared in volume 224 part 3, pages R139–R159 . The error relates to the legend to Figure 2 on page R141. Figure 2 Schematic representation of TRH synthesis. (A) The