Search Results

You are looking at 11 - 20 of 142 items for :

  • TRH receptor x
  • Refine by access: All content x
Clear All
H. Ikegami
Search for other papers by H. Ikegami in
Google Scholar
PubMed
Close
,
H. Jikihara
Search for other papers by H. Jikihara in
Google Scholar
PubMed
Close
,
K. Koike
Search for other papers by K. Koike in
Google Scholar
PubMed
Close
,
K. Morishige
Search for other papers by K. Morishige in
Google Scholar
PubMed
Close
,
H. Kurachi
Search for other papers by H. Kurachi in
Google Scholar
PubMed
Close
,
N. Yamamoto
Search for other papers by N. Yamamoto in
Google Scholar
PubMed
Close
,
K. Hirota
Search for other papers by K. Hirota in
Google Scholar
PubMed
Close
,
A. Miyake
Search for other papers by A. Miyake in
Google Scholar
PubMed
Close
, and
O. Tanizawa
Search for other papers by O. Tanizawa in
Google Scholar
PubMed
Close

ABSTRACT

The administration of thyrotrophin-releasing hormone (TRH) causes a variety of dopamine-related biological events. To understand the specific role of TRH on rat hypothalamic dopamine neurones, we examined the in-vivo effects of intraventricular (i.c.v.) infusion of TRH on the release and synthesis of prolactin in the rat pituitary gland and on the changes in binding of [3H]MeTRH and dopamine turnover rates in rat hypothalamus. We have also examined the in-vitro effects of TRH on the release of [3H]dopamine from dispersed tuberoinfundibular dopamine neurones.

Female rats were treated with i.c.v. infusions of 1 μmol TRH/l daily for 1, 3 and 7 days using Alzet osmotic pumps. Following 7 days of treatment the serum prolactin concentrations were significantly decreased. A reduction in hypothalamic TRH-binding sites (Bmax) was also apparent but the dissociation constant (K d) was unaffected. Northern blot analysis of total RNA isolated from the pituitary glands of control animals using 32P-labelled prolactin cDNA as a probe indicated the presence of three species of prolactin gene transcripts of approximately 3·7, 2·0 and 1·0 kb in size, and these were decreased by TRH treatment. We examined the turnover rate of dopamine in the rat hypothalamus when TRH was administered i.c.v. for 7 days. There was a significant increase in 3,4-dihydroxyphenylacetic acid/dopamine ratio with TRH treatment. Moreover, exposure to TRH stimulated [3H]dopamine release from rat tuberoinfundibular neurones in a time- and dose-dependent manner. Dopamine receptor antagonists such as SCH23390 and (−)sulpiride, and other neuropeptides such as vasoactive intestinal peptide and oxytocin did not affect TRH-stimulated [3H]dopamine release.

These data suggest that i.c.v. administration of TRH might decrease both prolactin secretion and accumulation of prolactin gene transcripts in the pituitary by stimulating dopamine release from tuberoinfundibular neurones.

Journal of Endocrinology (1992) 133, 59–66

Restricted access
S. I. Garcia
Search for other papers by S. I. Garcia in
Google Scholar
PubMed
Close
,
S. M. Dabsys
Search for other papers by S. M. Dabsys in
Google Scholar
PubMed
Close
,
D. Santajuliana
Search for other papers by D. Santajuliana in
Google Scholar
PubMed
Close
,
A. Delorenzi
Search for other papers by A. Delorenzi in
Google Scholar
PubMed
Close
,
S. Finkielman
Search for other papers by S. Finkielman in
Google Scholar
PubMed
Close
,
V. E. Nahmod
Search for other papers by V. E. Nahmod in
Google Scholar
PubMed
Close
, and
C. J. Pirola
Search for other papers by C. J. Pirola in
Google Scholar
PubMed
Close

ABSTRACT

TRH increases the pressor response to acetylcholine through an increment in muscarinic receptors. As chronic atropinization produces a similar effect, we hypothesized that both phenomena may be related. The effect of chronic atropine treatment on the TRH content of several brain areas in Wistar rats was studied. Atropine produced significant increases in TRH content in the preoptic and septal areas, while decreases were observed in the hypothalamus and hypophysis. The concentration of TRH in cerebrospinal fluid rose significantly in atropine-treated rats compared with controls. A similar effect was observed with eserine, an acetylcholinesterase inhibitor. Finally, perfusion of brain preoptic area slices from normal rats with Krebs–Ringer solution in the presence of pilocarpine increased basal TRH release significantly and this effect was blocked by atropine. These results are compatible with a muscarinic control on the activity of the central TRH system.

Journal of Endocrinology (1992) 134, 215–219

Restricted access
S. Harvey
Search for other papers by S. Harvey in
Google Scholar
PubMed
Close

ABSTRACT

Benzodiazepines are pharmacological agents widely used for their anxiolytic and anticonvulsant properties. However, as these drugs are known to antagonize the binding and action of thyrotrophin-releasing hormone (TRH) in pituitary tissue, the possibility that they may modulate GH secretion was investigated in domestic fowl, in which TRH is a GH-releasing factor. Chlordiazepoxide (an antagonist of central-type benzodiazepine receptors) had no significant effect on the basal release of GH from incubated chicken pituitary glands, but at concentrations > 10 μmol/l chlordiazepoxide suppressed somatotroph responsiveness and sensitivity to TRH stimulation. At this concentration, chlordiazepoxide competitively displaced the binding of [3H]3-methyl-histidine2-TRH ([3H]Me-TRH) to chicken pituitary membranes. The prior incubation of pituitary glands with chlordiazepoxide had no significant effect on the number of [3H]Me-TRH-binding sites, which were also unaffected by the administration of chlordiazepoxide in vivo. However, contrary to its effects in vitro, chlordiazepoxide reduced basal GH secretion in vivo, whilst potentiating the GH response to systemic TRH challenge. These results demonstrate benzodiazepine antagonism of TRH-binding sites in domestic fowl and a biphasic modulation of GH secretion, which may be mediated through opposing actions at pituitary and central sites.

Journal of Endocrinology (1993) 137, 35–42

Restricted access
K. Dakshinamurti
Search for other papers by K. Dakshinamurti in
Google Scholar
PubMed
Close
,
C. S. Paulose
Search for other papers by C. S. Paulose in
Google Scholar
PubMed
Close
, and
J. Vriend
Search for other papers by J. Vriend in
Google Scholar
PubMed
Close

ABSTRACT

Pyridoxine-deficient young rats (3 weeks old) had significantly reduced levels of pituitary TSH, serum thyroxine (T4) and tri-iodothyronine (T3) compared with pyridoxine-supplemented rats. The status of the pituitary-thyroid axis of normal, pyridoxine-supplemented and pyridoxine-deficient rats was evaluated by studying the binding parameters of [3H](3-methyl-histidine2)TRH in the pituitary of these rats. The effects of TRH and T4 injections on pituitary TSH and serum TSH, T4 and T3 of these two groups were also compared. The maximal binding of TRH receptors in the pituitary of pyridoxine-deficient rats was significantly higher than that of pyridoxine-supplemented control and normal rats, but there was no change in the binding affinity. Treatment with TRH stimulated TSH synthesis and release. It also increased serum T4 and T3 in both pyridoxine-supplemented and pyridoxine-deficient rats. Treatment with T4 decreased serum and pituitary TSH in both pyridoxine-supplemented and pyridoxine-deficient rats, compared with saline-treated rats. The increased pituitary TRH receptor content, response to TRH administration and the fact that regulation at the level of the pituitary is not affected in the pyridoxine-deficient rat indicates a hypothalamic origin for the hypothyroidism of the pyridoxine-deficient rat.

J. Endocr. (1986) 109, 345–349

Restricted access
D. F. Wood
Search for other papers by D. F. Wood in
Google Scholar
PubMed
Close
,
K. Docherty
Search for other papers by K. Docherty in
Google Scholar
PubMed
Close
,
D. B. Ramsden
Search for other papers by D. B. Ramsden in
Google Scholar
PubMed
Close
,
K. I. J. Shennan
Search for other papers by K. I. J. Shennan in
Google Scholar
PubMed
Close
, and
M. C. Sheppard
Search for other papers by M. C. Sheppard in
Google Scholar
PubMed
Close

ABSTRACT

The effects of tri-iodothyronine (T3) and TRH on prolactin mRNA accumulation in monolayer pituitary cell cultures prepared from both euthyroid and hypothyroid rats were investigated. Basal prolactin mRNA concentrations and prolactin release into culture medium were increased in hypothyroid cultures, the increase being related to the duration of hypothyroidism in vivo. The inhibitory effects of T3 seen in euthyroid cells were preserved in cells derived from hypothyroid animals, and the degree of inhibition was greater in cells from the most severely hypothyroid rats. However, the stimulation of prolactin synthesis and secretion induced by TRH in euthyroid cultures was not found in the hypothyroid cells. Hypothalamic and anterior pituitary TRH content were measured in similarly hypothyroid and euthyroid rats. A large hypothalamic pool of TRH was found, which was unchanged in hypothyroidism, whereas anterior pituitary TRH content was increased in the hypothyroid rats. The consequent down-regulation of anterior pituitary TRH receptors may explain the poor response of prolactin to TRH seen in vitro.

J. Endocr. (1987) 115, 497–503

Restricted access
R J Ashworth
Search for other papers by R J Ashworth in
Google Scholar
PubMed
Close
,
J Ham
Search for other papers by J Ham in
Google Scholar
PubMed
Close
, and
S M Cockle
Search for other papers by S M Cockle in
Google Scholar
PubMed
Close

Abstract

Pyroglutamylglutamylprolineamide, which was first discovered in mammalian prostate, differs from thyrotrophin-releasing hormone (TRH) by substitution of glutamic acid for histidine at position two of the tripeptide. Recently, the newly discovered peptide has been identified in substantial concentrations in the rat anterior pituitary gland and, in this study, we have investigated the effects of the peptide on rat anterior pituitary cells in culture. GH3 cells were chosen to examine the possible effects of the new peptide, particularly in relation to its effects on the TRH receptor. This cell-type was deficient, in comparison with normal rat pituitary cells, in the new TRH-related peptide and appeared to be an ideal model cell in which to study the effects of pGlu-Glu-ProNH2. TRH (0·01–100 nm) was found to stimulate the secretion of both GH and prolactin from GH3 cells whereas pGlu-Glu-ProNH2 had no effect within the same concentration ranges. In contrast, at micromolar concentrations pGlu-Glu-ProNH2 exhibited intrinsic TRH-like activity causing stimulation of both GH and prolactin release from GH3 cells. Both TRH and pGlu-Glu-ProNH2 appeared to act through the same intracellular signalling mechanism, causing significant increases in intracellular inositol phosphate within the expected concentration ranges. However, pGlu-Glu-ProNH2 (up to 1 mm) displaced neither [3H]TRH nor [3H]MeTRH from membrane-binding sites on GH3 cells, suggesting that the effects of the new peptide were mediated through a second receptor. The physiological relevance of these effects of pGlu-Glu-ProNH2 requires further investigation.

Journal of Endocrinology (1994) 142, 111–118

Restricted access
S. Harvey
Search for other papers by S. Harvey in
Google Scholar
PubMed
Close
and
R. W. Lea
Search for other papers by R. W. Lea in
Google Scholar
PubMed
Close

ABSTRACT

Thyrotrophin-releasing hormone (TRH) stimulates GH secretion in domestic fowl by actions at pituitary and central nervous system sites. The possibility that this central action might be mediated by hypothalamic catecholamines or indoleamines was therefore investigated. When TRH was administered into the lateral ventricles of anaesthetized fowl the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC, a metabolite of dopamine (DA)) in the medial basal hypothalamus (MBH) was increased within 20 min. The concentrations of MBH noradrenaline (NA), DA, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were, however, unaffected by the intracerebroventricular (i.c.v.) administration of TRH, although the MBH concentrations of somatostatin and TRH were concomitantly reduced. A rapid increase in DA release into MBH extracellular fluid and its metabolism to DOPAC was also observed after i.c.v. or i.v. administration of TRH, in birds in which the MBH was perfused in vivo with Ringer's solution. Microdialysate concentrations of NA, 5-HT and 5-HIAA were not, however, affected by central or peripheral injections of TRH. Diminished GH responses to i.v. TRH challenge occurred in birds pretreated with reserpine (a catecholamine depletor), α-methyl-paratyrosine (a DA synthesis inhibitor) and pimozide (a DA receptor antagonist). These results therefore provide evidence for the involvement of a hypothalamic dopaminergic pathway in the induction of GH release following the central or peripheral administration of TRH. In contrast with its inhibitory actions at peripheral sites, DA would appear to have a central stimulatory role in regulating GH release in birds.

Journal of Endocrinology (1993) 138, 225–232

Restricted access
S. Harvey
Search for other papers by S. Harvey in
Google Scholar
PubMed
Close

Introduction

Growth hormone (GH) secretion has traditionally been considered to be under dual hypothalamic control, being stimulated by a GH-releasing factor (GRF) and suppressed by somatostatin (SRIF), an inhibitory releasing factor (Müller, 1987). These hypothalamic peptides are released into hypophysial circulation in response to stimuli in the internal and external environment, and act at receptors on somatotroph cells to regulate GH synthesis and release. Hypophysial portal plasma, however, also transports other hypophysiotrophic factors to the pituitary gland, and somatotrophs are undoubtedly exposed to other putative GRFs.

Thyrotrophin-releasing hormone (TRH; pGlu-His-Pro-NH2) was the first hypophysiotrophic peptide to be isolated and synthesized chemically and was called TRH because it was found to stimulate thyrotrophin (TSH) release from the pituitary gland (Nelson, 1982). However, since its discovery, TRH has been found to be synthesized in numerous locations throughout the 'diffuse neuroendocrine system', and in addition to its neuroendocrine role in the regulation of

Restricted access
B. M. Lewis
Search for other papers by B. M. Lewis in
Google Scholar
PubMed
Close
,
C. Dieguez
Search for other papers by C. Dieguez in
Google Scholar
PubMed
Close
,
M. D. Lewis
Search for other papers by M. D. Lewis in
Google Scholar
PubMed
Close
, and
M. F. Scanlon
Search for other papers by M. F. Scanlon in
Google Scholar
PubMed
Close

ABSTRACT

We have studied the effect of dopamine together with agonist and antagonist drugs of different specificities on the release of TRH from the perfused, intact hypothalamus of the adult rat in vitro. Dopamine produced a dose-related stimulatory effect on TRH release with maximal effect being achieved at 1 μmol/l (increase over basal, 118 ±16·5 (s.e.m.) fmol TRH; P <0·001 vs basal). This effect was mimicked by the specific D2-agonist drugs bromocriptine (0·1 μmol/l) and LY 171555 (0·1 μmol/l) (increase over basal values, 137·5±13·75 fmol and 158·6± 10·7 fmol respectively; P <0·001 vs basal), but not by the D1-agonist SKF 38393A. The stimulatory effect of dopamine (1 μmol/l) was blocked in a stereospecific manner by the active (d) but not by the inactive (l) isomers of the dopamine antagonist butaclamol. Similar blockade was achieved with the specific D2-antagonist domperidone (0·01 μmol/l) whereas the D1-antagonist SCH 23390 was only effective when used at a concentration 100 times greater. Lower concentrations (0·01 μmol/l) of this D1 -antagonist did not block the stimulatory effect of dopamine. High-performance liquid chromatography characterization of the material secreted within the hypothalamus showed one single peak of immunoreactive material which coeluted with synthetic TRH. These data suggest that dopamine exerts a stimulatory role in the control of hypothalamic TRH release by acting at specific D2-receptors.

J. Endocr. (1987) 115, 419–424

Restricted access
KL Geris
Search for other papers by KL Geris in
Google Scholar
PubMed
Close
,
B de Groef
Search for other papers by B de Groef in
Google Scholar
PubMed
Close
,
SP Rohrer
Search for other papers by SP Rohrer in
Google Scholar
PubMed
Close
,
S Geelissen
Search for other papers by S Geelissen in
Google Scholar
PubMed
Close
,
ER Kuhn
Search for other papers by ER Kuhn in
Google Scholar
PubMed
Close
, and
VM Darras
Search for other papers by VM Darras in
Google Scholar
PubMed
Close

Somatostatin (SRIH) functions as an endocrine mediator in processes such as growth, immune resistance and reproduction. Five SRIH receptors (sstr1-5) have been identified in mammals, where they are expressed in both the brain and peripheral tIssues. To study the specific function of each receptor subtype, specific agonists (ag1-5) have been synthesized. The high degree of homology between mammalian and avian SRIH receptors suggests that these agonists might also be used in chickens. In this paper we describe two in vitro protocols (static incubation and perifusion system) to identify the SRIH receptors controlling the secretion of GH and TSH from the chicken pituitary. We found that basal GH or TSH secretion were never affected when SRIH or an agonist (1 microM) were added. SRIH diminished the GH as well as the TSH response to TSH-releasing hormone (TRH; 100 nM) in both systems. Our results have indicated that the SRIH actions at the level of the pituitary are regulated through specific receptor subtypes. In both the static and flow incubations, ag2 lowered the GH response to TRH, whereas stimulated TSH release was diminished by both ag2 and ag5. Ag3 and ag4 tended to increase rather than decrease the responsiveness of both pituitary cell types to TRH in perifusion studies. Our data have indicated that SRIH inhibits chicken pituitary function through sstr2 and sstr5. Only sstr2 seems to be involved in the control of chicken GH release, whereas both sstr2 and sstr5 inhibit induced GH secretion in mammals. The possible stimulatory action of ag3 and ag4 may point towards a species-specific function of sstr3 and sstr4.

Free access